Subscribe to RSS
DOI: 10.1055/a-2705-8388
Intensive Armrehabilitation im chronischen Stadium nach Schlaganfall
Authors
Die Rehabilitation der Armfunktion nach Schlaganfall stellt eine zentrale Herausforderung in der neurologischen Nachsorge dar. Insbesondere im chronischen Stadium bleibt die Wiederherstellung der motorischen Kontrolle für viele Betroffene unzureichend. Der vorliegende Beitrag beleuchtet die Ergebnisse einer prospektiven Kohortenstudie desselben Autorenteams, die 2024 veröffentlicht wurde [1]. Sie untersuchte die Wirksamkeit eines zweiwöchigen, schädigungsorientierten, intensiven Armrehabilitationsprogramms bei Patient*innen mit unterschiedlich ausgeprägter Armparese. Im Fokus standen dabei die Effekte auf motorische Funktionen, Spastizität, Bewegungsumfang, Alltagsnutzung des Armes sowie auf Lebensqualität und emotionales Wohlbefinden. Die Erkenntnisse, die hier in verkürzter Form wiedergegeben werden, adressieren die Frage, inwieweit auch lange nach dem Akutereignis durch strukturierte und individuell angepasste Interventionen substanzielle funktionelle Verbesserungen erzielt werden können.
Publication History
Article published online:
08 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Platz T, Kaiser K, Laborn T, Laborn M. Effects of intensive impairment-oriented arm rehabilitation for chronic stroke survivors: An observational cohort study. J Clin Med 2024; 14: 176
- 2 GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024; 23: 344-381
- 3 Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Stroke: Neurologic and functional recovery: The Copenhagen Stroke Study. Phys Med Rehabil Clin N Am 1999; 10: 887-906
- 4 Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 34: 2181-2186
- 5 Mehrholz J, Pollock A, Pohl M. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018; 9: CD006876
- 6 Platz T. Impairment-oriented training (IOT): Scientific concept and evidence-based treatment strategies. Restor Neurol Neurosci 2004; 22: 301-315
- 7 Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol 1980; 19: 382-389
- 8 Fugl-Meyer AR, Jaasko L, Leyman I. et al. The post-stroke hemiplegic patient: A method for evaluation of physical performance. Scand J Rehabil Med 1975; 7: 13-31
- 9 Ekstrand E, Lexell J, Brogårdh C. Test-retest reliability and convergent validity of three manual dexterity measures in persons with chronic stroke. PM R 2016; 8: 935-943
- 10 Mahoney FI, Barthel DW. Functional evaluation: The Barthel Index. Md State Med J 1965; 14: 61-65
- 11 Snaith RP. The Hospital Anxiety and Depression Scale. Health Qual Life Outcomes 2003; 1: 29
- 12 MDCG 2020-10/1. Safety Reporting in Clinical Investigations of Medical Devices under the Regulation (EU) 2017/745. European Commission; May 2020
- 13 Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3.1.7: A flexible statistical power analysis program for the social, behavioral and biomedical sciences. Behav Res Methods 2013; 39: 175-191
- 14 Kwakkel G, Stinear C, Essers B. et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur Stroke J 2023; 8: 880-894
- 15 Schünemann HJ, Vist GE, Higgins JPT. et al. Chapter 15: Interpreting results and drawing conclusions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3 (updated February 2022). London: Cochrane; 2022
- 16 Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: Outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry 2019; 90: 498-506
- 17 McCabe J, Monkiewicz M, Holcomb J. et al. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: A randomized controlled trial. Arch Phys Med Rehabil 2015; 96: 981-990
- 18 Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther 2012; 92: 791-798
- 19 Avni I, Arac A, Binyamin-Netser R. et al. The kinematics of 3D arm movements in sub-acute stroke: Impaired inter-joint coordination is attributable to both weakness and flexor synergy intrusion. Neurorehabil Neural Repair 2024; 38: 646-658
- 20 Chen P, Lin KC, Liing RJ. et al. Validity, responsiveness, and minimal clinically important difference of EQ-5D-5L in stroke patients undergoing rehabilitation. Qual Life Res 2016; 25: 1585-1596
- 21 Lemay KR, Tulloch HE, Pipe AL, Reed JL. Establishing the minimal clinically important difference for the Hospital Anxiety and Depression Scale in patients with cardiovascular disease. J Cardiopulm Rehabil Prev 2019; 39: E6-E11
- 22 Villepinte C, Verma A, Dimeglio C. et al. Responsiveness of kinematic and clinical measures of upper-limb motor function after stroke: A systematic review and meta-analysis. Ann Phys Rehabil Med 2021; 64: 101366
- 23 dos Santos Silva EK, Cruz JAW, da Cunha MAVC. et al. Cost-effectiveness in health: Consolidated research and contemporary challenges. Humanit Soc Sci Commun 2021; 8: 254
- 24 Nascimento LR, Gaviorno LF, de Souza Brunelli M. et al. Home-based is as effective as centre-based rehabilitation for improving upper limb motor recovery and activity limitations after stroke: A systematic review with meta-analysis. Clin Rehabil 2022; 36: 1565-1577