Subscribe to RSS
DOI: 10.1055/a-2769-6508
Imaging in Movement Disorders: A Clinician's Perspective on Novel Applications
Authors
Abstract
The utility of neuroimaging in the diagnosis and management of movement disorders has been steadily increasing as both imaging and image analysis technologies have advanced in the last decade. Neuroimaging is also playing a critical role in the search for novel therapies to prevent, slow down, and treat various movement disorders. This article reviews both standard and innovative imaging tools available for both clinicians and researchers. We focus predominantly on the clinician's perspective, discussing imaging tools that are becoming rapidly available and how these may be integrated into the clinic to provide cutting-edge and patient-centered care. We discuss novel and emerging techniques and their potential implications for the field, as well as highlight areas still in need of imaging solutions.
Publication History
Received: 21 July 2025
Accepted: 09 December 2025
Article published online:
26 December 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Virameteekul S, Revesz T, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Clinical diagnostic accuracy of Parkinson's disease: where do we stand?. Mov Disord 2023; 38 (04) 558-566
- 2 Räty V, Kuusimäki T, Majuri J. et al. Stability and accuracy of a diagnosis of Parkinson disease over 10 years. Neurology 2025; 104 (09) e213499
- 3 Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular imaging in Parkinsonian disorders—what's new and hot?. Brain Sci 2022; 12 (09) 1146
- 4 de la Fuente-Fernández R. Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology 2012; 78 (10) 696-701
- 5 Thordarson D, Fu K. Diagnostic testing in Parkinson disease. Pract Neurol 2024; 23 (07) 17-20
- 6 Todisco M, Zangaglia R, Minafra B. et al. Clinical outcome and striatal dopaminergic function after shunt surgery in patients with idiopathic normal pressure hydrocephalus. Neurology 2021; 96 (23) e2861-e2873
- 7 Lee MJ, Pak K, Kim HK. et al. Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. NPJ Parkinsons Dis 2021; 7 (01) 104
- 8 Simuni T, Chahine LM, Poston K. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23 (02) 178-190
- 9 Miyamoto T, Miyamoto M, Numahata K, Onoue H, Akaiwa Y, Sairenchi T. Reduced dopamine transporter binding predicts early transition to Lewy body disease in Japanese patients with idiopathic rapid eye movement sleep behavior disorder. J Neurol Sci 2020; 414: 116821
- 10 Chahine LM, Brumm MC, Caspell-Garcia C. et al. Dopamine transporter imaging predicts clinically-defined α-synucleinopathy in REM sleep behavior disorder. Ann Clin Transl Neurol 2021; 8 (01) 201-212
- 11 Arnaldi D, Chincarini A, Hu MT. et al. Dopaminergic imaging and clinical predictors for phenoconversion of REM sleep behaviour disorder. Brain 2021; 144 (01) 278-287
- 12 Höglinger GU, Adler CH, Berg D. et al. A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria. Lancet Neurol 2024; 23 (02) 191-204
- 13 Cardoso F, Schmidt P. Proposed biological definitions of Parkinson's disease confuse understanding without delivering meaningful advances. J Parkinsons Dis 2025; 15 (05) 939-943
- 14 Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2023; 50 (07) 1974-1987
- 15 Blair JC, Barrett MJ, Patrie J. et al. Brain MRI reveals ascending atrophy in Parkinson's disease across severity. Front Neurol 2019; 10: 1329
- 16 Tinaz S, Courtney MG, Stern CE. Focal cortical and subcortical atrophy in early Parkinson's disease. Mov Disord 2011; 26 (03) 436-441
- 17 Yang W, Bai X, Guan X. et al. The longitudinal volumetric and shape changes of subcortical nuclei in Parkinson's disease. Sci Rep 2024; 14 (01) 7494
- 18 Filippi M, Sarasso E, Piramide N. et al. Progressive brain atrophy and clinical evolution in Parkinson's disease. Neuroimage Clin 2020; 28: 102374
- 19 Halliday GM. Thalamic changes in Parkinson's disease. Parkinsonism Relat Disord 2009; 15 (Suppl. 03) S152-S155
- 20 Chen Y, Zhu G, Liu D. et al. The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation. J Neurol Sci 2020; 411: 116721
- 21 D'Cruz N, Vervoort G, Chalavi S, Dijkstra BW, Gilat M, Nieuwboer A. Thalamic morphology predicts the onset of freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2021; 7 (01) 20
- 22 Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Mov Disord 2019; 34 (10) 1440-1451
- 23 Hirsch EC, Graybiel AM, Agid Y. Selective vulnerability of pigmented dopaminergic neurons in Parkinson's disease. Acta Neurol Scand Suppl 1989; 126: 19-22
- 24 Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147 (02) 337-351
- 25 Sasaki M, Shibata E, Tohyama K. et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 2006; 17 (11) 1215-1218
- 26 Pérot J-B, Ruze A, Gaurav R. et al. Longitudinal neuromelanin changes in prodromal and early Parkinson's disease in humans and rat model. Brain Commun 2025; 7 (03) fcaf204
- 27 Biondetti E, Gaurav R, Yahia-Cherif L. et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson's disease. Brain 2020; 143 (09) 2757-2770
- 28 Gaurav R, Yahia-Cherif L, Pyatigorskaya N. et al. Longitudinal changes in neuromelanin MRI signal in Parkinson's disease: a progression marker. Mov Disord 2021; 36 (07) 1592-1602
- 29 Lakhani DA, Zhou X, Tao S. et al. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10 (01) 13
- 30 He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of neuromelanin MR imaging in Parkinson disease. J Magn Reson Imaging 2023; 57 (02) 337-352
- 31 Tseriotis VS, Eleftheriadou K, Mavridis T, Konstantis G, Falkenburger B, Arnaoutoglou M. Is the swallow tail sign a useful imaging biomarker in clinical neurology? A systematic review. Mov Disord Clin Pract 2025; 12 (02) 134-147
- 32 Diaz-Galvan P, Przybelski SA, Lesnick TG. et al. Substantia nigra iron deposition in Lewy body disease: a magnetic resonance imaging and neuropathology study. Mov Disord 2025; 40 (10) 2129-2138
- 33 Schmidt MA, Engelhorn T, Marxreiter F. et al. Ultra high-field SWI of the substantia nigra at 7T: reliability and consistency of the swallow-tail sign. BMC Neurol 2017; 17 (01) 194
- 34 Chau MT, Todd G, Wilcox R, Agzarian M, Bezak E. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat Disord 2020; 78: 12-20
- 35 Welton T, Hartono S, Shih YC. et al. Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?—a narrative review. Quant Imaging Med Surg 2023; 13 (11) 7607-7620
- 36 Lorio S, Sambataro F, Bertolino A, Draganski B, Dukart J. The combination of DAT-SPECT, structural and diffusion MRI predicts clinical progression in Parkinson's disease. Front Aging Neurosci 2019; 11: 57
- 37 Caspell-Garcia C, Simuni T, Tosun-Turgut D. et al; Parkinson's Progression Markers Initiative (PPMI). Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLoS One 2017; 12 (05) e0175674
- 38 Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson's disease. Lancet Neurol 2018; 17 (07) 629-640
- 39 Niethammer M, Eidelberg D. Metabolic brain networks in translational neurology: concepts and applications. Ann Neurol 2012; 72 (05) 635-647
- 40 Ko JH, Lee CS, Eidelberg D. Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J Cereb Blood Flow Metab 2017; 37 (02) 683-693
- 41 Rommal A, Vo A, Schindlbeck KA. et al. Parkinson's disease-related pattern (PDRP) identified using resting-state functional MRI: validation study. Neuroimage Rep 2021; 1 (03) 100026
- 42 Zhang Y, Wu IW, Buckley S. et al. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease. Mov Disord 2015; 30 (09) 1229-1236
- 43 Filippi M, Sarasso E, Agosta F. Resting-state functional MRI in Parkinsonian syndromes. Mov Disord Clin Pract 2019; 6 (02) 104-117
- 44 Carey G, Görmezoğlu M, de Jong JJA. et al. Neuroimaging of anxiety in Parkinson's disease: a systematic review. Mov Disord 2021; 36 (02) 327-339
- 45 Chagas MHN, Linares IMP, Garcia GJ, Hallak JEC, Tumas V, Crippa JAS. Neuroimaging of depression in Parkinson's disease: a review. Int Psychogeriatr 2013; 25 (12) 1953-1961
- 46 Baagil H, Hohenfeld C, Habel U. et al. Neural correlates of impulse control behaviors in Parkinson's disease: analysis of multimodal imaging data. Neuroimage Clin 2023; 37: 103315
- 47 Hou Y, Shang H. Magnetic resonance imaging markers for cognitive impairment in Parkinson's disease: current view. Front Aging Neurosci 2022; 14: 788846
- 48 Schumacher J, Kanel P, Dyrba M. et al. Structural and molecular cholinergic imaging markers of cognitive decline in Parkinson's disease. Brain 2023; 146 (12) 4964-4973
- 49 Ray NJ, Bradburn S, Murgatroyd C. et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson's disease. Brain 2018; 141 (01) 165-176
- 50 Schulz J, Pagano G, Fernández Bonfante JA, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease. Brain 2018; 141 (05) 1501-1516
- 51 Uchida Y, Kan H, Sakurai K. et al. Voxel-based quantitative susceptibility mapping in Parkinson's disease with mild cognitive impairment. Mov Disord 2019; 34 (08) 1164-1173
- 52 Li DTH, Hui ES, Chan Q. et al. Quantitative susceptibility mapping as an indicator of subcortical and limbic iron abnormality in Parkinson's disease with dementia. Neuroimage Clin 2018; 20: 365-373
- 53 Björklund A, Barker RA. The basal forebrain cholinergic system as target for cell replacement therapy in Parkinson's disease. Brain 2024; 147 (06) 1937-1952
- 54 Maiti B, Perlmutter JS. Imaging in movement disorders. Continuum (Minneap Minn) 2023; 29 (01) 194-218
- 55 Walker Z, Gandolfo F, Orini S. et al; EANM-EAN Task Force for the recommendation of FDG PET for Dementing Neurodegenerative Disorders. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 2018; 45 (09) 1534-1545
- 56 Saeed U, Lang AE, Masellis M. Neuroimaging advances in Parkinson's disease and atypical Parkinsonian syndromes. Front Neurol 2020; 11: 572976
- 57 Vaillancourt DE, Barmpoutis A, Wu SS. et al; AIDP Study Group. Automated imaging differentiation for Parkinsonism. JAMA Neurol 2025; 82 (05) 495-505
- 58 Palleis C, Quattrone A, Dehsarvi A. et al; AL-108-231 Investigators, the PASSPORT Study Group. Brain networks route neurodegeneration patterns in patients with progressive supranuclear palsy. Mov Disord 2025; 40 (10) 2102-2115
- 59 Quattrone A, Franzmeier N, Huppertz H-J. et al; AL-108-231 Investigators, the Tauros MRI Investigators, the PASSPORT Study Group, the DESCRIBE-PSP Group. Magnetic resonance imaging measures to track atrophy progression in progressive supranuclear palsy in clinical trials. Mov Disord 2024; 39 (08) 1329-1342
- 60 Alzghool OM, van Dongen G, van de Giessen E, Schoonmade L, Beaino W. α-Synuclein radiotracer development and in vivo imaging: recent advancements and new perspectives. Mov Disord 2022; 37 (05) 936-948
- 61 Burkett BJ, Johnson DR, Lowe VJ. Evaluation of neurodegenerative disorders with amyloid-β, tau, and dopaminergic PET imaging: interpretation pitfalls. J Nucl Med 2024; 65 (06) 829-837
- 62 Fleisher AS, Pontecorvo MJ, Devous Sr MD. et al; A16 Study Investigators. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol 2020; 77 (07) 829-839
- 63 Simonyan K. Neuroimaging applications in dystonia. Int Rev Neurobiol 2018; 143: 1-30
- 64 Ali SO, Thomassen M, Schulz GM. et al. Alterations in CNS activity induced by botulinum toxin treatment in spasmodic dysphonia: an H215O PET study. J Speech Lang Hear Res 2006; 49 (05) 1127-1146
- 65 MacIver CL, Tax CMW, Jones DK, Peall KJ. Structural magnetic resonance imaging in dystonia: a systematic review of methodological approaches and findings. Eur J Neurol 2022; 29 (11) 3418-3448
- 66 Valeriani D, Simonyan K. A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117 (42) 26398-26405
- 67 Yao D, O'Flynn LC, Simonyan K. DystoniaBoTXNet: novel neural network biomarker of botulinum toxin efficacy in isolated dystonia. Ann Neurol 2023; 93 (03) 460-471
- 68 Lee JH, Yun JY, Gregory A, Hogarth P, Hayflick SJ. Brain MRI pattern recognition in neurodegeneration with brain iron accumulation. Front Neurol 2020; 11: 1024
- 69 Chelban V, Bocchetta M, Hassanein S, Haridy NA, Houlden H, Rohrer JD. An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 2019; 266 (04) 1036-1045
- 70 Way C, Pettersson D, Hiller A. The “hot cross bun” sign is not always multiple system atrophy: etiologies of 11 cases. J Mov Disord 2019; 12 (01) 27-30
- 71 Lee EA, Cho HI, Kim SS, Lee WY. Comparison of magnetic resonance imaging in subtypes of multiple system atrophy. Parkinsonism Relat Disord 2004; 10 (06) 363-368
- 72 Brunberg JA, Jacquemont S, Hagerman RJ. et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 2002; 23 (10) 1757-1766
- 73 Hall DA, Hermanson M, Dunn E. et al. The corpus callosum splenium sign in fragile X-associated tremor ataxia syndrome. Mov Disord Clin Pract 2016; 4 (03) 383-388
- 74 Hashimoto R, Srivastava S, Tassone F, Hagerman RJ, Rivera SM. Diffusion tensor imaging in male premutation carriers of the fragile X mental retardation gene. Mov Disord 2011; 26 (07) 1329-1336
- 75 Tabrizi SJ, Schobel S, Gantman EC. et al; Huntington's Disease Regulatory Science Consortium (HD-RSC). A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21 (07) 632-644
- 76 Hobbs NZ, Papoutsi M, Delva A. et al. Neuroimaging to facilitate clinical trials in Huntington's disease: current opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13 (02) 163-199
- 77 van Eimeren T, Giehl K, Reetz K, Sampaio C, Mestre TA. Neuroimaging biomarkers in Huntington's disease: preparing for a new era of therapeutic development. Parkinsonism Relat Disord 2023; 114: 105488
- 78 Niccolini F, Haider S, Reis Marques T. et al. Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease. Brain 2015; 138 (Pt 10): 3016-3029
- 79 Fazio P, Fitzer-Attas CJ, Mrzljak L. et al; PEARL-HD and LONGPDE10 study collaborators. PET molecular imaging of phosphodiesterase 10A: an early biomarker of Huntington's disease progression. Mov Disord 2020; 35 (04) 606-615
- 80 Pavese N, Gerhard A, Tai YF. et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006; 66 (11) 1638-1643
- 81 Lois C, González I, Izquierdo-García D. et al. Neuroinflammation in Huntington's disease: new insights with 11C-PBR28 PET/MRI. ACS Chem Neurosci 2018; 9 (11) 2563-2571