Subscribe to RSS
DOI: 10.1055/a-2770-3688
Biotransformation of Two Guaiane-type Sesquiterpene Lactones with Filamentous Fungi and Extremophile Bacteria
Authors
This work has been financed by ONR Global [Grant N62909-21-1-2052, USA], CONICET [grant number PIP-CONICET 2021-2023, 11220200101065CO], ANPCyT [grant numbers PICT 2020-SERIEA-02162 (2022-2025) and PICT 2020- SERIEA-3702 (2022-2024)], and SeCyT-UNC [grant number 2023-CONSOLIDAR-33620230100785CB01], and SeCyT-UNCA.
Abstract
There is an urgent need for new naturally occurring and/or naturally derived chemical structures for drug development. The biotransformation of two bioactive guaiane-type sesquiterpene lactones, ludartin and estafietin, by filamentous fungi of the genera Aspergillus and Penicillium and by extremophile bacteria of the genera Rhodococcus, Acinetobacter, Streptomyces, and Citricoccus led to the isolation of three new and four known derivatives. The structures were determined based on data obtained from HRESIMS and 1D/2D NMR spectroscopy. The predominant reactions from both eukaryotic and prokaryotic biocatalysts were stereoselective epoxide opening and chemical and regio- and stereoselective double bond reduction, though the fungi were more efficient than the bacteria. Substrates and six selected metabolites were subjected to in vitro evaluation for antiproliferative effects against six human solid tumor cell lines. The derivative 3α,4β-dihydroxy-estafietin showed significant activity against HBL-100, HeLa, and SW1573 cell lines, justifying a more specific, in-depth evaluation of its scope as an anticancer candidate molecule.
Keywords
Asteraceae - Stevia - guaianolides - epoxide hydrolase - reductase - stereoselectivity - antiproliferative activitySupporting Information
- Supporting Information (PDF) (opens in new window)
NMR data of the substrates and the obtained derivatives, both reported and unreported in the literature, 1D and 2D NMR spectra of those derivatives not previously reported, and minimized structures of derivatives 5 and 9 and their stereoisomers are available as supporting information.
Publication History
Received: 07 August 2025
Accepted after revision: 21 December 2025
Article published online:
20 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Schmidt TJ. Structure-Activity and Activity-Activity Relationships of Sesquiterpene. In: Sülsen VP, Martino VS. editors Lactones Sesquiterpene lactones. Advances in their Chemistry and Biological Aspects. Cham: Springer; 2018: 349-371
- 2 Sass DC, Morais GO, Miranda RA, Magalhães LG, Cunha WR, dos Santos RA, Arakawa NS, da Costa FB, Constantino MG, Heleno VC. Structurally modified natural sesquiterpene lactones constitute effective and less toxic schistosomicidal compounds. Org Biomol Chem 2014; 12: 7957-7964
- 3 Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. Cancer Drug Resist 2025; 8: 13-40
- 4 Surowiak AK, Balcerzak L, Lochyński S, Strub DJ. Biological activity of selected natural and synthetic terpenoid lactones. Int J Mol Sci 2021; 22: 5036-5057
- 5 Kriplani P, Guarve K. Recent patents on anticancer potential of sesquiterpene lactones. Stud Nat Prod Chem 2022; 73: 71-97
- 6 Plants of the World Online. Accessed December 10, 2025 at: https://powo.science.kew.org/
- 7 Sosa VE, Oberti JC, Gil RR, Rúveda EA, Goedken VL, Gutiérrez AB, Herz W. 10-Epideoxycumambrin B and other constituents of Stevia yaconensis var. subeglandulosa . Phytochemistry 1989; 28: 1925-1929
- 8 de Heluani CS, de Lampasona MP, Catalán CAN, Goedken VL, Gutiérrez AB, Herz W. Guaianolides, heliangolides and other constituents from Stevia alpina . Phytochemistry 1989; 28: 1931-1935
- 9 Lone SH, Bhat KA, Naseer S, Rather RA, Khuroo MA, Tasduq SA. Isolation, cytotoxicity evaluation and HPLC-quantification of the chemical constituents from Artemisia amygdalina Decne. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 1: 135-141
- 10 Blanco JG, Gil RR, Alvarez CI, Patrito LC, Genti-Raimondi S, Flury A. A novel activity for a group of sesquiterpene lactones: Inhibition of aromatase. FEBS Lett 1997; 409: 396-400
- 11 Muftuoglu Y, Mustata G. Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg Med Chem Lett 2010; 20: 3050-3064
- 12 Bai L, Wang H, Zhang LY, Wang AH, Bai J. Ludartin treatment exhibits promising inhibitory effect on the epithelial ovarian cancer growth and metastasis. Bangladesh J Pharmacol 2016; 11: 646-651
- 13 Huang LX, Zhong MY, Dan D, Yang XM, Qiu H, Guo PZ. Combination of capecitabine and ludartin inhibits colon cancer growth in mice. Trop J Pharm Res 2017; 16: 2623-2628
- 14 Sánchez-Viesca F, Romo J. Estafietin, a new sesquiterpene lactone isolated from Artemisia mexicana (Willd). Tetrahedron 1963; 19: 1285-1291
- 15 Schepetkin IA, Kirpotina LN, Mitchell PT, Kishkentaeva АS, Shaimerdenova ZR, Atazhanova GA, Adekenov SM, Quinn MT. The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafietin inhibit T cell receptor (TCR) activation. Phytochemistry 2018; 146: 36-46
- 16 Ahn JH, Song EJ, Jung DH, Kim YJ, Seo IS, Park SC, Jung YS, Cho ES, Mo SH, Hong JJ, Cho JY, Park JH. The sesquiterpene lactone estafietin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. Phytomedicine 2022; 99: 153934
- 17 Esmaeili A. Biotransformation of natural compounds to create useful medicinal products. Phytochem Rev 2024; 24: 1-14
- 18 Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179: 106227
- 19 Aminudin NI, Ridzuan M, Susanti D, Zainal Abidin ZA. Biotransformation of sesquiterpenoids: A recent insight. J Asian Nat Prod Res 2022; 24: 103-145
- 20 Parshikov IA, Sutherland JB. The use of Aspergillus niger cultures for biotransformation of terpenoids. Process Biochem 2014; 49: 2086-2100
- 21 Ashtekar N, Anand G, Thulasiram HV, Rajeshkumar KC. Genus Penicillium: Advances and application in the modern era. In: Panwar J, Gehlot P. eds. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, The Netherlands: Elsevier; 2021: 201-213
- 22 Gupta GN, Srivastava S, Khare SK, Prakash V. Extremophiles: An overview of microorganism from extreme environment. IJAEB 2014; 7: 371-380
- 23 Maltseva PY, Plotnitskaya NA, Ivshina IB. Transformation of terpenoids and steroids using Actinomycetes of the genus Rhodococcus . Molecules 2024; 29: 3378
- 24 Sedlaczek L, Smith LL. Biotransformations of steroids. Crit Rev Biotechnol 1988; 7: 187-236
- 25 Adekenov SM. Synthesis of new derivatives of natural guaianolides. Chem Nat Compd 2013; 48: 988-995
- 26 Sigstad EE, Catalán CAN, Gutiérrez AB, Diaz JG, Goedken VL, Herz W. Guaianolides and germacranolides from Stevia grisebachiana . Phytochemistry 1991; 30: 1933-1940
- 27 Bargues V, Blay G, Cardona L, García B, Pedro JR. Stereoselective synthesis of (+)-11 βH,13-dihydroestafietin, (+)-11 βH,13-dihydroludartin, (−)-compressanolide, and (−)-11 βH,13-dihydromicheliolide from santonin. J Nat Prod 2002; 65: 1703-1706
- 28 Sultana N, Saify ZS. Enzymatic biotransformation of terpenes as bioactive agents. J Enzyme Inhib Med Chem 2013; 28: 1113-1128
- 29 Bisogno FR, Orden AA, Pranzoni CA, Cifuente DA, Giordano OS, Kurina-Sanz M. Atypical regioselective biohydrolysis on steroidal oxiranes by Aspergillus niger whole cells: Some stereochemical features. Steroids 2007; 72: 643-652
- 30 Orru RV, Faber K. Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol 1999; 3: 16-21
- 31 Liu Y, Sha Q, Wu S, Wang J, Yang L, Sun W. Enzymatic resolution of racemic phenyloxirane by a novel epoxide hydrolase from Aspergillus niger SQ-6 and its fed-batch fermentation. J Ind Microbiol Biotechnol 2006; 33: 274-282
- 32 Lone SH, Bhat KA. Hemisynthesis of a naturally occurring clinically significant antitumor arglabin from ludartin. Tetrahedron Lett 2015; 56: 1908-1910
- 33 Ma GH, Chen KX, Zhang LQ, Li YM. Advance in biological activities of natural guaiane-type sesquiterpenes. Med Chem Res 2019; 28: 1339-1358
- 34 Puerta A, Galán AR, Abdilla R, Demanuele K, Fernandes MX, Bosica G, Padrón JM. Naphthol-derived Betti bases as potential SLC6A14 blockers. JMCM 2019; 2: 35-40
- 35 Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6: 813-823
- 36 Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 1991; 83: 757-766
- 37 Rasuk MC, Ferrer GM, Kurth D, Portero LR, Farías ME, Albarracín VH. UV-Resistant Actinobacteria from high-altitude andean lakes: Isolation, characterization and antagonistic activities. Photochem Photobiol 2017; 93: 865-880
- 38 Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME. Extremophile culture collection from Andean lakes: Extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 2009; 58: 461-473
- 39 Castro SJ, Casero CN, Padrón JM, Nicotra VE. Selective antiproliferative withanolides from species in the genera Eriolarynx and Deprea . J Nat Prod 2019; 82: 1338-1344
- 40 García ME, Barboza GE, Oberti JC, Ríos-Luci C, Padrón JM, Nicotra VE, Ravelo AG. Antiproliferative activity of withanolide derivatives from Jaborosa cabrerae and Jaborosa reflexa. Chemotaxonomic considerations. Phytochemistry 2012; 76: 150-157
