Subscribe to RSS
DOI: 10.1055/a-2727-3201
Unveiling Rosmarinic Acid: Understanding Its Broad Spectrum of Bioactivities
Authors
This research was funded by FDCT grants from Macau University of Science and Technology to P. C. (Project Code: 0005-2023-RIA1).
Abstract
Rosmarinic acid (RA) is a polyphenolic compound with various biological activities found in numerous traditional medicinal plants. Moreover, RA is already used as a food additive, demonstrating its safety. Current research has identified RA as having diverse effects, including sedative, hypnotic, antiepileptic, anti-Parkinson, neuroprotective, antidepressant, anti-inflammatory, antioxidant, cognitive-enhancing, metabolic-regulating, antimicrobial, and antitumor properties. Nevertheless, the mechanisms underlying these effects remain incompletely understood. This review attempts to define the mechanisms of its bioactivity by correlating RAʼs effect on different biomolecules. We performed an extensive search across major databases, using the core keyword “Rosmarinic acid” with relevant keywords to construct search queries. Our findings suggest that some mechanisms are shared among RAʼs various activities. For example, the chemical structure of RA itself makes it an antioxidant, and the antioxidant effect enables it to reduce inflammation caused by active substances such as ROS and free radicals. Its antioxidant and anti-inflammatory effects can relieve pain, provide neuroprotection, reduce chronic adipose inflammation, and improve insulin sensitivity. RA can also inhibit the aggregation of harmful proteins and promote their degradation, which plays a key role in neuroprotection and cognitive improvement. RAʼs modulation of neurotransmitters exerts both antidepressant effects and benefits on cognitive impairment. The regulation of key pathways by RA–such as ERK1/2, MAPK, STAT3, PI3K, Akt, NF-κB, and Nrf2–is central to its antioxidant, anti-inflammatory, lipid- and glucose-regulating, and antitumor effects.
Publication History
Received: 18 March 2025
Accepted after revision: 15 October 2025
Article published online:
29 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Guan H, Luo W, Bao B, Cao Y, Cheng F, Yu S, Fan Q, Zhang L, Wu Q, Shan M. A Comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules 2022; 27: 3292
- 2 Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 2020; 11: 153
- 3 Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184: 106421
- 4 Ngo YL, Lau CH, Chua LS. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 2018; 121: 687-700
- 5 Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: An updated review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393: 1779-1795
- 6 Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020; 23: 1100-1112
- 7 European Food Safety Authority (EFSA). Use of rosemary extracts as a food additive – scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J 2008; 6: 721
- 8 Noguchi-Shinohara M, Ono K, Hamaguchi T, Iwasa K, Nagai T, Kobayashi S, Nakamura H, Yamada M. Pharmacokinetics, safety and tolerability of Melissa officinalis extract which contained rosmarinic acid in healthy individuals: A randomized controlled trial. PLoS One 2015; 10: e0126422
- 9 Hitl M, Kladar N, Gavarić N, Božin B. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Med 2020; 87: 273-282
- 10 Stasiłowicz-Krzemień A, Rosiak N, Płazińska A, Płaziński W, Miklaszewski A, Tykarska E, Cielecka-Piontek J. Cyclodextrin derivatives as promising solubilizers to enhance the biological activity of rosmarinic acid. Pharmaceutics 2022; 14: 2098
- 11 Fu S, Zhang Q, Zhang S, Jiang W, Jiang M. Determination of rosmarinic acid and its N-substituted analog A1 in rat plasma using high-performance liquid chromatography–tandem mass spectrometry and its application in pharmacokinetics. Rapid Commun Mass Spectrom 2023; 37: e9598
- 12 Blažević T, Reznicek G, Ding L, Yang G, Haiss P, Heiss EH, Dirsch VM, Liu R. Short chain (≤C4) esterification increases bioavailability of rosmarinic acid and its potency to inhibit vascular smooth muscle cell proliferation. Front Pharmacol 2021; 11: 609756
- 13 Kwon YO, Hong JT, Oh KW. Rosmarinic acid potentiates pentobarbital-induced sleep behaviors and Non-Rapid Eye Movement (NREM) sleep through the activation of GABAA-ergic systems. Biomol Ther 2017; 25: 105-111
- 14 Awad R, Muhammad A, Durst T, Trudeau VL, Arnason JT. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res 2009; 23: 1075-1081
- 15 Kim TH, Bormate KJ, Custodio RJP, Cheong JH, Lee BK, Kim HJ, Jung YS. Involvement of the adenosine A1 receptor in the hypnotic effect of rosmarinic acid. Biomed Pharmacother 2022; 146: 112483
- 16 Wang CC, Hsieh PW, Kuo JR, Wang SJ. Rosmarinic acid, a bioactive phenolic compound, inhibits glutamate release from rat cerebrocortical synaptosomes through GABAA receptor activation. Biomolecules 2021; 11: 1029
- 17 Lerche H. Drug-resistant epilepsy – time to target mechanisms. Nat Rev Neurol 2020; 16: 595-596
- 18 El Alaoui C, Chemin J, Fechtali T, Lory P. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 2017; 12: e0186864
- 19 Coelho VR, Vieira CG, de Souza LP, Moysés F, Basso C, Papke DKM, Pires TR, Siqueira IR, Picada JN, Pereira P. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci 2015; 122: 65-71
- 20 Luft JG, Steffens L, Morás AM, da Rosa MS, Leipnitz G, Regner GG, Pflüger PF, Gonçalves D, Moura DJ, Pereira P. Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392: 1347-1358
- 21 Grigoletto J, Oliveira CV, Grauncke ACB, Souza TL, Souto NS, Freitas ML, Furian AF, Santos ARS, Oliveira MS. Rosmarinic acid is anticonvulsant against seizures induced by pentylenetetrazol and pilocarpine in mice. Epilepsy Behav 2016; 62: 27-34
- 22 Neuberger B, Mello FK, Mallmann MP, da Costa Sobral KG, Fighera MR, Royes LFF, Furian AF, Sampaio TB, Oliveira MS. Beneficial effects of rosmarinic acid in vitro and in vivo models of epileptiform activity induced by pilocarpine. Brain Sci 2023; 13: 289
- 23 Khamse S, Sadr SS, Roghani M, Hasanzadeh G, Mohammadian M. Rosmarinic acid exerts a neuroprotective effect in the kainate rat model of temporal lobe epilepsy: Underlying mechanisms. Pharm Biol 2015; 53: 1818-1825
- 24 Hwang ES, Kim HB, Choi GY, Lee S, Lee SO, Kim S, Park JH. Acute rosmarinic acid treatment enhances long-term potentiation, BDNF and GluR-2 protein expression, and cell survival rate against scopolamine challenge in rat organotypic hippocampal slice cultures. Biochem Biophys Res Commun 2016; 475: 44-50
- 25 Presti-Silva SM, Herlinger AL, Martins-Silva C, Pires RGW. Biochemical and behavioral effects of rosmarinic acid treatment in an animal model of Parkinsonʼs disease induced by MPTP. Behav Brain Res 2023; 440: 114257
- 26 Qu L, Xu H, Jia W, Jiang H, Xie J. Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation. Neuropharmacology 2019; 144: 291-300
- 27 Chen Y, Xu R, Liu Q, Zeng Y, Chen W, Liu Y, Cao Y, Liu G, Chen Y. Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and α-synuclein in Caenorhabditis elegans models. Mol Neurobiol 2024; 61: 10138-10158
- 28 Zhao Y, Han Y, Wang Z, Chen T, Qian H, He J, Li J, Han B, Wang T. Rosmarinic acid protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicol In Vitro 2020; 65: 104823
- 29 Han X, Han B, Zhao Y, Li G, Wang T, He J, Du W, Cao X, Gan J, Wang Z, Zheng W. Rosmarinic acid attenuates rotenone-induced neurotoxicity in SH-SY5Y Parkinsonʼs disease cell model through Abl inhibition. Nutrients 2022; 14: 3508
- 30 Machado DG, Bettio LEB, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, Rodrigues ALS. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 642-650
- 31 Ahmed HM. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) britt. Molecules 2019; 24: 102
- 32 Ghazizadeh J, Hamedeyazdan S, Torbati M, Farajdokht F, Fakhari A, Mahmoudi J, Araj-Khodaei M, Sadigh-Eteghad S. Melissa officinalis L. hydro-alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Exp Physiol 2020; 105: 707-720
- 33 Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238: 86-94
- 34 Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170: 115994
- 35 Jin X, Liu P, Yang F, Zhang Y, Miao D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem Res 2013; 38: 1828-1837
- 36 Yu Y, Li Y, Qi K, Xu W, Wei Y. Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway. Behav Brain Res 2022; 433: 114006
- 37 Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother Res 2021; 35: 6974-6989
- 38 Verma H, Bhattacharjee A, Shivavedi N, Nayak PK. Evaluation of rosmarinic acid against myocardial infarction in maternally separated rats. Naunyn Schmiedebergs Arch Pharmacol 2022; 395: 1189-1207
- 39 Verma H, Shivavedi N, Tej GNVC, Kumar M, Nayak PK. Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: Evidence of serotonergic, oxidative, and inflammatory pathways. J Biochem Mol Toxicol 2022; 36: e23160
- 40 Makhathini KB, Mabandla MV, Daniels WMU. Rosmarinic acid reverses the deleterious effects of repetitive stress and tat protein. Behav Brain Res 2018; 353: 203-209
- 41 Tsai CF, Wu JY, Hsu YW. Protective effects of rosmarinic acid against selenite-induced cataract and oxidative damage in rats. Int J Med Sci 2019; 16: 729-740
- 42 Borgonetti V, Galeotti N. Rosmarinic acid reduces microglia senescence: A novel therapeutic approach for the management of neuropathic pain symptoms. Biomedicines 2022; 10: 1468
- 43 Wei Y, Chen J, Hu Y, Lu W, Zhang X, Wang R, Chu K. Rosmarinic acid mitigates lipopolysaccharide-induced neuroinflammatory responses through the inhibition of TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation. Inflammation 2018; 41: 732-740
- 44 Taravat M, Asadpour R, Jozani RJ, Fattahi A, Khordadmehr M. Enhanced anti-inflammatory effect of Rosmarinic acid by encapsulation and combination with the exosome in mice with LPS-induced endometritis through suppressing the TLR4-NLRP3 signaling pathway. J Reprod Immunol 2023; 159: 103992
- 45 Zhang Z, Zhou Y, Cao J, Liu D, Wan L. Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway. J Pharm Pharmacol 2021; 73: 916-921
- 46 Hassanzadeh-Taheri M, Ahmadi-Zohan A, Mohammadifard M, Hosseini M. Rosmarinic acid attenuates lipopolysaccharide-induced neuroinflammation and cognitive impairment in rats. J Chem Neuroanat 2021; 117: 102008
- 47 Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T. Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (d-GalN)-sensitized mice. Free Radic Biol Med 2002; 33: 798-806
- 48 Ramalho LNZ, Pasta ÂAC, Terra VA, Augusto MJ, Sanches SC, Souza-Neto FP, Cecchini R, Gulin F, Ramalho FS. Rosmarinic acid attenuates hepatic ischemia and reperfusion injury in rats. Food Chem Toxicol 2014; 74: 270-278
- 49 Khalaf AA, Hassanen EI, Ibrahim MA, Tohamy AF, Aboseada MA, Hassan HM, Zaki AR. Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J Biochem Mol Toxicol 2020; 34: e22579
- 50 Yao Y, Li R, Liu D, Long L, He N. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway. Ecotoxicol Environ Saf 2022; 241: 113773
- 51 Guo C, Shangguan Y, Zhang M, Ruan Y, Xue G, Ma J, Yang J, Qiu L. Rosmarinic acid alleviates ethanol-induced lipid accumulation by repressing fatty acid biosynthesis. Food Funct 2020; 11: 2094-2106
- 52 Kim M, Yoo G, Randy A, Son YJ, Hong CR, Kim SM, Nho CW. Lemon balm and its constituent, rosmarinic acid, alleviate liver damage in an animal model of nonalcoholic steatohepatitis. Nutrients 2020; 12: 1166
- 53 Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397: 115014
- 54 Wang TB, He Y, Li RC, Yu YX, Liu Y, Qi ZQ. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. Phytomedicine 2024; 126: 155448
- 55 Areti A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A. Rosmarinic acid mitigates mitochondrial dysfunction and spinal glial activation in oxaliplatin-induced peripheral neuropathy. Mol Neurobiol 2018; 55: 7463-7475
- 56 Georgy GS, Maher OW. Ellagic acid and rosmarinic acid attenuate doxorubicin-induced testicular injury in rats. J Biochem Mol Toxicol 2017; 31: e21937
- 57 Gui H, Jin Y, Lin A, Wang P, Wang Y, Zhu H. Rosmarinic acid relieves cisplatin-induced ovary toxicity in female mice via suppression of oxidative stress and inflammation. J Biochem Mol Toxicol 2021; 35: e22839
- 58 Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In vivo and in vitro protective effects of rosmarinic acid against doxorubicin-induced cardiotoxicity. Nutr Cancer 2022; 74: 747-760
- 59 Rizk HA, Masoud MA, Maher OW. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol 2017; 31: e21977
- 60 Alfwuaires MA. Rosmarinic acid protects against cyclophosphamide-induced hepatotoxicity via inhibition of oxidative stress, inflammation, and apoptosis and upregulation of Nrf2 in mice. J Mol Histol 2024; 56: 49
- 61 Helvacioglu S, Charehsaz M, Bankoglu EE, Stopper H, Aydin A. The ameliorative effect of rosmarinic acid and epigallocatechin gallate against doxorubicin-induced genotoxicity. Drug Chem Toxicol 2024; 47: 1087-1099
- 62 Bahri S, Mies F, Ali RB, Mlika M, Jameleddine S, Entee KM, Shlyonsky V. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts. PLoS One 2017; 12: e0184368
- 63 Kitamura N, Yamamoto Y, Yamamoto N, Murase T. Rosmarinic acid ameliorates HCl-induced cystitis in rats. PLoS One 2023; 18: e0288813
- 64 Wang J, Wang S, Guo H, Li Y, Jiang Z, Gu T, Su B, Hou W, Zhong H, Cheng D, Zhang X, Fang Z. Rosmarinic acid protects rats against post-stroke depression after transient focal cerebral ischemic injury through enhancing antioxidant response. Brain Res 2021; 1757: 147336
- 65 Cui HY, Zhang XJ, Yang Y, Zhang C, Zhu CH, Miao JY, Chen R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen Res 2018; 13: 2119
- 66 Jia C, Gou Y, Gao Y, Pei X, Jin X, Li B, Zhang Z, He Y, Ji ES, Zhao Y. Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECs. Phytomedicine 2024; 132: 155835
- 67 Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes APF, Santos do Carmo MR, Fernandes FDP, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 2016; 297: 91-103
- 68 Yang Y, Hu X, Wang S, Tian Y, Yang K, Li C, Wu Q, Liu W, Gao T, Yuan F, Guo R, Liu Z, Yang Y, Zhou D. Rosmarinic acid-mediated downregulation of RIG-I and p 62 in microglia confers resistance to japanese encephalitis virus-induced inflammation. BMC Vet Res 2024; 20: 555
- 69 Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Pan X, Li J. Rosmarinic acid treatment protects against lethal H1N1 virus-mediated inflammation and lung injury by promoting activation of the h-PGDS-PGD2-HO-1 signal axis. Chin Med 2023; 18: 139
- 70 do Nascimento RF, de Oliveira Formiga R, Machado FDF, de Sales IRP, de Lima GM, Alves Júnior EB, Vieira GC, Pereira RF, de Araújo AA, de Araújo Junior RF, Barbosa Filho JM, Batista LM. Rosmarinic acid prevents gastric ulcers via sulfhydryl groups reinforcement, antioxidant and immunomodulatory effects. Naunyn Schmiedebergs Arch Pharmacol 2020; 393: 2265-2278
- 71 Li K, Wu J, Xu S, Li X, Zhang Y, Gao X. Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota. Microbiol Spectr 2023; 11: e01914-01923
- 72 Wang Q, Xu K, Cai X, Wang C, Cao Y, Xiao J. Rosmarinic acid restores colonic mucus secretion in colitis mice by regulating gut microbiota-derived metabolites and the activation of inflammasomes. J Agric Food Chem 2023; 71: 4571-4585
- 73 Yi D, Liu X, Wang M, Zhao L, Liu Y, Xu Z, Peng Y, Zhang R, Wei Q, Liang Z, He J. Rosmarinic acid alleviated intestinal barrier damage caused by escherichia coli by regulating the gut microbiota and inhibiting the NF-κB signalling pathway in mice. Food Funct 2024; 15: 11740-11756
- 74 Yi D, Wang M, Liu X, Qin L, Liu Y, Zhao L, Peng Y, Liang Z, He J. Rosmarinic acid attenuates salmonella enteritidis-induced inflammation via regulating TLR9/NF-κB signaling pathway and intestinal microbiota. Antioxidants 2024; 13: 1265
- 75 Gupta D, Sharma RR, Rashid H, Bhat AM, Tanveer MA, Abdullah ST. Rosmarinic acid alleviates ultraviolet-mediated skin aging via attenuation of mitochondrial and ER stress responses. Exp Dermatol 2023; 32: 799-807
- 76 Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic acid increases macrophage cholesterol efflux through regulation of ABCA1 and ABCG1 in different mechanisms. Int J Mol Sci 2021; 22: 8791
- 77 Karthik D, Viswanathan P, Anuradha CV. Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p 22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 2011; 58: 514
- 78 Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, Fialova S, Krenek P. Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol 2013; 65: 713-723
- 79 Zych M, Wojnar W, Borymski S, Szałabska K, Bramora P, Kaczmarczyk-Sedlak I. Effect of rosmarinic acid and sinapic acid on oxidative stress parameters in the cardiac tissue and serum of type 2 diabetic female rats. Antioxidants 2019; 8: 579
- 80 Diao J, Zhao H, You P, You H, Wu H, Shou X, Cheng G. Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway. Biochem Biophys Res Commun 2021; 546: 29-34
- 81 Ielciu I, Filip GA, Sevastre-Berghian AC, Bâldea I, Olah NK, Burtescu RF, Toma VA, Moldovan R, Oniga I, Hanganu D. Effects of a Rosmarinus officinalis L. extract and rosmarinic acid in improving streptozotocin-induced aortic tissue damages in rats. Nutrients 2025; 17: 158
- 82 Chen J, Zhang Q, Guo J, Gu D, Liu J, Luo P, Bai Y, Chen J, Zhang X, Nie S, Chen C, Feng Y, Wang J. Single-cell transcriptomics reveals the ameliorative effect of rosmarinic acid on diabetic nephropathy-induced kidney injury by modulating oxidative stress and inflammation. Acta Pharm Sin B 2024; 14: 1661-1676
- 83 Koprivica I, Jonić N, Diamantis D, Gajić D, Saksida T, Pejnović N, Tzakos AG, Stojanović I. Phenethyl ester of rosmarinic acid attenuates autoimmune responses during type 1 diabetes development in mice. Life Sci 2022; 288: 120184
- 84 Xiong S, Ding X, Zhou L, Liu Z, Jiang W, Ai F, Cai K. An antibacterial and antioxidant rosmarinic acid hydrogel normalizes macrophage polarization to expedite diabetic wound healing. J Colloid Interface Sci 2025; 683: 357-371
- 85 Jung DY, Kim EY, Joo SY, Park JB, Moon C, Kim SH, Sim EY, Joh JW, Kwon CH, Kwon GY, Kim SJ. Prolonged survival of islet allografts in mice treated with rosmarinic acid and anti-CD154 antibody. Exp Mol Med 2008; 40: 1-10
- 86 Ou J, Huang J, Wang M, Ou S. Effect of rosmarinic acid and carnosic acid on AGEs formation in vitro . Food Chem 2017; 221: 1057-1061
- 87 Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep 2021; 11: 20605
- 88 Zhang W, Cheng C, Sha Z, Chen C, Yu C, Lv N, Ji P, Wu X, Ma T, Cheng H, Shi L. Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress. Free Radic Biol Med 2021; 168: 247-257
- 89 Aiswarya N, Remya C, Remashree AB, Sadasivan C, Dileep KV. Binding of rosmarinic acid curcumin and capsaicin with PLA2: A comparative study. Biochem Biophys Res Commun 2022; 626: 187-191
- 90 Silva DP, Ferreira SS, Torres-Rêgo M, Furtado AA, Yamashita FO, Diniz EAS, Vieira DS, Ururahy MAG, Silva-Júnior AA, Luna KPO, Fernandes-Pedrosa MF. Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom. Biomed Pharmacother 2022; 148: 112766
- 91 Mirza FJ, Amber S, Sumera, Hassan D, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1–42-induced mouse model of Alzheimerʼs disease. Phytomedicine 2021; 83: 153490
- 92 Mirza FJ, Zahid S. Ursolic acid and rosmarinic acid ameliorate alterations in hippocampal neurogenesis and social memory induced by amyloid beta in mouse model of Alzheimerʼs disease. Front Pharmacol 2022; 13: 1058358
- 93 Rong H, Liang Y, Niu Y. Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells. Free Radic Biol Med 2018; 120: 114-123
- 94 Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of rosmarinic acid on the serum parameters of glucose and lipid metabolism and oxidative stress in estrogen-deficient rats. Nutrients 2019; 11: 267
- 95 Gülçin İ, Scozzafava A, Supuran CT, Koksal Z, Turkan F, Çetinkaya S, Bingöl Z, Huyut Z, Alwasel SH. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2016; 64: 1698-1702
- 96 Ogawa K, Ishii A, Shindo A, Hongo K, Mizobata T, Sogon T, Kawata Y. Spearmint extract containing rosmarinic acid suppresses amyloid fibril formation of proteins associated with dementia. Nutrients 2020; 12: 3480
- 97 Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K, Kobayashi S. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 2021; 5: 1
- 98 Zhao L, Jiang W, Zhu Z, Pan F, Xing X, Zhou F, Zhao L. Rosemarinic acid-induced destabilization of aβ peptides: insights from molecular dynamics simulations. Foods 2024; 13: 4170
- 99 Flores N, Rivillas-Acevedo L, Caballero J, Melo F, Caballero L, Areche C, Fuentealba D, Aguilar F, Cornejo A. Rosmarinic acid turned α-syn oligomers into non-toxic species preserving microtubules in raw 264.7 cells. Bioorg Chem 2024; 151: 107669
- 100 Hasanein P, Seifi R, Hajinezhad MR, Emamjomeh A. Rosmarinic acid protects against chronic ethanol-induced learning and memory deficits in rats. Nutr Neurosci 2017; 20: 547-554
- 101 Thingore C, Kshirsagar V, Juvekar A. Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using rosmarinic acid in mice. Metab Brain Dis 2021; 36: 299-313
- 102 Musillo C, Giona L, Ristow M, Zarse K, Siems K, Di Francesco A, Collacchi B, Raggi C, Cirulli F, Berry A. Rosmarinic acid improves cognitive abilities and glucose metabolism in aged C57Bl/6 N mice while disrupting lipid profile in young adults in a sex-dependent fashion. Nutrients 2023; 15: 3366
- 103 Giona L, Musillo C, Cristofaro GD, Ristow M, Zarse K, Siems K, Tait S, Cirulli F, Berry A. Western diet-induced cognitive and metabolic dysfunctions in aged mice are prevented by rosmarinic acid in a sex-dependent fashion. Clin Nutr 2024; 43: 2236-2248
- 104 Cardullo N, Catinella G, Floresta G, Muccilli V, Rosselli S, Rescifina A, Bruno M, Tringali C. Synthesis of rosmarinic acid amides as antioxidative and hypoglycemic agents. J Nat Prod 2019; 82: 573-582
- 105 Vasileva LV, Savova MS, Tews D, Wabitsch M, Georgiev MI. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food Chem Toxicol 2021; 149: 112002
- 106 Wen YJ, Yin MC. The anti-inflammatory and anti-glycative effects of rosmarinic acid in the livers of type 1 diabetic mice. Biomedicine 2017; 7: 19
- 107 Vlavcheski F, Naimi M, Murphy B, Hudlicky T, Tsiani E. Rosmarinic acid, a rosemary extract polyphenol, increases skeletal muscle cell glucose uptake and activates AMPK. Molecules 2017; 22: 1669
- 108 Zhu F, Asada T, Sato A, Koi Y, Nishiwaki H, Tamura H. Rosmarinic acid extract for antioxidant, antiallergic, and α-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. J Agric Food Chem 2014; 62: 885-892
- 109 Runtuwene J, Cheng KC, Asakawa A, Amitani H, Amitani M, Morinaga A, Takimoto Y, Kairupan BHR, Inui A. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug Des Devel Ther 2016; 10: 2193-2202
- 110 Den Hartogh DJ, Vlavcheski F, Tsiani E. Muscle cell insulin resistance is attenuated by rosmarinic acid: Elucidating the mechanisms involved. Int J Mol Sci 2023; 24: 5094
- 111 Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic acid potently detoxifies amylin amyloid and ameliorates diabetic pathology in a transgenic rat model of type 2 diabetes. ACS Pharmacol Transl Sci 2021; 4: 1322-1337
- 112 Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic acid exhibits a lipid-lowering effect by modulating the expression of reverse cholesterol transporters and lipid metabolism in high-fat diet-fed mice. Biomolecules 2021; 11: 1470
- 113 Shin JH, Shin DW, Noh M. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol 2009; 77: 1835-1844
- 114 Guginski G, Luiz AP, Silva MD, Massaro M, Martins DF, Chaves J, Mattos RW, Silveira D, Ferreira VMM, Calixto JB, Santos ARS. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol Biochem Behav 2009; 93: 10-16
- 115 Boonyarikpunchai W, Sukrong S, Towiwat P. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacol Biochem Behav 2014; 124: 67-73
- 116 Alper Karakus A, Dallali I, Arslan R, Eken H, Hasan A, Bektas N. Examination of the antiallodynic effect of rosmarinic acid in neuropathic pain and possible mechanisms of action. Neurosci Lett 2024; 842: 137994
- 117 Cai S, Gomez K, Moutal A, Khanna R. Targeting T-type/CaV3.2 channels for chronic pain. Transl Res 2021; 234: 20-30
- 118 Jheng JR, Hsieh CF, Chang YH, Ho JY, Tang WF, Chen ZY, Liu CJ, Lin TJ, Huang LY, Chern JH, Horng JT. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. J Microbiol Immunol Infect 2022; 55: 598-610
- 119 Weng J, Chen X, Wang X, Ye H, Wu Y, Sun W, Liang L, Duan W, Kurihara H, Huang F, Sun X, Ou-Yang S, He R, Li Y. Reducing lipid peroxidation attenuates stress-induced susceptibility to herpes simplex virus type 1. Acta Pharmacol Sin 2023; 44: 1856-1866
- 120 Tsukamoto Y, Ikeda S, Uwai K, Taguchi R, Chayama K, Sakaguchi T, Narita R, Yao WL, Takeuchi F, Otakaki Y, Watashi K, Wakita T, Kato H, Fujita T. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One 2018; 13: e0197664
- 121 Panchal R, Bapat S, Mukherjee S, Chowdhary A. In silico binding analysis of lutein and rosmarinic acid against envelope domain III protein of dengue virus. Indian J Pharmacol 2021; 53: 471
- 122 Panchal R, Ghosh S, Mehla R, Ramalingam J, Gairola S, Mukherjee S, Chowdhary A. Antiviral activity of rosmarinic acid against four serotypes of dengue virus. Curr Microbiol 2022; 79: 203
- 123 Chung YC, Hsieh FC, Lin YJ, Wu TY, Lin CW, Lin CT, Tang NY, Jinn TR. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur J Pharmacol 2015; 755: 127-133
- 124 Chen SG, Leu YL, Cheng ML, Ting SC, Liu CC, Wang SD, Yang CH, Hung CY, Sakurai H, Chen KH, Ho HY. Anti-enterovirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Sci Rep 2017; 7: 12264
- 125 Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, Hsu KY, Chen YS, Chan YF, Yu HM, Hsieh PW, Chern JH, Horng JT. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg Microbes Infect 2020; 9: 1194-1205
- 126 Lin WY, Yu YJ, Jinn TR. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J 2019; 16: 94
- 127 Zhang Z, Wang Y, Xu Q, Liu Y, Wang K, Li P, Zheng X. Rosmarinic acid restores the ceftiofur antibacterial activity against methicillin-resistant staphylococcus aureus by inhibiting sortase a. J Agric Food Chem 2024; 72: 27215-27224
- 128 Kernou ON, Azzouz Z, Madani K, Rijo P. Application of rosmarinic acid with its derivatives in the treatment of microbial pathogens. Molecules 2023; 28: 4243
- 129 Ekambaram SP, Perumal SS, Balakrishnan A, Marappan N, Gajendran SS, Viswanathan V. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant staphylococcus aureus. J Intercult Ethnopharmacol 2016; 5: 358-363
- 130 Ramanauskiene K, Raudonis R, Majiene D. Rosmarinic acid and Melissa officinalis extracts differently affect glioblastoma cells. Oxid Med Cell Longev 2016; 2016: 1564257
- 131 Şengelen A, Önay-Uçar E. Rosmarinic acid attenuates glioblastoma cells and spheroidsʼ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. Phytomedicine 2024; 135: 156060
- 132 Liu Y, Xu X, Tang H, Pan Y, Hu B, Huang G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int J Mol Med 2021; 47: 1-11
- 133 Şengelen A, Önay-Uçar E. Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 2018; 23: 885-896
- 134 Laschuk Herlinger A, Lovatto Michaelsen G, Sinigaglia M, Fratini L, Nogueira Debom G, Braganhol E, Brunetto De Farias C, Lunardi Brunetto A, Tesainer Brunetto A, da Cunha Jaeger M, Roesler R. Modulation of viability, proliferation, and stemness by rosmarinic acid in medulloblastoma cells: Involvement of HDACs and EGFR. Neuromolecular Med 2023; 25: 573-585
- 135 Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol 2020; 885: 173419
- 136 Wang W, Zhang Y, Huang X, Li D, Lin Q, Zhuang H, Li H. The role of the miR-30a-5 p/BCL2L11 pathway in rosmarinic acid-induced apoptosis in MDA-MB-231-derived breast cancer stem-like cells. Front Pharmacol 2024; 15: 1445034
- 137 Fuster MG, Carissimi G, Montalbán MG, Víllora G. Antitumor activity of rosmarinic acid-loaded silk fibroin nanoparticles on HeLa and MCF-7 cells. Polymers (Basel) 2021; 13: 3169
- 138 Zhang Y, Hu M, Liu L, Cheng XL, Cai J, Zhou J, Wang T. Anticancer effects of rosmarinic acid in OVCAR-3 ovarian cancer cells are mediated via induction of apoptosis, suppression of cell migration and modulation of lncRNA MALAT-1 expression. J BUON 2018; 23: 763-768
- 139 Sarı U, Zaman F. Effects of rosmarinic acid and doxorubicine on an ovarian adenocarsinoma cell line (OVCAR3) via the EGFR pathway. Acta Cir Bras 2024; 39: e390524
- 140 Toprak V, Özdemir İ, Öztürk Ş, Yanar O, Kizildemir YZ, Tuncer MC. Modulation of FOXP3 gene expression in OVCAR3 cells following rosmarinic acid and doxorubicin exposure. Pharmaceuticals 2024; 17: 1606
- 141 Saiko P, Steinmann MT, Schuster H, Graser G, Bressler S, Giessrigl B, Lackner A, Grusch M, Krupitza G, Bago-Horvath Z, Jaeger W, Fritzer-Szekeres M, Szekeres T. Epigallocatechin gallate, ellagic acid, and rosmarinic acid perturb dNTP pools and inhibit de novo DNA synthesis and proliferation of human HL-60 promyelocytic leukemia cells: Synergism with arabinofuranosylcytosine. Phytomedicine 2015; 22: 213-222
- 142 Wu CF, Hong C, Klauck SM, Lin YL, Efferth T. Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J Ethnopharmacol 2015; 176: 55-68
- 143 Moon DO, Kim MO, Lee JD, Choi YH, Kim GY. Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett 2010; 288: 183-191
- 144 Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Popławska B, Bielawska A, Galicka A. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 2018; 107: 397-407
- 145 Radziejewska I, Supruniuk K, Bielawska A. Anti-cancer effect of combined action of anti-MUC1 and rosmarinic acid in AGS gastric cancer cells. Eur J Pharmacol 2021; 902: 174119
- 146 Ahmadi M, Kim HL, Park SJ, Jung HJ. Echium amoenum and rosmarinic acid suppress the growth and metastasis of gastric cancer AGS cells by promoting apoptosis and inhibiting EMT. Int J Mol Sci 2024; 25: 12909
- 147 Li FR, Fu YY, Jiang DH, Wu Z, Zhou YJ, Guo L, Dong ZM, Wang ZZ. Reversal effect of rosmarinic acid on multidrug resistance in SGC7901/Adr cell. J Asian Nat Prod Res 2013; 15: 276-285
- 148 Yu C, Chen D, Liu H, Li W, Lu J, Feng J. Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5 p. Biomed Pharmacother 2019; 109: 2327-2334
- 149 Chen C, Liu Y, Shen Y, Zhu L, Yao L, Wang X, Zhang A, Li J, Wu J, Qin L. Rosmarinic acid, the active component of Rubi Fructus, induces apoptosis of SGC-7901 and HepG2 cells through mitochondrial pathway and exerts anti-tumor effect. Naunyn Schmiedebergs Arch Pharmacol 2023; 396: 3743-3755
- 150 Luo Y, Ma Z, Xu X, Qi H, Cheng Z, Chen L. Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J BUON 2020; 25: 1245-1250
- 151 Huang Y, Cai Y, Huang R, Zheng X. Rosmarinic acid combined with adriamycin induces apoptosis by triggering mitochondria-mediated signaling pathway in HepG2 and Bel-7402 cells. Med Sci Monit 2018; 24: 7898-7908
- 152 Jin B, Liu J, Gao D, Xu Y, He L, Zang Y, Li N, Lin D. Detailed studies on the anticancer action of rosmarinic acid in human Hep-G2 liver carcinoma cells: evaluating its effects on cellular apoptosis, caspase activation and suppression of cell migration and invasion. J BUON 2020; 25: 1383-1389
- 153 Wu J, Zhu Y, Li F, Zhang G, Shi J, Ou R, Tong Y, Liu Y, Liu L, Lu L, Liu Z. Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells. J Ethnopharmacol 2016; 193: 1-11
- 154 Liu WY, Wang H, Xu X, Wang X, Han KK, You WD, Yang Y, Zhang T. Natural compound rosmarinic acid displays anti-tumor activity in colorectal cancer cells by suppressing nuclear factor-kappa B signaling. World J Clin Oncol 2025; 16: 105341
- 155 Yang K, Shen Z, Zou Y, Gao K. Rosmarinic acid inhibits migration, invasion, and p 38/AP-1 signaling via miR-1225-5 p in colorectal cancer cells. J Recept Signal Transduct Res 2021; 41: 284-293
- 156 Huang JY, Hsu TW, Chen YR, Kao SH. Rosmarinic acid potentiates cytotoxicity of cisplatin against colorectal cancer cells by enhancing apoptotic and ferroptosis. Life 2024; 14: 1017
- 157 Lee CH, Tsao YH, Weng YP, Wang IC, Chen YP, Hung PF. Therapeutic effects of perilla phenols in oral squamous cell carcinoma. Int J Mol Sci 2023; 24: 14931
- 158 da Silva GB, Manica D, da Silva AP, Marafon F, Moreno M, Bagatini MD. Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells. Chem Biol Interact 2023; 375: 110427
- 159 Huang L, Chen J, Quan J, Xiang D. Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 2021; 12: 3065-3076
- 160 da Silva GB, Manica D, Dallagnol P, Narzetti RA, Marafon F, da Silva AP, de S Matias L, Cassol JV, Moreno M, Kempka AP, Bagatini MD. Rosmarinic acid modulates purinergic signaling and induces apoptosis in melanoma cells. Purinergic Signal 2025; 21: 353-363
- 161 Olivares A, Alcaraz-Saura M, Achel DG, Alcaraz M. Effect of rosmarinic acid and ionizing radiation on glutathione in melanoma B16F10 cells: A translational opportunity. Antioxidants 2020; 9: 1291
- 162 Khaksar S, Kiarostami K, Ramdan M. Effect of rosmarinic acid on cell proliferation, oxidative stress, and apoptosis pathways in an animal model of induced glioblastoma multiforme. Arch Med Res 2024; 55: 103005
- 163 Mahmoud MA, Okda TM, Omran GA, Abd-Alhaseeb MM. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p 53-caspase-3 pathways modulation. J Appl Biomed 2021; 19: 202-209
- 164 Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther 2015; 9: 2695-2703
- 165 Cao W, Mo K, Wei S, Lan X, Zhang W, Jiang W. Effects of rosmarinic acid on immunoregulatory activity and hepatocellular carcinoma cell apoptosis in H22 tumor-bearing mice. Korean J Physiol Pharmacol 2019; 23: 501-508
- 166 Cao W, Hu C, Wu L, Xu L, Jiang W. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci 2016; 132: 131-137
- 167 Wang L, Yang H, Wang C, Shi X, Li K. Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomed Pharmacother 2019; 120: 109443
- 168 Liu H, Deng R, Zhu C, Han H, Zong G, Ren L, Cheng P, Wei Z, Zhao Y, Yu S, Lu Y. Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis. Acta Pharmacol Sin 2024; 45: 193-208
- 169 Jin BR, Chung KS, Hwang S, Hwang SN, Rhee KJ, Lee M, An HJ. Rosmarinic acid represses colitis-associated colon cancer: A pivotal involvement of the TLR4-mediated NF-κB-STAT3 axis. Neoplasia 2021; 23: 561-573
- 170 Han YH, Kee JY, Hong SH. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front Pharmacol 2018; 9: 68
- 171 Zhou X, Wang W, Li Z, Chen L, Wen C, Ruan Q, Xu Z, Liu R, Xu J, Bai Y, Deng J. Rosmarinic acid decreases the malignancy of pancreatic cancer through inhibiting Gli1 signaling. Phytomedicine 2022; 95: 153861
- 172 Han Y, Ma L, Zhao L, Feng W, Zheng X. Rosmarinic inhibits cell proliferation, invasion and migration via up-regulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomed Pharmacother 2019; 115: 108878
- 173 Jia JY, Lu YL, Li XC, Liu GY, Li SJ, Liu Y, Liu YM, Yu C, Wang YP. Pharmacokinetics of depside salts from Salvia miltiorrhiza in healthy Chinese volunteers: A randomized, open-label, single-dose study. Curr Ther Res Clin Exp 2010; 71: 260-271
- 174 Baba S, Osakabe N, Natsume M, Yasuda A, Muto Y, Hiyoshi T, Takano H, Yoshikawa T, Terao J. Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans. Eur J Nutr 2005; 44: 1-9
- 175 Nayebi N, Esteghamati A, Meysamie A, Khalili N, Kamalinejad M, Emtiazy M, Hashempur MH. The effects of a Melissa officinalis L. based product on metabolic parameters in patients with type 2 diabetes mellitus: A randomized double-blinded controlled clinical trial. J Complement Integr Med 2019; 16: jcim-2018-0088
- 176 Asadi A, Shidfar F, Safari M, Malek M, Hosseini AF, Rezazadeh S, Rajab A, Shidfar S, Hosseini S. Safety and efficacy of Melissa officinalis (lemon balm) on ApoA–I, Apo B, lipid ratio and ICAM-1 in type 2 diabetes patients: A randomized, double-blinded clinical trial. Complement Ther Med 2018; 40: 83-88
- 177 Asadi A, Shidfar F, Safari M, Hosseini AF, Fallah Huseini H, Heidari I, Rajab A. Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A randomized, double‐blind, clinical trial. Phytother Res 2019; 33: 651-659
- 178 Jandaghi P, Noroozi M, Ardalani H, Alipour M. Lemon balm: A promising herbal therapy for patients with borderline hyperlipidemia–A randomized double-blind placebo-controlled clinical trial. Complement Ther Med 2016; 26: 136-140
- 179 Javid AZ, Haybar H, Dehghan P, Haghighizadeh MH, Mohaghegh SM, Ravanbakhsh M, Mohammadzadeh A. The effects of Melissa officinalis (lemon balm) in chronic stable angina on serum biomarkers of oxidative stress, inflammation and lipid profile. Asia Pac J Clin Nutr 2018; 27: 785-791
- 180 Alijaniha F, Naseri M, Afsharypuor S, Fallahi F, Noorbala A, Mosaddegh M, Faghihzadeh S, Sadrai S. Heart palpitation relief with Melissa officinalis leaf extract: Double blind, randomized, placebo controlled trial of efficacy and safety. J Ethnopharmacol 2015; 164: 378-384
- 181 Perry NSL, Menzies R, Hodgson F, Wedgewood P, Howes MJR, Brooker HJ, Wesnes KA, Perry EK. A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. Phytomedicine 2018; 39: 42-48
- 182 Akhondzadeh S. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimerʼs disease: A double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 2003; 74: 863-866
- 183 Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimerʼs disease: a double blind, randomized and placebo-controlled trial: Salvia officinalis extract in the treatment of Alzheimerʼs disease. J Clin Pharm Ther 2003; 28: 53-59
- 184 Noguchi-Shinohara M, Ono K, Hamaguchi T, Nagai T, Kobayashi S, Komatsu J, Samuraki-Yokohama M, Iwasa K, Yokoyama K, Nakamura H, Yamada M. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimerʼs disease progression. Sci Rep 2020; 10: 18627
- 185 Herrlinger KA, Nieman KM, Sanoshy KD, Fonseca BA, Lasrado JA, Schild AL, Maki KC, Wesnes KA, Ceddia MA. Spearmint extract improves working memory in men and women with age-associated memory impairment. J Altern Complement Med 2018; 24: 37-47
- 186 Noguchi-Shinohara M, Hamaguchi T, Sakai K, Komatsu J, Iwasa K, Horimoto M, Nakamura H, Yamada M, Ono K. Effects of Melissa officinalis extract containing rosmarinic acid on cognition in older adults without dementia: A randomized controlled trial. J Alzheimers Dis 2023; 91: 805-814
- 187 Kennedy DO, Little W, Scholey AB. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (lemon balm). Psychosom Med 2004; 66: 607-613
- 188 Kennedy DO, Little W, Haskell CF, Scholey AB. Anxiolytic effects of a combination of Melissa ofcinalis and Valeriana ofcinalis during laboratory induced stress. Phytother Res 2006; 20: 96-102
- 189 Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology 2006; 31: 845-852
- 190 Kennedy DO, Scholey AB, Tildesley NTJ, Perry EK, Wesnes KA. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav 2002; 72: 953-964
- 191 Scholey A, Gibbs A, Neale C, Perry N, Ossoukhova A, Bilog V, Kras M, Scholz C, Sass M, Buchwald-Werner S. Anti-stress effects of lemon balm-containing foods. Nutrients 2014; 6: 4805-4821
- 192 Shirazi M, Jalalian MN, Abed M, Ghaemi M. The effectiveness of Melissa officinalis L. versus citalopram on quality of life of menopausal women with sleep disorder: A randomized double-blind clinical trial. Rev Bras Ginecol Obstet 2021; 43: 126-130
- 193 Falcone PH, Tribby AC, Vogel RM, Joy JM, Moon JR, Slayton CA, Henigman MM, Lasrado JA, Lewis BJ, Fonseca BA, Nieman KM, Herrlinger KA. Efficacy of a nootropic spearmint extract on reactive agility: A randomized, double-blind, placebo-controlled, parallel trial. J Int Soc Sports Nutr 2018; 15: 58
- 194 Falcone PH, Nieman KM, Tribby AC, Vogel RM, Joy JM, Moon JR, Slayton CA, Henigman MM, Lasrado JA, Lewis BJ, Fonseca BA, Herrlinger KA. The attention-enhancing effects of spearmint extract supplementation in healthy men and women: a randomized, double-blind, placebo-controlled, parallel trial. Nutrition research 2019; 64: 24-38
- 195 Ostfeld I, Ben-Moshe Y, Hoffman MW, Shalev H, Hoffman JR. Effect of spearmint extract containing rosmarinic acid on physical and executive functioning after a tactical operation. J Spec Oper Med 2018; 18: 92
- 196 Connelly AE, Tucker AJ, Tulk H, Catapang M, Chapman L, Sheikh N, Yurchenko S, Fletcher R, Kott LS, Duncan AM, Wright AJ. High-rosmarinic acid spearmint tea in the management of knee osteoarthritis symptoms. J Med Food 2014; 17: 1361-1367
- 197 Ng ML, Majid AMSA, Yee SM, Natesan V, Basheer MKA, Gnanasekaran A, Al-Suede FSR, Parish C, Dalal M, Ming LC, Nazari VM, Khan SS, Stn Hameed Sultan SB, Babu KG, Majid ASA, Abdul Aziz MAS. A phase II randomized, double-blind, placebo-controlled study of Nuvastatic (C50SEW505OESA), a standardized rosmarinic acid-rich polymolecular botanical extract formulation to reduce cancer-related fatigue in patients with solid tumors. Support Care Cancer 2024; 32: 331
- 198 Lee J, Jung E, Koh J, Kim YS, Park D. Effect of rosmarinic acid on atopic dermatitis. J Dermatol 2008; 35: 768-771
- 199 Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T. Anti‐inflammatory and anti‐allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biofactors 2004; 21: 127-131
- 200 Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue K, Yasuda A, Natsume M, Baba S, Ichiishi E, Yoshikawa T. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med (Maywood) 2004; 229: 247-254
- 201 Marseglia G, Licari A, Leonardi S, Papale M, Zicari AM, Schiavi L, Ciprandi G. Italian Study Group on Pediatric Allergic Rhinoconjunctivitis. A polycentric, randomized, parallel-group, study on Lertal®, a multicomponent nutraceutical, as preventive treatment in children with allergic rhinoconjunctivitis: Phase II. Ital J Pediatr 2019; 45: 84
- 202 Marseglia GL, Licari A, Ciprandi G. Italian Study Group on Pediatric Allergic Rhinoconjunctivitis. A polycentric, randomized, double blind, parallel-group, placebo-controlled study on Lertal®, a multicomponent nutraceutical, as add-on treatment in children with allergic rhinoconjunctivitis: Phase I during active treatment. J Biol Regul Homeost Agents 2019; 33: 617-622
- 203 Tosca MA, Olcese R, Marinelli G, Papale M, Zicari AM, Marseglia G, Ciprandi G. Lertal®, a multicomponent nutraceutical, could reduce the use of antihistamines in children with allergic rhinoconjunctivitis. Acta Biomed 2020; 91: 356-359
- 204 Zicari AM, De Castro G, Brindisi G, Papale M, Marinelli G, Licari A, Ciprandi G. Respiratory infections in allergic children: The preventive role of a multicomponent nutraceutical. Acta Biomed 2020; 91: e2020072
- 205 Leonardi S, Parisi G, Papale M, Zicari AM, Olcese R, Licari A, Marseglia G, Ciprandi G. Small airways in children with allergic rhinoconjunctivitis: The potential role of a multicomponent nutraceutical. Acta Biomed 2020; 91: 350-355
- 206 Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimerʼs disease. Life Sci 2021; 276: 119129
- 207 Lu J, Lu Y, Wang X, Li X, Linderman GC, Wu C, Cheng X, Mu L, Zhang H, Liu J, Su M, Zhao H, Spatz ES, Spertus JA, Masoudi FA, Krumholz HM, Jiang L. Prevalence, awareness, treatment, and control of hypertension in China: Data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). The Lancet 2017; 390: 2549-2558
- 208 Ma RCW. Epidemiology of diabetes and diabetic complications in China. Diabetologia 2018; 61: 1249-1260
- 209 Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC, Virani SS, Williams KA, Yeboah J, Ziaeian B. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 2019; 140: e596
- 210 Diamantis DA, Oblukova M, Chatziathanasiadou MV, Gemenetzi A, Papaemmanouil C, Gerogianni PS, Syed N, Crook T, Galaris D, Deligiannakis Y, Sokolova R, Tzakos AG. Bioinspired tailoring of fluorogenic thiol responsive antioxidant precursors to protect cells against H2O2-induced DNA damage. Free Radic Biol Med 2020; 160: 540-551
- 211 Sahiner M. Hydrolytic nondegradable bioactive rosmarinic acid particles. Polym Adv Technol 2021; 32: 4891-4901
