Subscribe to RSS
DOI: 10.1055/a-2779-4937
Hepatic Fibrosis and Liver Cancer
Authors
Funding Information B.C.: Grant #2022/02175-1, São Paulo Research Foundation (FAPESP).S.L.F.: NIDDK grant R01 DK128289.

Abstract
Primary liver cancer, or hepatocellular carcinoma (HCC), typically emerges in fibrotic livers where persistent inflammation and extracellular matrix (ECM) remodeling create a permissive niche for malignant transformation. Although cirrhosis remains a major risk factor, mounting data show that fibrosis itself, often in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), can promote hepatocarcinogenesis even before cirrhosis develops. This review synthesizes mechanistic insights from hepatic stellate cell (HSC) biology and tumor immunology that position fibrosis as an instigator of HCC. Fibrotic remodeling increases ECM stiffness, distorts sinusoidal architecture, and promotes abnormal angiogenesis, while HSCs reprogram immune surveillance toward immune cell exclusion and immunosuppression. Aging and cellular senescence amplify these effects through a senescence-associated secretory phenotype in HSCs and hepatocytes, which fuels chronic inflammation and immune dysfunction. Metabolic crosstalk and extracellular vesicle exchange further couple stromal and epithelial programs, reinforcing stemness, therapy resistance, and metastatic fitness. In conclusion, the convergence of fibrogenic and oncogenic signaling drives HCC, uncovering actionable targets for its prevention and treatment.
Keywords
liver fibrogenesis - hepatocarcinogenesis - hepatic stellate cells - cancer-associated fibroblasts - tumor microenvironmentPublication History
Received: 01 October 2025
Accepted: 15 December 2025
Accepted Manuscript online:
30 December 2025
Article published online:
13 January 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Jiang Z, Zeng G, Dai H. et al. Global, regional and national burden of liver cancer 1990-2021: a systematic analysis of the global burden of disease study 2021. BMC Public Health 2025; 25 (01) 931
- 2 Bray F, Laversanne M, Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74 (03) 229-263
- 3 Guo Q, Zhu X, Beeraka NM. et al. Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, CI5plus, and WHO data. Sci Rep 2024; 14 (01) 28131
- 4 Qiu S, Cai J, Yang Z. et al. Trends in hepatocellular carcinoma mortality rates in the US and projections through 2040. JAMA Netw Open 2024; 7 (11) e2445525
- 5 Huang DQ, Terrault NA, Tacke F. et al. Global epidemiology of cirrhosis—aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol 2023; 20 (06) 388-398
- 6 Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res 2021; 149: 1-61
- 7 Toh MR, Wong EYT, Wong SH. et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology 2023; 164 (05) 766-782
- 8 Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4 (09) 101170
- 9 Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 2017; 12: 153-186
- 10 Filliol A, Schwabe RF. Contributions of fibroblasts, extracellular matrix, stiffness, and mechanosensing to hepatocarcinogenesis. Semin Liver Dis 2019; 39 (03) 315-333
- 11 Matsuda M, Seki E. The liver fibrosis niche: novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 2020; 143: 111556
- 12 Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14: 1277808
- 13 Matsuda M, Seki E. Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis. Semin Liver Dis 2020; 40 (03) 307-320
- 14 Baglieri J, Brenner DA, Kisseleva T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci 2019; 20 (07) 1723
- 15 Wang PW, Lin TY, Yang PM, Yeh CT, Pan TL. Hepatic stellate cell modulates the immune microenvironment in the progression of hepatocellular carcinoma. Int J Mol Sci 2022; 23 (18) 10777
- 16 Jaber F, Cholankeril G, El-Serag HB. Contemporary epidemiology of hepatocellular carcinoma: understanding risk factors and surveillance strategies. J Can Assoc Gastroenterol 2024; 7 (05) 331-345
- 17 Yagüe-Caballero C, Casas-Deza D, Pascual-Oliver A, Espina-Cadena S, Arbones-Mainar JM, Bernal-Monterde V. MASLD-related hepatocarcinoma: special features and challenges. J Clin Med 2024; 13 (16) 4657
- 18 Li JZ, Yang L, Xiao MX. et al. Spatial and single-cell transcriptomics reveals the regional division of the spatial structure of MASH fibrosis. Liver Int 2025; 45 (04) e16125
- 19 Saviano A, Henderson NC, Baumert TF. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol 2020; 73 (05) 1219-1230
- 20 Watson BR, Paul B, Rahman RU. et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun 2025; 16 (01) 319
- 21 Zeng X, Huang D, Zhu Z. et al. Mechanism-guided drug development and treatment for liver fibrosis: a clinical perspective. Front Pharmacol 2025; 16: 1574385
- 22 Gong L, Wei F, Gonzalez FJ, Li G. Hepatic fibrosis: targeting peroxisome proliferator-activated receptor alpha from mechanism to medicines. Hepatology 2023; 78 (05) 1625-1653
- 23 Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. J Pharm Pharm Sci 2023; 26: 11808
- 24 Chen S, Wu Z, Zhang J. et al. Research and application of medicines for treating liver fibrosis: current status and prospects. Front Pharmacol 2025; 16: 1582258
- 25 Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. New drugs for hepatic fibrosis. Front Pharmacol 2022; 13: 874408
- 26 Liu X, Zhou J, Wu H. et al. Fibrotic immune microenvironment remodeling mediates superior anti-tumor efficacy of a nano-PD-L1 trap in hepatocellular carcinoma. Mol Ther 2023; 31 (01) 119-133
- 27 Ke MY, Xu T, Fang Y. et al. Liver fibrosis promotes immune escape in hepatocellular carcinoma via GOLM1-mediated PD-L1 upregulation. Cancer Lett 2021; 513: 14-25
- 28 Aoki T, Nishida N, Kudo M. Current perspectives on the immunosuppressive niche and role of fibrosis in hepatocellular carcinoma and the development of antitumor immunity. J Histochem Cytochem 2022; 70 (01) 53-81
- 29 Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. Mol Biomed 2024; 5 (01) 20
- 30 Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22 (04) 333-345
- 31 Rutt LN, Orlicky DJ, McCullough RL. Investigating the role of Wnt3a and Wnt5a as critical factors of hepatic stellate cell activation in acute toxicant-induced liver injury. Cell Biol Toxicol 2024; 41 (01) 5
- 32 Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW, Zhu L. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep 2014; 9 (06) 2145-2151
- 33 Kimura M, Nishikawa K, Osawa Y. et al. Inhibition of CBP/β-catenin signaling ameliorated fibrosis in cholestatic liver disease. Hepatol Commun 2022; 6 (10) 2732-2747
- 34 Cheng JH, She H, Han YP. et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2008; 294 (01) G39-G49
- 35 Guichard C, Amaddeo G, Imbeaud S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
- 36 Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of β-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131 (12) 1871-1880
- 37 Lehrich BM, Tao J, Liu S. et al. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep Innov Hepatol 2024; 6 (12) 101186
- 38 Mayorca-Guiliani AE, Leeming DJ, Henriksen K. et al. ECM formation and degradation during fibrosis, repair, and regeneration. NPJ Metab Health Dis 2025; 3 (01) 25
- 39 Chen W, Yang A, Jia J, Popov YV, Schuppan D, You H. Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology 2020; 72 (02) 729-741
- 40 Guo T, Wantono C, Tan Y, Deng F, Duan T, Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front Physiol 2023; 14: 1098129
- 41 Zhao W, Lv M, Yang X, Zhou J, Xing B, Zhang Z. Liver tumor-initiating cells initiate the formation of a stiff cancer stem cell microenvironment niche by secreting LOX. Carcinogenesis 2022; 43 (08) 766-778
- 42 Wang Z, Wang W, Luo Q, Song G. High matrix stiffness accelerates migration of hepatocellular carcinoma cells through the integrin β1-Plectin-F-actin axis. BMC Biol 2025; 23 (01) 8
- 43 Ishihara S, Haga H. Matrix stiffness contributes to cancer progression by regulating transcription factors. Cancers (Basel) 2022; 14 (04) 1049
- 44 Noguchi S, Saito A, Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 2018; 19 (11) 3674
- 45 Du K, Maeso-Díaz R, Oh SH. et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology 2023; 77 (06) 1998-2015
- 46 Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med 2018; 10 (422) eaao0475
- 47 Chen G, Xia B, Fu Q. et al. Matrix mechanics as regulatory factors and therapeutic targets in hepatic fibrosis. Int J Biol Sci 2019; 15 (12) 2509-2521
- 48 Sun M, Spill F, Zaman MH. A computational model of YAP/TAZ mechanosensing. Biophys J 2016; 110 (11) 2540-2550
- 49 Dupont S, Morsut L, Aragona M. et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474 (7350) 179-183
- 50 Liu Z, Mo H, Liu R. et al. Matrix stiffness modulates hepatic stellate cell activation into tumor-promoting myofibroblasts via E2F3-dependent signaling and regulates malignant progression. Cell Death Dis 2021; 12 (12) 1134
- 51 Li S, Hao L, Li N. et al. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: from mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65 (03) 88
- 52 Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15: 1377722
- 53 Perra A, Kowalik MA, Ghiso E. et al. YAP activation is an early event and a potential therapeutic target in liver cancer development. J Hepatol 2014; 61 (05) 1088-1096
- 54 Wu Q, Sun Q, Zhang Q, Wang N, Lv W, Han D. Extracellular matrix stiffness-induced mechanotransduction of capillarized liver sinusoidal endothelial cells. Pharmaceuticals (Basel) 2024; 17 (05) 644
- 55 Poisson J, Lemoinne S, Boulanger C. et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 2017; 66 (01) 212-227
- 56 Xu X, Zhang Y, Wang X, Li S, Tang L. Substrate stiffness drives epithelial to mesenchymal transition and proliferation through the NEAT1-Wnt/β-catenin pathway in liver cancer. Int J Mol Sci 2021; 22 (21) 12066
- 57 Ma D, Luo Q, Song G. Matrix stiffening facilitates stemness of liver cancer stem cells by YAP activation and BMF inhibition. Biomater Adv 2024; 163: 213936
- 58 Zhang QY, Ding W, Mo JS. et al. Novel STAT3 oligonucleotide compounds suppress tumor growth and overcome the acquired resistance to sorafenib in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45 (08) 1701-1714
- 59 Bansal R, van Baarlen J, Storm G, Prakash J. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis. Sci Rep 2015; 5: 18272
- 60 Cao Y, Mai W, Li R. et al. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway. Cell Mol Life Sci 2022; 79 (06) 303
- 61 Chen J, Gingold JA, Su X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol Med 2019; 25 (11) 1010-1023
- 62 Fabregat I, Caballero-Díaz D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front Oncol 2018; 8: 357
- 63 Zhang F, Wang H, Wang X. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 2016; 7 (32) 52294-52306
- 64 Rosell-García T, Palomo-Álvarez O, Rodríguez-Pascual F. A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor β1. J Biol Chem 2019; 294 (39) 14308-14318
- 65 Khan MA, Fischer J, Harrer L, Schwiering F, Groneberg D, Friebe A. Hepatic stellate cells in zone 1 engage in capillarization rather than myofibroblast formation in murine liver fibrosis. Sci Rep 2024; 14 (01) 18840
- 66 Zhang CY, Yang M. Targeting tumor vascular endothelial cells for hepatocellular carcinoma treatment. World J Gastroenterol 2025; 31 (29) 110114
- 67 Shan L, Wang F, Xue W, Zhai D, Liu J, Lv X. New insights into fibrotic signaling in hepatocellular carcinoma. Front Oncol 2023; 13: 1196298
- 68 Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: an important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30 (03) 303-325
- 69 Gao J, Lan T, Kostallari E. et al. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81 (03) 543-561
- 70 Kremer KN, Khammash HA, Miranda AM. et al. Liver sinusoidal endothelial cells regulate the balance between hepatic immunosuppression and immunosurveillance. Front Immunol 2025; 15: 1497788
- 71 Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17 (01) 6
- 72 Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8 (01) 70
- 73 Yan Z, Qu K, Zhang J. et al. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells. Clin Sci (Lond) 2015; 129 (08) 699-710
- 74 McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78 (02) 649-669
- 75 Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31 (01) 32-55
- 76 Cai J, Hu M, Chen Z, Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med 2021; 19 (01) 186
- 77 Foglia B, Novo E, Protopapa F. et al. Hypoxia, hypoxia-inducible factors and liver fibrosis. Cells 2021; 10 (07) 1764
- 78 Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer—challenges and opportunities. Front Mol Biosci 2023; 10: 1129831
- 79 Lin Y, Dong MQ, Liu ZM. et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology 2022; 76 (03) 660-675
- 80 Huang Y, Feng H, Kan T. et al. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One 2013; 8 (08) e73492
- 81 Hu N, Li H, Tao C, Xiao T, Rong W. The role of metabolic reprogramming in the tumor immune microenvironment: mechanisms and opportunities for immunotherapy in hepatocellular carcinoma. Int J Mol Sci 2024; 25 (11) 5584
- 82 Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab 2024; 36 (07) 1439-1455
- 83 Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14: 1243675
- 84 Chen R, Cui J, Xu C. et al. The significance of MMP-9 over MMP-2 in HCC invasiveness and recurrence of hepatocellular carcinoma after curative resection. Ann Surg Oncol 2012; 19 (Suppl. 03) S375-S384
- 85 Li Z, Chen B, Dong W. et al. MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 2019; 10 (12) 899
- 86 Zeisberg M, Yang C, Martino M. et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282 (32) 23337-23347
- 87 Mir N, Jayachandran A, Dhungel B, Shrestha R, Steel JC. Epithelial-to-mesenchymal transition: a mediator of sorafenib resistance in advanced hepatocellular carcinoma. Curr Cancer Drug Targets 2017; 17 (08) 698-706
- 88 Chung JY, Chan MK, Li JS. et al. TGF-β signaling: from tissue fibrosis to tumor microenvironment. Int J Mol Sci 2021; 22 (14) 7575
- 89 Zhu Y, Zhang P, Huo X. et al. Single-cell and spatial transcriptomics reveal apelin/APJ pathway's role in microvessel formation and tumour progression in hepatocellular carcinoma. J Cell Mol Med 2024; 28 (20) e70152
- 90 Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res 2018; 2018: 6970407
- 91 Zhu Y, Ni T, Lin J, Zhang C, Zheng L, Luo M. Long non-coding RNA H19, a negative regulator of microRNA-148b-3p, participates in hypoxia stress in human hepatic sinusoidal endothelial cells via NOX4 and eNOS/NO signaling. Biochimie 2019; 163: 128-136
- 92 Sulaiman SA, Dorairaj V, Abdul Ghafar KN, Abdul Murad NA. Noncoding RNAs interactions in hepatic stellate cells during hepatic fibrosis. Livers 2021; 1 (04) 263-285
- 93 Zhou Y, Ren H, Dai B. et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res 2018; 37 (01) 324
- 94 Liu G, Yin XM. The role of extracellular vesicles in liver pathogenesis. Am J Pathol 2022; 192 (10) 1358-1367
- 95 Ehling J, Bartneck M, Wei X. et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 2014; 63 (12) 1960-1971
- 96 Qin CJ, Zhao LH, Zhou X. et al. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett 2018; 420: 26-37
- 97 Tan H, Wang S, Zhao L. A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol 2017; 44 (02) 213-221
- 98 Zhou SL, Zhou ZJ, Hu ZQ. et al. CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lett 2015; 358 (02) 124-135
- 99 Llovet JM, Kelley RK, Villanueva A. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7 (01) 6
- 100 Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res 2019; 25 (18) 5449-5457
- 101 Kuczynski EA, Yin M, Bar-Zion A. et al. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Natl Cancer Inst 2016; 108 (08) djw030
- 102 Teuwen LA, De Rooij LPMH, Cuypers A. et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep 2021; 35 (11) 109253
- 103 Toyoda H, Hiraoka A, Uojima H. et al. Characteristics and prognosis of de novo hepatocellular carcinoma after sustained virologic response. Hepatol Commun 2021; 5 (07) 1290-1299
- 104 Degasperi E, D'Ambrosio R, Iavarone M. et al. Factors associated with increased risk of de novo or recurrent hepatocellular carcinoma in patients with cirrhosis treated with direct-acting antivirals for HCV infection. Clin Gastroenterol Hepatol 2019; 17 (06) 1183-1191.e7
- 105 Choi Y, Jung K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp Mol Med 2023; 55 (11) 2308-2319
- 106 Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14: 1291530
- 107 Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14: 1386772
- 108 Ogawa H, Kaji K, Nishimura N. et al. Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J Cell Mol Med 2021; 25 (08) 4001-4013
- 109 Hong F, Chou H, Fiel MI, Friedman SL. Antifibrotic activity of sorafenib in experimental hepatic fibrosis: refinement of inhibitory targets, dosing, and window of efficacy in vivo. Dig Dis Sci 2013; 58 (01) 257-264
- 110 Yuan S, Wei C, Liu G. et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif 2022; 55 (01) e13158
- 111 Pezzella F, Ribatti D. Vascular co-option and vasculogenic mimicry mediate resistance to antiangiogenic strategies. Cancer Rep (Hoboken) 2022; 5 (12) e1318
- 112 Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer 2021; 125 (03) 324-336
- 113 Xin Y, Cao F, Yang H. et al. Efficacy and safety of atezolizumab plus bevacizumab combined with hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma. Front Immunol 2022; 13: 929141
- 114 Brackenier C, Kinget L, Cappuyns S, Verslype C, Beuselinck B, Dekervel J. Unraveling the synergy between atezolizumab and bevacizumab for the treatment of hepatocellular carcinoma. Cancers (Basel) 2023; 15 (02) 348
- 115 Huang B, Huang M, Li Q. Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-mediated EZH2/VASH1 pathway. Technol Cancer Res Treat 2019; 18: 1533033819879905
- 116 Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009; 50 (03) 604-620
- 117 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
- 118 Han Y, Pan Q, Guo Z. et al. BMP9-induced vascular normalisation improves the efficacy of immunotherapy against hepatitis B virus-associated hepatocellular carcinoma. Clin Transl Med 2023; 13 (05) e1247
- 119 Wang L, Qu J, Li J. et al. Si-Wu-Tang improves liver fibrosis by restoring liver sinusoidal endothelial cell functionality and reducing communication with hepatic stellate cells. Chin Med 2024; 19 (01) 179
- 120 He Q, He W, Dong H. et al. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22 (01) 346
- 121 Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19 (03) 222-232
- 122 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783) 512-518
- 123 Chung BK, Øgaard J, Reims HM, Karlsen TH, Melum E. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatol Commun 2022; 6 (09) 2538-2550
- 124 Zhang Q, He Y, Luo N. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179 (04) 829-845.e20
- 125 Lee J, Kim CM, Cha JH. et al. Multiplexed digital spatial protein profiling reveals distinct phenotypes of mononuclear phagocytes in livers with advanced fibrosis. Cells 2022; 11 (21) 3387
- 126 Hendrikx T, Porsch F, Kiss MG. et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. J Hepatol 2022; 77 (05) 1373-1385
- 127 Cheng Y, Chen X, Feng L. et al. Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma. Cell Discov 2025; 11 (01) 1
- 128 Liu Y, Dong G, Yu J, Liang P. Integration of single-cell and spatial transcriptomics reveals fibroblast subtypes in hepatocellular carcinoma: spatial distribution, differentiation trajectories, and therapeutic potential. J Transl Med 2025; 23 (01) 198
- 129 Wang H, Liang Y, Liu Z. et al. POSTN+ cancer-associated fibroblasts determine the efficacy of immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12 (07) e008721
- 130 Long F, Zhong W, Zhao F. et al. DAB2 + macrophages support FAP + fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics 2024; 14 (12) 4822-4843
- 131 Zhu GQ, Tang Z, Huang R. et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov 2023; 9 (01) 25
- 132 Dong Y, Chen Y, Wang Y. et al. Cancer-associated fibroblasts derived fibronectin extra domain A promotes sorafenib resistance in hepatocellular carcinoma cells by activating SHMT1. Genes Dis 2024; 11 (06) 101330
- 133 Ge X, Arriazu E, Magdaleno F. et al. High mobility group box-1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology 2018; 68 (06) 2380-2404
- 134 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
- 135 Zhao J, Lin E, Bai Z. et al. Cancer-associated fibroblasts induce sorafenib resistance of hepatocellular carcinoma cells through CXCL12/FOLR1. BMC Cancer 2023; 23 (01) 1198
- 136 Ying F, Chan MSM, Lee TKW. Cancer-associated fibroblasts in hepatocellular carcinoma and cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2023; 15 (04) 985-999
- 137 Yin Y, Feng W, Chen J. et al. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13 (01) 72
- 138 Zhang Z, Yu Y, Zhang Z. et al. Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. J Exp Clin Cancer Res 2023; 42 (01) 316
- 139 Sarkar M, Nguyen T, Gundre E. et al. Cancer-associated fibroblasts: the chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11: 1089068
- 140 Li T, Yang Y, Hua X. et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett 2012; 318 (02) 154-161
- 141 Mao X, Xu J, Wang W. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20 (01) 131
- 142 Wei Y, Bingyu W, Lei Y, Xingxing Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp Biol Med (Maywood) 2022; 247 (14) 1235-1243
- 143 Shin SK, Oh S, Chun SK. et al. Immune signature and therapeutic approach of natural killer cell in chronic liver disease and hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39 (09) 1717-1727
- 144 Chen Y, Huang Y, Huang R. et al. Interleukin-10 gene intervention ameliorates liver fibrosis by enhancing the immune function of natural killer cells in liver tissue. Int Immunopharmacol 2024; 127: 111341
- 145 Bai Q, Hong X, Lin H. et al. Single-cell landscape of immune cells in human livers affected by HBV-related cirrhosis. JHEP Rep Innov Hepatol 2023; 5 (11) 100883
- 146 Maretti-Mira AC, Salomon MP, Hsu AM, Dara L, Golden-Mason L. Etiology of end-stage liver cirrhosis impacts hepatic natural killer cell heterogenicity. Front Immunol 2023; 14: 1137034
- 147 Gryziak M, Kraj L, Stec R. The role of tumor-associated macrophages in hepatocellular carcinoma-from bench to bedside: a review. J Gastroenterol Hepatol 2024; 39 (08) 1489-1499
- 148 Ma K, Guo S, Li J, Wei T, Liang T. Biological and clinical role of TREM2 in liver diseases. Hepatol Commun 2024; 8 (12) e0578
- 149 Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells?. Cell Mol Immunol 2024; 21 (12) 1376-1409
- 150 Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13: 1171794
- 151 Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15: 1431211
- 152 Jou E, Chaudhury N, Nasim F. Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment. Explor Target Antitumor Ther 2024; 5 (01) 187-207
- 153 Tomiyama T, Itoh S, Iseda N. et al. Myeloid-derived suppressor cell infiltration is associated with a poor prognosis in patients with hepatocellular carcinoma. Oncol Lett 2022; 23 (03) 93
- 154 Raskov H, Orhan A, Gaggar S, Gögenur I. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis 2022; 11 (01) 22
- 155 Kwong TT, Xiong Z, Zhang Y. et al. Overcoming immunotherapy resistance in hepatocellular carcinoma by targeting myeloid IL-8/CXCR2 signaling. Mol Ther 2025; 33 (04) 1659-1673
- 156 Sankar K, Pearson AN, Worlikar T. et al. Impact of immune tolerance mechanisms on the efficacy of immunotherapy in primary and secondary liver cancers. Transl Gastroenterol Hepatol 2023; 8: 29
- 157 Del Prete A, Salvi V, Soriani A. et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20 (05) 432-447
- 158 Magen A, Hamon P, Fiaschi N. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29 (06) 1389-1399
- 159 Seyhan D, Allaire M, Fu Y. et al. Immune microenvironment in hepatocellular carcinoma: from pathogenesis to immunotherapy. Cell Mol Immunol 2025; 22 (10) 1132-1158
- 160 Chen J, Lin Z, Liu L. et al. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct Target Ther 2021; 6 (01) 397
- 161 Zhang M, Pang HJ, Zhao W. et al. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer 2018; 18 (01) 511
- 162 Shiri AM, Zhang T, Bedke T. et al. IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol 2024; 80 (04) 634-644
- 163 Sun D, Li W, Ding D. et al. IL-17a promotes hepatocellular carcinoma by increasing FAP expression in hepatic stellate cells via activation of the STAT3 signaling pathway. Cell Death Discov 2024; 10 (01) 230
- 164 Meng F, Wang K, Aoyama T. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143 (03) 765-776.e3
- 165 Yamagishi R, Kamachi F, Nakamura M. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol 2022; 7 (72) eabl7209
- 166 Tong W, Wang T, Bai Y. et al. Spatial transcriptomics reveals tumor-derived SPP1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med 2024; 22 (01) 840
- 167 Li M, Wang L, Cong L. et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2024; 79 (03) 560-574
- 168 Tu MM, Abdel-Hafiz HA, Jones RT. et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol 2020; 3 (01) 720
- 169 Leslie J, Mackey JBG, Jamieson T. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022; 71 (10) 2093-2106
- 170 Ang C, Shields A, Xiu J. et al. Molecular characteristics of hepatocellular carcinomas from different age groups. Oncotarget 2017; 8 (60) 101591-101598
- 171 Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018; 14 (10) 576-590
- 172 von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27 (07) 339-344
- 173 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153 (06) 1194-1217
- 174 Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8 (09) 729-740
- 175 Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118
- 176 Ruhland MK, Loza AJ, Capietto AH. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7: 11762
- 177 Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 2019; 19 (08) 439-453
- 178 Aravinthan AD, Alexander GJM. Senescence in chronic liver disease: is the future in aging?. J Hepatol 2016; 65 (04) 825-834
- 179 Krizhanovsky V, Yon M, Dickins RA. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134 (04) 657-667
- 180 Du K, Umbaugh DS, Ren N, Diehl AM. Cellular senescence in liver diseases: from molecular drivers to therapeutic targeting. J Hepatol 2025
- 181 Yashaswini CN, Qin T, Bhattacharya D. et al. Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol 2024; 81 (02) 207-217
- 182 Krizhanovsky V, Lowe SW. Stem cells: the promises and perils of p53. Nature 2009; 460 (7259) 1085-1086
- 183 Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123 (05) 1902-1910
- 184 Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 2020; 9 (03) 671
- 185 Mano Y, Yoshio S, Shoji H. et al. Bone morphogenetic protein 4 provides cancer-supportive phenotypes to liver fibroblasts in patients with hepatocellular carcinoma. J Gastroenterol 2019; 54 (11) 1007-1018
- 186 Yang Y, Cai Q, Zhu M, Rong J, Feng X, Wang K. Exploring the double-edged role of cellular senescence in chronic liver disease for new treatment approaches. Life Sci 2025; 373: 123678
- 187 Greten TF, Eggert T. Cellular senescence associated immune responses in liver cancer. Hepat Oncol 2017; 4 (04) 123-127
- 188 Ghosh D, Mejia Pena C, Quach N, Xuan B, Lee AH, Dawson MR. Senescent mesenchymal stem cells remodel extracellular matrix driving breast cancer cells to a more-invasive phenotype. J Cell Sci 2020; 133 (02) jcs232470
- 189 He G, Karin M. NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res 2011; 21 (01) 159-168
- 190 Hoare M, Narita M. Transmitting senescence to the cell neighbourhood. Nat Cell Biol 2013; 15 (08) 887-889
- 191 Wang B, Koh P, Winbanks C. et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 2011; 60 (01) 280-287
- 192 Kang TW, Yevsa T, Woller N. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374) 547-551
- 193 Xu M, Pirtskhalava T, Farr JN. et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24 (08) 1246-1256
- 194 Amor C, Feucht J, Leibold J. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583 (7814) 127-132
- 195 Farr JN, Xu M, Weivoda MM. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017; 23 (09) 1072-1079
- 196 Rebo J, Mehdipour M, Gathwala R. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 2016; 7: 13363
- 197 Eggert T, Wolter K, Ji J. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016; 30 (04) 533-547
- 198 Sieben CJ, Sturmlechner I, van de Sluis B, van Deursen JM. Two-step senescence-focused cancer therapies. Trends Cell Biol 2018; 28 (09) 723-737
- 199 Zhou L, Li Y, Zheng D. et al. Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. Mol Ther Oncol 2024; 32 (02) 200817
- 200 Mao Y, Yao C, Zhang S. et al. Targeting fibroblast activation protein with chimeric antigen receptor macrophages. Biochem Pharmacol 2024; 230 (Pt 3): 116604
- 201 Dai H, Zhu C, Huai Q. et al. Chimeric antigen receptor-modified macrophages ameliorate liver fibrosis in preclinical models. J Hepatol 2024; 80 (06) 913-927
- 202 Amor C, Fernández-Maestre I, Chowdhury S. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging 2024; 4 (03) 336-349
- 203 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
- 204 Mederacke I, Hsu CC, Troeger JS. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
- 205 Iwaisako K, Jiang C, Zhang M. et al. Origin of myofibroblasts in liver fibrosis in mice. J Clin Invest 2014; 124 (04) 1453-1465
- 206 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18 (03) 151-166
- 207 Cogliati B, Yashaswini CN, Wang S, Sia D, Friedman SL. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol 2023; 20 (10) 647-661
- 208 Dobie R, Wilson-Kanamori JR, Henderson NC. et al. Single-cell transcriptomics reveals zonation and injury-specific programs in hepatic stellate cells. Gastroenterology 2019; 157 (05) 1493-1510.e11
- 209 Filliol A, Saito Y, Nair A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022; 610 (7931) 356-365
- 210 Affó S, Yu L-X, Schwabe RF. Fibroblasts in liver cancer: functions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2023; 20 (10) 632-649
- 211 Zhu G-Q, Tang Z, Huang R. et al. CD36+ cancer-associated fibroblasts create an immunosuppressive niche via MIF in hepatocellular carcinoma. Cell Discov 2023; 9: 25
- 212 Myojin Y, Hikita H, Sugiyama M. et al. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology 2021; 160 (05) 1741-1754.e16
- 213 Tian L, Lu J, Ng IO. Extracellular vesicles and cancer stemness in hepatocellular carcinoma—is there a link?. Front Immunol 2024; 15: 1368898
- 214 Liu YC, Yeh CT, Lin KH. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells 2020; 9 (06) 1331
- 215 Jiang J, Ye F, Yang X. et al. Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells. Cancer Lett 2017; 404: 19-28
- 216 Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 2011; 9 (01) 50-63
- 217 Ghanem I, Riveiro ME, Paradis V, Faivre S, de Parga PM, Raymond E. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res 2014; 6 (04) 340-352
- 218 Liang N, Yang T, Huang Q. et al. Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 2022; 13 (04) 394
- 219 Nagahara T, Shiraha H, Sawahara H. et al. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells. Oncol Rep 2015; 34 (03) 1169-1177
- 220 Zhang R, Yao RR, Li JH. et al. Activated hepatic stellate cells secrete periostin to induce stem cell-like phenotype of residual hepatocellular carcinoma cells after heat treatment. Sci Rep 2017; 7 (01) 2164
- 221 Sun L, Wang Y, Wang L. et al. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. J Exp Clin Cancer Res 2019; 38 (01) 170
- 222 Loh JJ, Li TW, Zhou L. et al. FSTL1 secreted by activated fibroblasts promotes hepatocellular carcinoma metastasis and stemness. Cancer Res 2021; 81 (22) 5692-5705
- 223 Peng H, Yang M, Feng K, Lv Q, Zhang Y. Semaphorin 3C (Sema3C) reshapes stromal microenvironment to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2024; 9 (01) 169
- 224 Li Q, Chen Q, Wang W, Xie R, Li Z, Chen D. KGF secreted from HSCs activates PAK4/BMI1, promotes HCC stemness through PI3K/AKT pathway. IUBMB Life 2025; 77 (01) e2929
- 225 Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8 (07) 727
- 226 Thietart S, Rautou PE. Extracellular vesicles as biomarkers in liver diseases: a clinician's point of view. J Hepatol 2020; 73 (06) 1507-1525
- 227 Li J, Yuan Y, Fu Q. et al. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12 (01) 119
- 228 Sun Y, Zhao M, Cheng L. et al. Reduction of alternative polarization of macrophages by short-term activated hepatic stellate cell-derived small extracellular vesicles. J Exp Clin Cancer Res 2025; 44 (01) 117
- 229 Sun Y, He X, Han J. et al. Activated hepatic stellate cell-derived small extracellular vesicles facilitate M2 macrophage polarization and hepatoma progression via miR-27a-3p. Front Immunol 2024; 15: 1489679
- 230 Sun C, Xu W, Xia Y, Wang S. PRDM16 from hepatic stellate cells-derived extracellular vesicles promotes hepatocellular carcinoma progression. Am J Cancer Res 2023; 13 (11) 5254-5270
- 231 Zhang X, Chen F, Huang P. et al. Exosome-depleted MiR-148a-3p derived from hepatic stellate cells promotes tumor progression via ITGA5/PI3K/Akt axis in hepatocellular carcinoma. Int J Biol Sci 2022; 18 (06) 2249-2260
- 232 Liu J, Fan L, Yu H. et al. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 2019; 70 (01) 241-258
- 233 Zhang Y, Li X, Chen H. et al. Cancer cell-derived exosomal miR-500a-3p modulates hepatic stellate cell activation and the immunosuppressive microenvironment. Adv Sci (Weinh) 2025; 12 (02) e2404089
- 234 Xia Y, Zhen L, Li H. et al. MIRLET7BHG promotes hepatocellular carcinoma progression by activating hepatic stellate cells through exosomal SMO to trigger Hedgehog pathway. Cell Death Dis 2021; 12 (04) 326
- 235 Fang T, Lv H, Lv G. et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018; 9 (01) 191
- 236 Chen QT, Zhang ZY, Huang QL. et al. HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nat Metab 2022; 4 (10) 1306-1321
- 237 Kostallari E, Hirsova P, Prasnicka A. et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 2018; 68 (01) 333-348
- 238 Gautam J, Wu J, Lally JSV. et al. ACLY inhibition promotes tumour immunity and suppresses liver cancer. Nature 2025; 645 (8080) 507-517
- 239 Martínez García de la Torre RA, Vallverdú J, Xu Z. et al. Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis. Nat Commun 2025; 16 (01) 1489
- 240 Morrow MR, Batchuluun B, Wu J. et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab 2022; 34 (06) 919-936.e8
- 241 Di Pastena, Gautam F, Lally JSV. et al. Dual inhibition of ACLY and ACSS2 by EVT0185 reduces steatosis, hepatic stellate cell activation, and fibrosis in mouse models of MASH. Cell Metabolism 2026; 38 (01) 33-49 .e10
- 242 Desjardins EM, Wu J, Lavoie DCT. et al. Combination of an ACLY inhibitor with a GLP-1R agonist exerts additive benefits on nonalcoholic steatohepatitis and hepatic fibrosis in mice. Cell Rep Med 2023; 4 (09) 101193
- 243 Chen Q-T, Li L, Chen J. et al. Hepatic stellate cell–derived extracellular vesicles deliver hexokinase-1 to hepatocellular carcinoma to drive glycolysis and metastasis. Nat Metab 2022; 4: 1306-1321
- 244 Wang H, Liu F, Wu X. et al. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res 2024; 435 (02) 113947
- 245 Droździk M, Szeląg-Pieniek S, Grzegółkowska J. et al. Monocarboxylate transporter 1 (MCT1) in liver pathology. Int J Mol Sci 2020; 21 (05) 1606
- 246 Sousa CM, Biancur DE, Wang X. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536 (7617) 479-483
- 247 Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142 (04) 938-946
- 248 Tan Z, Sun H, Xue T. et al. Liver fibrosis: therapeutic targets and advances in drug therapy. Front Cell Dev Biol 2021; 9: 730176
- 249 Odagiri N, Matsubara T, Sato-Matsubara M, Fujii H, Enomoto M, Kawada N. Anti-fibrotic treatments for chronic liver diseases: the present and the future. Clin Mol Hepatol 2021; 27 (03) 413-424
- 250 Ratziu V, Sanyal A, Harrison SA. et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology 2020; 72 (03) 892-905
- 251 Anstee QM, Lawitz EJ, Alkhouri N. et al. Cenicriviroc lacked efficacy to treat liver fibrosis in adults with nonalcoholic steatohepatitis: results from the AURORA phase 3 trial. Clin Gastroenterol Hepatol 2024; 22 (01) 16-27
- 252 Muir AJ, Levy C, Janssen HLA. et al; GS-US-321-0102 Investigators. Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology 2019; 69 (02) 684-698
- 253 Harrison SA, Bedossa P, Guy CD. et al; MAESTRO-NASH Investigators. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis (MAESTRO-NASH). N Engl J Med 2024; 390 (06) 497-509
- 254 Llovet JM, Ricci S, Mazzaferro V. et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
- 255 Kudo M, Finn RS, Qin S. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma (REFLECT). Lancet 2018; 391 (10126): 1163-1173
- 256 Bruix J, Qin S, Merle P. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib (RESORCE). Lancet 2017; 389 (10064): 56-66
- 257 Cheng AL, Qin S, Ikeda M. et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76 (04) 862-873
- 258 Kim RD, Sarker D, Meyer T. et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signalling as a driver event in hepatocellular carcinoma. Cancer Discov 2019; 9 (12) 1696-1707
- 259 Justice JN, Nambiar AM, Tchkonia T. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 2019; 40: 554-563
- 260 Hickson LJ, Langhi Prata LGP, Bobart SA. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446-456
- 261 Bruno S, Chiabotto G, Camussi G. Extracellular vesicles: a therapeutic option for liver fibrosis. Int J Mol Sci 2020; 21 (12) 4255
- 262 Sitbon A, Delmotte PR, Pistorio V. et al. Mesenchymal stromal cell-derived extracellular vesicles therapy openings new translational challenges in immunomodulating acute liver inflammation. J Transl Med 2024; 22 (01) 480
- 263 Ioannou GN, Beste LA, Green PK. et al. Increased risk for hepatocellular carcinoma persists up to 10 years after HCV eradication in patients with baseline cirrhosis or high FIB-4 scores. Gastroenterology 2019; 157 (05) 1264-1278.e4
- 264 Hoshida Y, Villanueva A, Kobayashi M. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008; 359 (19) 1995-2004
- 265 Yashaswini CN, Cogliati B, Qin T. et al. In vivo anti-FAP CAR T therapy reduces fibrosis and restores liver homeostasis in metabolic dysfunction-associated steatohepatitis. Preprint. bioRxiv. 2025 ;2025.02.25.640143