Subscribe to RSS
DOI: 10.1055/a-2705-1784
Evaluation einer appbasierten Reha-Nachsorge (AReNa) mit Schwerpunkt Bewegungsförderung nach COPD-Rehabilitation: Ergebnisse einer Pilotstudie
Evaluation of an app-based rehabilitation aftercare program focusing on physical activity promotion for persons with chronic obstructive pulmonary disease (COPD): Results of a pilot studyAuthors
Zusammenfassung
Ziel der Studie
Die Evaluation einer appbasierten Nachsorge für Personen mit chronisch obstruktiver Lungenerkrankung (COPD).
Methodik
COPD-Rehabilitand:innen absolvierten eine dreiwöchige stationäre pneumologische Rehabilitation mit anschließender zwölfwöchiger appbasierter Nachsorge, entwickelt auf Basis des Modells der Bewegungsbezogenen Gesundheitskompetenz. Hauptkomponenten der Nachsorge waren (1) individuelle Pläne für Kraft- und Ausdauertraining, (2) Fitnesstracker zum Selbstmonitoring, (3) Online-Lernmodule, sowie (4) 1:1-Betreuung durch Sport- bzw. Physiotherapeut:innen der Rehabilitationsklinik. Per Fragebogen wurden unter anderem folgende Outcomes erhoben: COPD-Assessmenttest, Lebensqualität, Depressivität, Angst, Fatigue, COPD-Leitsymptome, Schmerz, Sport- und Freizeitaktivität, Bewegungsbezogene Gesundheitskompetenz, Erfahrungen der Rehabilitand:innen mit der Nachsorge. Messzeitpunkte waren Beginn und Ende der Rehabilitation sowie Ende der Nachsorge. Veränderungen der Outcomes während der Rehabilitation und Nachsorge wurden explorativ untersucht (Wilcoxon-Vorzeichen-Rang-Test, α<0,05). Die Erfahrungen mit der Nachsorge wurden deskriptiv analysiert.
Ergebnisse
Von 42 Personen mit COPD lagen zu allen Messzeitpunkten Daten vor (Alter: M=57,5; SD=5,6; BMI: M=29,1; SD=6,5; GOLD-Stadium 1/2/3/4: 2,4%/50,0%/38,1%/9,5%). Alle Outcomes außer Freizeitaktivität und Angst bezüglich Partnerschaft verbesserten sich im Verlauf der Rehabilitation signifikant und verblieben fast alle auch am Ende der Nachsorge auf dem Level des Reha-Ende. Belastungsatemnot (d=−0,45) sowie die Subkompetenzen der Bewegungsbezogenen Gesundheitskompetenz (Bewegungskompetenz: d=−0,69; Steuerungskompetenz: d=−0,68; Selbstregulationskompetenz: d=−0,80) verbesserten sich zusätzlich während der Nachsorge. Sportliche Aktivität (d=−1,28) und Sputummenge (d=−0,64) verbesserten sich während der Reha, waren jedoch während der Nachsorge wieder rückläufig (sportliche Aktivität: d=−0,52; Sputummenge: d=−0,55). Absolut liegt die sportliche Aktivität nach der Nachsorge jedoch noch deutlich über der zu Reha-Beginn (d=−0,65). Die Benutzerfreundlichkeit der App und die Atmosphäre während der Nachsorge waren hoch.
Schlussfolgerung
Die Reha-Effekte konnten während der App-basierten Reha-Nachsorge bei den meisten Outcomes gehalten oder gesteigert werden. Die durchgeführte Studie liefert somit erste Hinweise für die Effektivität der entwickelten appbasierten Reha-Nachsorge.
Abstract
Purpose
To evaluate an app-based follow-up care program for individuals with chronic obstructive pulmonary disease (COPD) post-rehabilitation.
Methods
After a 3-week inpatient pulmonary rehabilitation, a 12-week app-based follow-up care program was conducted. The app-based program was based on the model of physical activity-related health competence. The core components were: (1) personalized endurance and resistance training plans, (2) activity monitors for self-monitoring, (3) e-learning modules, and (4) 1:1 coaching by sports therapists and physiotherapists of the rehabilitation clinic. The following outcomes were assessed with questionnaires at the start and the end of rehabilitation as well as after follow-up care: COPD Assessment Test, quality of life, depression, anxiety, fatigue, key symptoms of COPD, pain, sport-/exercise-related activities, leisure-time/transportation physical activity, physical activity-related health competence, and experiences with the follow-up care. An exploratory analysis examined changes in outcomes during rehabilitation and follow-up care (Wilcoxon signed-rank tests, α<0.05). Experiences with the follow-up care were analyzed descriptively.
Results
42 participants (age: M=57.5; SD=5.6; BMI: M=29.1; SD=6.5; GOLD stage 1/2/3/4: 2.4%/50.0%/38.1%/9.5%) provided data at all measurement time points. Except for leisure-time/transportation physical activity and partnership-related anxiety, the outcomes improved significantly during rehabilitation. Exercise-induced dyspnea (d=−0.45) as well as the sub-competencies of physical activity-related health competence (movement competence: d=−0.69; control competence: d=−0.68; self-regulation competence: d=−0.80) showed further improvements during follow-up care. Sport- and exercise-related activity (d=−1.28) and sputum quantity (d=−0.64) improved during rehabilitation, but deteriorated during follow-up care (sport-/exercise related activity: d=−0.52; sputum quantity: d=−0.55). However, the values of sport- and exercise-related activity after follow-up care were higher than at the beginning of rehabilitation (d=−0.65). App-usability and the atmosphere during aftercare were high.
Conclusion
The effects of pulmonary rehabilitation were maintained or further improved in most outcomes over the course of the app-based intervention. These findings provide initial indications of the efficacy of the developed app-based follow-up care program.
Schlüsselwörter
COPD - Pneumologische Rehabilitation - mHealth - Reha-Nachsorge - Körperliche Aktivität - TrainingKeywords
COPD - pulmonary rehabilitation - mHealth - rehabilitation aftercare - physical activity - exercisePublication History
Article published online:
09 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report). 2023: 1-205 Im Internet https://goldcopd.org/2023-gold-report-2/ Stand: 13.01.2024
- 2 Cavalheri V, Straker L, Gucciardi DF. et al. Changing physical activity and sedentary behaviour in people with COPD. Respirology 2016; 21: 419-426
- 3 Waschki B, Kirsten A, Holz O. et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study. Chest 2011; 140: 331-342
- 4 McCarthy B, Casey D, Devane D. et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease (review). Cochrane Database Syst Rev 2015; 1-209
- 5 Spruit MA, Singh SJ, Garvey C. et al. An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188: e13-e64
- 6 Geidl W, Cassar S, Schultz K. et al. Körperlich aktiver Lebensstil nach einer pneumologischen Rehabilitation bei COPD – Wunsch oder Wirklichkeit. Atemwegs- und Lungenkrankheiten 2017; 43: 269-275
- 7 Bourne S, Devos R, North M. et al. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: Randomised controlled trial. BMJ Open 2017; 7: 1-11
- 8 Spielmanns M, Gloeckl R, Jarosch I. et al. Using a smartphone application maintains physical activity following pulmonary rehabilitation in patients with COPD: a randomised controlled trial. Thorax 2022; 78: 442-450
- 9 Bell ML, Whitehead AL, Julious SA. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin Epidemiol 2018; 10: 153-157
- 10 Sudeck G, Rosenstiel S, Carl J. et al. Bewegungsbezogene Gesundheitskompetenz – Konzeption und Anwendung in Gesundheitsförderung, Prävention und Rehabilitation. In: Rathmann K, Dadaczynski K, Okan O, et al., Hrsg. Gesundheitskompetenz. Berlin, Heidelberg: Springer; 2022: 1-12
- 11 Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14
- 12 Hartung V, Sarshar M, Karle V. et al. Validity of Consumer Activity Monitors and an Algorithm Using Smartphone Data for Measuring Steps during Different Activity Types. International Journal of Environmental Research and Public Health 2020; 17: 1-16
- 13 Martin NI, Kelly N, Terry PC. A framework for self-determination in massive open online courses: Design for autonomy, competence, and relatedness. Austr J Educ Technol 2018; 34: 35-55
- 14 Miller WR, Rollnick S. Motivierende Gesprächsführung: Motivational Interviewing: 3. Auflage des Standardwerks in Deutsch. Lambertus; 2015
- 15 Franke T, Attig C, Wessel D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int J Hum Comput Interact 2019; 35: 456-467
- 16 Carl J, Sudeck G, Pfeifer K. Competencies for a Healthy Physically Active Lifestyle: Second-Order Analysis and Multidimensional Scaling. Front Psychol 2020; 11
- 17 Jones PW, Harding G, Berry P. et al. Development and first validation of the COPD Assessment Test. Eur Respir J 2009; 34: 648-654
- 18 Jones PW, Quirk FH, Baveystock CM. The St George’s Respiratory Questionnaire. Respir Med 1991; 85: 25-37
- 19 Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: Validity of a brief depression severity measure. J Gen Intern Med 2001; 16: 606-613
- 20 Kühl K, Kuhn C, Kenn K. et al. Der COPD-Angst-Fragebogen (CAF): Ein neues Instrument zur Erfassung krankheitsspezifischer Ängste bei COPD-Patienten. Psychother Psychosom Med Psychol 2011; 61: e1-e9
- 21 Radbruch L, Sabatowski R, Elsner F. et al. Validation of the German version of the brief fatigue inventory. J Pain Symptom Manage 2003; 25: 449-458
- 22 Fuchs R, Klaperski S, Gerber M. et al. Messung der Bewegungs- und Sportaktivität mit dem BSA-Fragebogen. Eine methodische Zwischenbilanz. Z Gesundheitspsychol 2015; 23: 60-76
- 23 Schmidt K, Gensichen J, Petersen JJ. et al. Autonomy support in primary care - Validation of the German version of the Health Care Climate Questionnaire. J Clin Epidemiol 2012; 65: 206-211
- 24 Minge M, Thüring M, Wagner I. et al. The meCUE questionnaire: A modular tool for measuring user experience. In: Soares M, Falcao C, Ahram T, Hrsg. Advances in Ergonomics Modeling, Usability & Special Populations. Advances in Intelligent Systems and Computing. Cham: Springer; 2017
- 25 Geidl W, Carl J, Schuler M. et al. Long-Term Benefits of Adding a Pedometer to Pulmonary Rehabilitation for COPD: The Randomized Controlled STAR Trial. Int J Chron Obstruct Pulmon Dis 2021; 16: 1977-1988
- 26 Chaplin E, Hewitt S, Apps L. et al. Interactive web-based pulmonary rehabilitation programme: A randomised controlled feasibility trial. BMJ Open 2017; 7: 1-10
- 27 Gloeckl R, Spielmanns M, Stankeviciene A. et al. Smartphone application-based pulmonary rehabilitation in COPD: A multicentre randomised controlled trial. Thorax 2025; 80: 209-217
- 28 Tallner A, Hartung V, Streber R. et al. M bewegt P. Studienbericht zur „MS bewegt“ Studie 2021: 1-28 Im Internet https://www.sport.fau.de/files/2021/03/ms-bewegt-studienbericht.pdf
- 29 COPD Working Group. Pulmonary rehabilitation for patients with chronic pulmonary disease (COPD): an evidence-based analysis. Ont Health Technol Assess Ser 2012; 12: 1-75
- 30 Darmawan AK, Setyawan MB, Bakir B. et al. Assessing and Enhancing an Existing User Experience (UX) of Smart Regency Mobile-Apps Service with meCUE 2.0 Framework. In: 2021 9th International Conference on Cyber and IT Service Management (CITSM). New York: Institute of Electrical and Electronics Engineers; 2021: 1-6
- 31 Burger G, Guna J. Enhancing Driving Safety through User Experience Evaluation of the C-ITS Mobile Application: A Case Study of the DARS Traffic Plus App in a Driving Simulator Environment. Sensors 2024; 24: 4948
- 32 Cox NS, Dal Corso S, Hansen H. et al. Telerehabilitation for chronic respiratory disease. Cochrane Database Syst Rev 2021; 1: 1-149
- 33 Isernia S, Pagliari C, Bianchi LNC. et al. Characteristics, Components, and Efficacy of Telerehabilitation Approaches for People with Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2022; 19: 15165
