Subscribe to RSS
DOI: 10.1055/a-2762-4675
Twist1 und Snail/Slug: epithelial-mesenchymale Transition im juvenilen Angiofibrom
Twist1 und Snail/Slug: epithelial-mesenchymal transition in juvenilen AngiofibromAuthors
Zusammenfassung
Hintergrund
Das juvenile Angiofibrom (JA) ist eine faszinierende fibrovaskuläre Neubildung, die seit 1853 verschiedenste Entstehungstheorien hervorgerufen hat. Während die Konzentration auf einzelne Merkmale des JA keine allgemeine Akzeptanz hervorgerufen hat, erfährt die aktuelle Erklärung der Tumorentstehung des JA auf dem Boden von embryologischen Gefäßrelikten eine wachsende Bedeutung. Im embryologischen Kernprozess der epithelial-mesenchymalen Transition (EMT) spielen die Transkriptionsfaktoren Twist1 und Snail/Slug eine große Rolle, sodass deren Expression im JA im Zusammenhang mit dem embryologischen Erklärungsansatz von hohem Interesse ist.
Material und Methoden
An einem Kollektiv von 19 JA wurden quantitative Realtime-PCR-Analysen sowie immunhistologische Untersuchungen der Transkriptionsfaktoren Twist1, Snail/Slug sowie CD31 (PECAM1) und Vimentin durchgeführt.
Ergebnisse
Die Transkriptionsfaktoren Twist1 und Snail2 konnten in allen untersuchten JA (n=11) mittels RT-PCR nachgewiesen werden. Eine Korrelation zu gefäßreichen (CD31) oder fibrösen Tumorregionen (Vimentin) wurde nicht beobachtet. Die immunhistologische Untersuchung von Twist und Snail/Slug bestätigte deren Vorkommen auf Proteinebene (n=19), wobei eine inter- und intratumorale Heterogenität der EMT-Marker beobachtet wurde.
Schlussfolgerung
Der Nachweis der Expression der Transkriptionsfaktoren Twist1 und Snail/Slug im JA weist auf den embryologischen Prozess der EMT im JA hin und unterstützt den embryologischen Erklärungsansatz, welcher alle klinischen Charakteristika dieser einzigartigen fibrovaskulären Neubildung erklärt.
Summary
Objective
Juvenile angiofibroma (JA) is an intriguing fibrovascular neoplasm that has prompted diverse theories of origin since 1853. While approaches focusing on isolated features of JA have not gained broad acceptance, the current explanation of JA tumorigenesis based on embryologic vascular remnants is gaining prominence. In the core embryologic process of epithelial-mesenchymal transition (EMT), the transcription factors Twist1 and Snail/Slug play key roles; their expression in JA is therefore of particular interest within this embryologic framework.
Material and methods
In a cohort of 19 JAs, quantitative real-time PCR (qRT-PCR) analyses and immunohistochemical investigations were performed for the transcription factors Twist1 and Snail/Slug, as well as for CD31 (Pecam1) and vimentin.
Results
Twist1 and Snail2 were detectable by RT-PCR in all JAs examined (n=11). No correlation was observed with vessel-rich (CD31-positive) or fibrous (vimentin-positive) tumor regions. Immunohistochemistry for Twist1 and Snail/Sslug confirmed protein-level expression (n=19), with inter- and intratumoral heterogeneity of EMT markers.
Conclusions
Demonstration of Twist1 and Snail/Slug expression in JA indicates involvement of the embryologic process of EMT in JA and supports the embryologic explanatory model, which accounts for the clinical characteristics of this unique fibrovascular neoplasm.
Schlüsselwörter
juveniles Angiofibrom - Twist - Snail - epithelial-mesenchymale Transition - EmbryologiePublication History
Received: 11 September 2025
Accepted: 02 December 2025
Article published online:
13 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Schick B, Kahle G. Radiological findings in angiofibroma. Acta Radiol 2000; 41: 585-593
- 2 Schick B, Urbschat S. New aspects of pathogenesis of juvenile angiofibroma. Hosp Med 2004; 65: 269-273
- 3 Beham A, Beham-Schmid C, Regauer S. et al. Nasopharyngeal angiofibroma: true neoplasm or vascular malformation?. Adv Anat Pathol 2000; 7: 36-46
- 4 Schick B, Plinkert PK, Prescher A. Aetiology of Angiofibromas: Reflection on their Specific Vascular Component. Laryngorhinootologie 2002; 81: 280-284
- 5 Gramann M, Wendler O, Haeberle L. et al. Expression of collagen types I, II and III in juvenile angiofibromas. Cells Tissues Organs 2009; 189: 403-409
- 6 Schick B, Wemmert S, Willnecker V. et al. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol 2011; 39: 1143-1151
- 7 Starlinger V, Wendler O, Gramann M. et al. Laminin expression in juvenile angiofibroma indicates vessel's early developmental stage. Acta Otolaryngol 2007; 127: 1310-1315
- 8 Core N, Caubit X, Metchat A. et al. Tshz1 is required for axial skeleton, soft palate and middle ear development in mice. Dev Biol 2007; 308: 407-420
- 9 Schick B, Pillong L, Wenzel G. et al. Neural Crest Stem Cells in Juvenile Angiofibromas. Int J Mol Sci 2022; 23
- 10 Ang HL, Mohan CD, Shanmugam MK. et al. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023; 43: 1141-1200
- 11 Thiery JP, Acloque H, Huang RY. et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-890
- 12 Rippel C, Plinkert PK, Schick B. Expression of members of the cadherin-/catenin-protein family in juvenile angiofibromas. Laryngorhinootologie 2003; 82: 353-357
- 13 Becker KF, Rosivatz E, Blechschmidt K. et al. Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 2007; 185: 204-212
- 14 Calanca N, Binato SMS, da Silva SD. et al. Master Regulators of Epithelial-Mesenchymal Transition and WNT Signaling Pathways in Juvenile Nasopharyngeal Angiofibromas. Biomedicines 2021; 9
- 15 Xu S, Zhou Y, Biekemitoufu H. et al. Expression of Twist, Slug and Snail in esophageal squamous cell carcinoma and their prognostic significance. Oncol Lett 2021; 21: 184
- 16 Boewe AS, Wemmert S, Kulas P. et al. Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Biomedicines 2022; 10
- 17 Harrison DFN. The Natural-History, Pathogenesis, and Treatment of Juvenile Angiofibroma – Personal-Experience with 44 Patients. Archives of Otolaryngology-Head & Neck Surgery 1987; 113: 936-942
- 18 Menezes MJ, McClenahan FK, Leiton CV. et al. The extracellular matrix protein laminin alpha2 regulates the maturation and function of the blood-brain barrier. J Neurosci 2014; 34: 15260-15280
- 19 Ponzoni M, Bachetti T, Corrias MV. et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res 2022; 41: 92
- 20 Schussler O, Gharibeh L, Mootoosamy P. et al. Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2021; 41: 403-429
- 21 Maddaluno L, Rudini N, Cuttano R. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 2013; 498: 492-496
- 22 Farag MM, Ghanimah SE, Ragaie A. et al. Hormonal receptors in juvenile nasopharyngeal angiofibroma. Laryngoscope 1987; 97: 208-211
- 23 Kumagami H. Sex hormones in juvenile nasopharyngeal angiofibroma tissue. Auris Nasus Larynx 1993; 20: 131-135
- 24 Liu Z, Wang J, Wang H. et al. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis. Acta Otolaryngol 2015; 135: 51-57
- 25 Saylam G, Yucel OT, Sungur A. et al. Proliferation, angiogenesis and hormonal markers in juvenile nasopharyngeal angiofibroma. Int J Pediatr Otorhinolaryngol 2006; 70: 227-234
- 26 Schick B, Dlugaiczyk J, Wendler O. Expression of sex hormone receptors in juvenile angiofibromas and antiproliferative effects of receptor modulators. Head Neck 2014; 36: 1596-1603
- 27 Dunkel L, Alfthan H, Stenman UH. et al. Developmental changes in 24-hour profiles of luteinizing hormone and follicle-stimulating hormone from prepuberty to midstages of puberty in boys. J Clin Endocrinol Metab 1992; 74: 890-897
- 28 Wemmert S, Pyrski M, Pillong L. et al. Widespread Distribution of Luteinizing Hormone/Choriogonadotropin Receptor in Human Juvenile Angiofibroma: Implications for a Sex-Specific Nasal Tumor. Cells 2024; 13
- 29 Newman M, Nguyen TBV, McHugh T. et al. Early-onset juvenile nasopharyngeal angiofibroma (JNA): a systematic review. J Otolaryngol Head Neck Surg 2023; 52: 85
- 30 Windfuhr JP, Vent J. Extranasopharyngeal angiofibroma revisited. Clin Otolaryngol 2018; 43: 199-222
- 31 Wu FCW, Butler GE, Kelnar CJH. et al. Patterns of Pulsatile Luteinizing-Hormone Secretion before and during the Onset of Puberty in Boys – a Study Using an Immunoradiometric Assay. J Clin Endocr Metab 1990; 70: 629-637
- 32 Sitenga G, Granger P, Hepola K. et al. The use of flutamide for the neoadjuvant treatment of juvenile nasopharyngeal angiofibroma: a review of the literature comparing results by pubertal status and tumor stage. Int J Dermatol 2022; 61: 1346-1352
- 33 Thakar A, Gupta G, Bhalla AS. et al. Adjuvant Therapy with Flutamide for Presurgical Volume Reduction in Juvenile Nasopharyngeal Angiofibroma. Head Neck-J Sci Spec 2011; 33: 1747-1753
- 34 Abraham SC, Montgomery EA, Giardiello FM. et al. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 2001; 158: 1073-1078
- 35 Tosun F, Onerci M, Durmaz A. et al. Spontaneous Involution of Nasopharyngeal Angiofibroma. J Craniofac Surg 2008; 19: 1686-1689
- 36 Howard DJ, Lloyd G, Lund V. Recurrence and its avoidance in juvenile angiofibroma. Laryngoscope 2001; 111: 1509-1511
