Subscribe to RSS
DOI: 10.1055/a-2773-4808
Investigation of the Frequency of Greater Trochanteric Pain Syndrome in Patients with Knee Osteoarthritis
Analyse der Prävalenz des Trochanter-major-Schmerzsyndroms bei Patientinnen und Patienten mit GonarthroseAuthors
Abstract
Objective
Knee osteoarthritis (KOA) and greater trochanteric pain syndrome (GTPS) can co-exist and exacerbate each other’s symptoms. This study aimed to evaluate the frequency of GTPS and the relationship between GTPS and disability, quality of life (QoL) and structural abnormalities, such as varum and valgum, coxa vara and valga, and leg length discrepancy in patients with KOA.
Materials and Methods
This cross-sectional study was conducted with 108 patients between November 2023 and May 2024. Knee, low back, and hip pain severity levels were evaluated using the Visual Analog Scale, KOA grade using the Kellgren-Lawrence (KL) classification, disability using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and QoL using the Short Form-36 (SF-36).
Results
90,7% of the patients were women. The KL grade of KOA was 3 in nearly half of the patients. The frequency of genu varum was very high, at 62%. The frequency of unilateral GTPSwas 33%, and that of bilateral GTPS was 42.6%. The mean scale scores were 50.4±18 for the total WOMAC, 30±25 for the SF-36 general health component, and 48.6±16.0 for the SF-36 mental health component. The presence of genu varum (rho=0.213, p=0.027) and an increase in the KL grade of KOA (rho=0.370, p<0.001) were associated with the development of GTPS.
Conclusions
It was found that GTPS was very common among patients with KOA and that it impaired knee functions and reduced the QoL. According to the results, investigating the presence of GTPS in patients with KOA will facilitate the treatment of KOA, a condition that is challenging, resistant to treatment, and costly to treat.
Zusammenfassung
Hintergrund und Ziel
Gonarthrose und das Trochanter-major-Schmerzsyndrom (TMS) können zusammen auftreten und sich gegenseitig in ihrer Symptomatik verstärken. Ziel der vorliegende Studie war es, die Prävalenz von TMS bei Patientinnen und Patienten mit Gonarthrose zu ermitteln und den Zusammenhang zwischen TMS und funktionellen Einschränkungen, der Lebensqualität sowie strukturellen Abweichungen – wie Genu varum/valgum, Coxa vara/valga und Beinlängendifferenzen – zu analysieren.
Material und Methode
In diese zwischen November 2023 und Mai 2024 durchgeführte Querschnittsstudie wurden insgesamt 108 Patientinnen und Patienten aufgenommen. Die Schmerzintensität im Knie, unteren Rücken und in der Hüfte wurde mittels visueller Analogskala (VAS) erfasst. Der Schweregrad der Gonarthrose wurde anhand der Kellgren-Lawrence-Klassifikation (KL) bewertet. Funktionelle Einschränkungen wurden mit dem Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) und die Lebensqualität mit dem Short Form-36 (SF-36) erhoben.
Ergebnisse
90,7% der Patienten waren Frauen. Bei fast der Hälfte der Teilnehmenden wurde Gonarthrose des KL-Grads 3 diagnostiziert. Mit 62% der Fälle war ein Genu varum ein sehr häufiger Befund. Die Prävalenz von einseitigem TMS betrug 33%, die von beidseitigem TMS 42,6%. Die durchschnittlichen Scores lagen bei 50,4±18 für den WOMAC-Gesamtscore, 30±25 für die SF-36-Komponente zur Allgemeinen Gesundheit und 48,6±16,0 für die Komponente zur Psychischen Gesundheit. Sowohl das Vorliegen von Genu varum (rho=0,213; p=0,027) als auch ein höherer KL-Grad (rho=0,370; p<0,001) waren statistisch signifikant mit dem Auftreten von TMS assoziiert.
Schlussfolgerung
TMS tritt bei Patientinnen und Patienten mit Gonarthrose häufig auf, beeinträchtigt die Kniegelenksfunktion und reduziert die Lebensqualität erheblich. Die gezielte Diagnostik von TMS im Rahmen der Gonarthrosebehandlung könnte zur Optimierung therapeutischer Ansätze bei dieser schwer behandelbaren und kostenintensiven Erkrankung beitragen.
Keywords
knee osteoarthritis - SF-36 - Western Ontario and McMaster Universities Osteoarthritis Index - Kellgren-Lawrence Classification - Greater Trochanteric Pain SyndromeSchlüsselwörter
Gonarthrose - Trochanter-major-Schmerzsyndrom - Kellgren-Lawrence-Klassifikation - Western Ontario and McMaster Universities Osteoarthritis Index - SF-36Publication History
Received: 01 July 2025
Accepted after revision: 15 December 2025
Article published online:
04 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Allen K, Thoma L, Golightly Y. Epidemiology of osteoarthritis. Osteoarthritis and cartilage 2022; 30: 184-195
- 2 Kemnitz J, Wirth W, Eckstein F. et al. Longitudinal change in thigh muscle strength prior to and concurrent with symptomatic and radiographic knee osteoarthritis progression: data from the Osteoarthritis Initiative. Osteoarthritis and Cartilage 2017; 25: 1633-1640
- 3 Cicuttini F, Wluka A, Hankin J. et al. Longitudinal study of the relationship between knee angle and tibiofemoral cartilage volume in subjects with knee osteoarthritis. Rheumatology 2004; 43: 321-324
- 4 Leetun DT, Ireland ML, Willson JD. et al. Core stability measures as risk factors for lower extremity injury in athletes. Medicine & Science in Sports & Exercise 2004; 36: 926-934
- 5 Pianka MA, Serino J, DeFroda SF. et al. Greater trochanteric pain syndrome: Evaluation and management of a wide spectrum of pathology. SAGE Open Medicine 2021; 9: 20503121211022582
- 6 Reid D. The management of greater trochanteric pain syndrome: a systematic literature review. Journal of orthopaedics 2016; 13: 15-28
- 7 Segal NA, Felson DT, Torner JC. et al. Greater trochanteric pain syndrome: epidemiology and associated factors. Archives of physical medicine and rehabilitation 2007; 88: 988-992
- 8 Mellor R, Bennell K, Grimaldi A. et al. Education plus exercise versus corticosteroid injection use versus a wait and see approach on global outcome and pain from gluteal tendinopathy: prospective, single blinded, randomised clinical trial. bmj. 2018 361.
- 9 Long SS, Surrey DE, Nazarian LN. Sonography of greater trochanteric pain syndrome and the rarity of primary bursitis. American Journal of Roentgenology 2013; 201: 1083-1086
- 10 Ilizaliturri VM, Martinez-Escalante FA, Chaidez PA. et al. Endoscopic iliotibial band release for external snapping hip syndrome. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2006; 22: 505-510
- 11 Goldman LAH, Land EV, Adsit MH. et al. Hip stability may influence the development of greater trochanteric pain syndrome: a case-control study of consecutive patients. Orthopaedic Journal of Sports Medicine 2020; 8: 2325967120958699
- 12 Pozzi G, Lanza E, Parra CG. et al. Incidence of greater trochanteric pain syndrome in patients suspected for femoroacetabular impingement evaluated using magnetic resonance arthrography of the hip. La radiologia medica 2017; 122: 208-214
- 13 Pelsser V, Cardinal É, Hobden R. et al. Extraarticular snapping hip: sonographic findings. American journal of roentgenology 2001; 176: 67-73
- 14 Fearon A, Scarvell J, Cook J. et al. Does ultrasound correlate with surgical or histologic findings in greater trochanteric pain syndrome? A pilot study. Clinical Orthopaedics and Related Research® 2010; 468: 1838-1844
- 15 Iorio R, Healy WL, Warren PD. et al. Lateral trochanteric pain following primary total hip arthroplasty. The Journal of arthroplasty 2006; 21: 233-236
- 16 Reimer LC, Jacobsen JS, Mechlenburg I. Hypermobility among patients with greater trochanteric pain syndrome. Danish Medical Journal 2019; 66: 1-5
- 17 Seidman AJ, Taqi M, Varacallo M. Trochanteric bursitis. In StatPearls [Internet]. StatPearls Publishing; 2023
- 18 Callaghan JJ, Rosenberg AG, Rubash HE. The adult hip. Lippincott Williams & Wilkins; 2007
- 19 Collee G, Dijkmans B, Vandenbroucke J. et al. A clinical epidemic-logical study in low back pain. Description of two clinical syndromes. Rheumatology 1990; 29: 354-357
- 20 Tortolani PJ, Carbone JJ, Quartararo LG. Greater trochanteric pain syndrome in patients referred to orthopedic spine specialists. The Spine Journal 2002; 2: 251-254
- 21 Fearon AM, Cook JL, Scarvell JM. et al. Greater trochanteric pain syndrome negatively affects work, physical activity and quality of life: a case control study. The Journal of arthroplasty 2014; 29: 383-386
- 22 Ferrer-Pena R, Calvo-Lobo C, Aiguade R. et al. Which seems to be worst? Pain severity and quality of life between patients with lateral hip pain and low back pain. Pain Research and Management 2018; 2018: 9156247
- 23 ÇAĞLAR YAĞCI H, YUMUŞAKHUYLU Y, YAĞCI İ. Frequency and Effects of Great Trochanteric Pain Syndrome in Patients with Chronic Low Back Pain: A Cross-Sectional Study. Journal of Physical Medicine & Rehabilitation Sciences. 2023 26.
- 24 Canoso J, Katz J. Greater trochanteric pain syndrome (formerly trochanteric bursitis). Last Updated April 2022; 14
- 25 Mulligan EP, Middleton EF, Brunette M. Evaluation and management of greater trochanter pain syndrome. Physical Therapy in Sport 2015; 16: 205-214
- 26 Rasmussen K-JE, Fanø N. Trochanteric bursitis: treatment by corticosteroid injection. Scandinavian journal of rheumatology 1985; 14: 417-420
- 27 Schiphof D, Runhaar J, Waarsing E. et al. The 10-year course of the clinical American College of rheumatology (acr) criteria for hip and knee osteoarthritis in an early symptomatic cohort, data from check. Osteoarthritis and cartilage 2018; 26: S347-S348
- 28 Navarro-Ledesma S, Aguilar-García M, González-Muñoz A. et al. Association between elasticity of tissue and pain pressure threshold in the tender points present in subjects with fibromyalgia: a cross-sectional study. Scientific Reports 2023; 13: 22003
- 29 Park G, Kim CW, Park SB. et al. Reliability and usefulness of the pressure pain threshold measurement in patients with myofascial pain. Annals of rehabilitation medicine 2011; 35: 412-417
- 30 Acar S, Aljumaa H, Şevik K. et al. The Intrarater and Interrater Reliability and Validity of Universal Goniometer, Digital Inclinometer, and Smartphone Application Measuring Range of Motion in Patients with Total Knee Arthroplasty. Indian Journal of Orthopaedics 2024; 58: 732-739
- 31 Gogia PP, Braatz JH. Validity and reliability of leg length measurements. Journal of Orthopaedic & Sports Physical Therapy 1986; 8: 185-188
- 32 Springer BA, Marin R, Cyhan T. et al. Normative values for the unipedal stance test with eyes open and closed. Journal of geriatric physical therapy 2007; 30: 8-15
- 33 Olsson S, Akbarian E, Lind A. et al. Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC musculoskeletal disorders 2021; 22: 1-8
- 34 Johnson EW. Visual analog scale (VAS). In: LWW. 2001. 717.
- 35 McConnell S, Kolopack P, Davis AM. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Care & Research: Official Journal of the American College of Rheumatology 2001; 45: 453-461
- 36 Demiral Y, Ergor G, Unal B. et al. Normative data and discriminative properties of short form 36 (SF-36) in Turkish urban population. BMC public health 2006; 6: 1-8
- 37 Blank E, Owens BD, Burks R. et al. Incidence of greater trochanteric pain syndrome in active duty US military servicemembers. Orthopedics 2012; 35: e1022-e1027
- 38 Fearon A, Stephens S, Cook JL. et al. The relationship of femoral neck shaft angle and adiposity to greater trochanteric pain syndrome in women. A case control morphology and anthropometric study. British journal of sports medicine 2012; 46: 888-892
- 39 Cowan RM, Semciw AI, Pizzari T. et al. Muscle size and quality of the gluteal muscles and tensor fasciae latae in women with greater trochanteric pain syndrome. Clinical Anatomy 2020; 33: 1082-1090
- 40 Santos LEN, Navarro TP, Machado CJ. et al. Relationship of the Pelvic-Trochanteric Index with greater trochanteric pain syndrome. Clinics 2021; 76: e3312
- 41 Collee G, Dijkmans B, Vandenbroucke J. et al. Greater trochanteric pain syndrome (trochanteric bursitis) in low back pain. Scandinavian journal of rheumatology 1991; 20: 262-266
- 42 Metcalfe AJ, Andersson ML, Goodfellow R. et al. Is knee osteoarthritis a symmetrical disease? Analysis of a 12 year prospective cohort study. BMC musculoskeletal disorders 2012; 13: 1-8
- 43 Chang A, Hochberg M, Song J. et al. Frequency of varus and valgus thrust and factors associated with thrust presence in persons with or at higher risk of developing knee osteoarthritis. Arthritis & Rheumatism 2010; 62: 1403-1411
- 44 Canetti R, de Saint Vincent B, Vieira TD. et al. Spinopelvic parameters in greater trochanteric pain syndrome: a retrospective case-control study. Skeletal Radiology 2020; 49: 773-778
- 45 Rutherford D, Moreside J, Wong I. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort. Clinical Biomechanics 2015; 30: 578-584
- 46 Stief F, Schmidt A, van Drongelen S. et al. Abnormal loading of the hip and knee joints in unilateral hip osteoarthritis persists two years after total hip replacement. Journal of Orthopaedic Research® 2018; 36: 2167-2177
- 47 Lespasio MJ. Lateral hip pain: relation to Greater trochanteric pain syndrome. The Permanente Journal 2022; 26: 83
- 48 Sutter R, Kalberer F, Binkert CA. et al. Abductor tendon tears are associated with hypertrophy of the tensor fasciae latae muscle. Skeletal radiology 2013; 42: 627-633
- 49 Moore D, Semciw AI, Pizzari T. A systematic review and meta-analysis of common therapeutic exercises that generate highest muscle activity in the gluteus medius and gluteus minimus segments. International journal of sports physical therapy 2020; 15: 856
- 50 Chevalier A, Van Overmeire A, Vermue H. et al. Effect of iliotibial band and gastrocnemius activation on knee kinematics. The Knee 2023; 40: 238-244
- 51 Grimaldi A, Mellor R, Nicolson P. et al. Utility of clinical tests to diagnose MRI-confirmed gluteal tendinopathy in patients presenting with lateral hip pain. British Journal of Sports Medicine 2017; 51: 519-524
- 52 Ferrer-Peña R, Muñoz-García D, Calvo-Lobo C. et al. Pain expansion and severity reflect central sensitization in primary care patients with greater trochanteric pain syndrome. Pain medicine 2019; 20: 961-970
- 53 Kinsella R, Semciw AI, Hawke LJ. et al. Diagnostic accuracy of clinical tests for assessing greater trochanteric pain syndrome: a systematic review with meta-analysis. Journal of Orthopaedic & Sports Physical Therapy 2024; 54: 26-49
- 54 Ganderton C, Semciw A, Cook J. et al. Demystifying the clinical diagnosis of greater trochanteric pain syndrome in women. Journal of Women's Health 2017; 26: 633-643
- 55 Lequesne M. From “periarthritis” to hip “rotator cuff” tears. Trochanteric tendinobursitis. Joint Bone Spine 2006; 4: 344-348
- 56 French HP, Jong CC, McCallan M. Do features of central sensitisation exist in Greater Trochanteric Pain Syndrome (GTPS)? A case control study. Musculoskeletal Science and Practice 2019; 43: 6-11
- 57 Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis & rheumatism 2005; 52: 2835-2844
- 58 Fan Z, Gao W, Ma Y. et al. Effect of different Intensity Electrotherapy on Functional Recovery in Patients with Knee Osteoarthritis. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2024; 34: 149-154
