Subscribe to RSS
DOI: 10.1055/a-2652-1812
The Pathophysiology of Coronary Artery Disease

Abstract
Cardiovascular disease is among the most prevalent and morbid conditions worldwide. Coronary artery disease (CAD) is an important cause of cardiovascular disease and can range from mild to fatal conditions. There have been advancements within the field of cardiology to help serve patients and improve outcomes related to CAD. A key aspect of this is a fundamental understanding of the pathophysiology of CAD and applying it in multiple disciplines. Clinicians are better equipped to manage their patients and come up with focused treatment plans once they have a solid foundation of the disease. In this review, we aim to highlight the important pathophysiological mechanisms behind CAD to help aid clinician decision-making and foster future advancements to continue to improve outcomes.
Publication History
Article published online:
29 July 2025
© 2025. International College of Angiology. This article is published by Thieme.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118 (04) 535-546
- 2 Libby P, Hansson GK. from focal lipid storage to systemic inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74 (12) 1594-1607
- 3 Arnett DK, Blumenthal RS, Albert MA. et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140 (11) e563-e595
- 4 Weinhaus AJ, Roberts KP. Anatomy of the human heart. In: Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press; 2009. :pp. 59-85 . Doi: 10.1007/978-1-60327-372-5_5
- 5 Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease - activators and actions. Eur J Pharmacol 2017; 816: 37-46
- 6 Akhavanpoor M, Gleissner CA, Akhavanpoor H. et al. Adventitial tertiary lymphoid organ classification in human atherosclerosis. Cardiovasc Pathol 2018; 32: 8-14
- 7 Nakashima Y, Chen YX, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch 2002; 441 (03) 279-288
- 8 Fernandez DM, Rahman AH, Fernandez NF. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med 2019; 25 (10) 1576-1588
- 9 Vanlandewijck M, He L, Mäe MA. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018; 554 (7693) 475-480
- 10 Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K. Single cell RNA sequencing in atherosclerosis research. Circ Res 2020; 126 (09) 1112-1126
- 11 Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118 (04) 692-702
- 12 Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque?. F1000 Res 2018; 7 (04) 1969
- 13 Wang Y, Nanda V, Direnzo D. et al. Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proc Natl Acad Sci U S A 2020; 117 (27) 15818-15826
- 14 Dobnikar L, Taylor AL, Chappell J. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun 2018; 9 (01) 4567
- 15 Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med 2019; 381 (16) 1557-1567
- 16 Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet 2014; 383 (9921) 999-1008
- 17 Zemel PC, Sowers JR. Relation between lipids and atherosclerosis: Epidemiologic evidence and clinical implications. Am J Cardiol 1990; 66 (21) 7I-12I
- 18 Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res 2019; 124: 1505-1518 . Accessed July 11, 2025 at: https://pmc.ncbi.nlm.nih.gov/articles/PMC6813799/
- 19 Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J Am Coll Cardiol 2018; 72 (10) 1141-1156
- 20 Onnis C, Virmani R, Kawai K. et al. Coronary artery calcification: Current concepts and clinical implications. Circulation 2024; 149 (03) 251-266
- 21 Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966: 176338
- 22 Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of atherosclerosis: A complex net of interactions. Int J Mol Sci 2019; 20 (21) 5293
- 23 Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 2021; 117 (13) 2525-2536
- 24 Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109 (23 Suppl 1): III27-III32
- 25 Li Y, Schwabe RF, DeVries-Seimon T. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 2005; 280 (23) 21763-21772
- 26 Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106: 118-133
- 27 Kattoor AJ, Kanuri SH, Mehta JL. Role of ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 2019; 26 (09) 1693-1700
- 28 Mertens A, Holvoet P. Oxidized LDL and HDL: Antagonists in atherothrombosis. FASEB J 2001; 15 (12) 2073-2084
- 29 Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm 2013; 2013: 714653
- 30 Ketelhuth DFJ, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res 2016; 118 (04) 668-678
- 31 Kyaw T, Tipping P, Bobik A, Toh B-H. Opposing roles of B lymphocyte subsets in atherosclerosis. Autoimmunity 2017; 50 (01) 52-56
- 32 Ma SD, Mussbacher M, Galkina EV. Functional role of B cells in atherosclerosis. Cells 2021; 10 (02) 270
- 33 Kyaw T, Tipping P, Toh B-H, Bobik A. Current understanding of the role of B cell subsets and intimal and adventitial B cells in atherosclerosis. Curr Opin Lipidol 2011; 22 (05) 373-379
- 34 Yurdagul Jr A. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler Thromb Vasc Biol 2022; 42 (04) 372-380
- 35 Tay C, Liu Y-H, Kanellakis P. et al. Follicular B cells promote atherosclerosis via T cell–mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler Thromb Vasc Biol 2018; 38 (05) e71-e84
- 36 Roy P, Sidney J, Lindestam Arlehamn CS. et al. Immunodominant MHC-II (major histocompatibility complex II) restricted epitopes in human apolipoprotein B. Circ Res 2022; 131 (03) 258-276
- 37 Lappalainen J, Lindstedt KA, Oksjoki R, Kovanen PT. OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis 2011; 214 (02) 357-363
- 38 Hosseini H, Li Y, Kanellakis P. et al. Toll-like receptor (TLR)4 and myd88 are essential for atheroprotection by peritoneal B1A B cells. J Am Heart Assoc 2016; 5 (11) e002947
- 39 Chan Y-H, Ramji DP. Atherosclerosis: Pathogenesis and key cellular processes, current and emerging therapies, key challenges, and future research directions. Methods Mol Biol 2022; 2419: 3-19
- 40 Jansen I, Cahalane R, Hengst R. et al. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119 (02) 193-213
- 41 Maldonado N, Kelly-Arnold A, Cardoso L, Weinbaum S. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech 2013; 46 (02) 396-401
- 42 Jinnouchi H, Sato Y, Sakamoto A. et al. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis 2020; 306: 85-95
- 43 Nguyen CM, Levy AJ. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. J Biomech 2010; 43 (14) 2702-2708
- 44 Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 2014; 276 (06) 618-632
- 45 Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 2009; 103 (3 Suppl): 4A-10A
- 46 Tsutsui H, Ziada KM, Schoenhagen P. et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation 2001; 104 (06) 653-657
- 47 Valantine HA. Cardiac allograft vasculopathy: central role of endothelial injury leading to transplant “atheroma”. Transplantation 2003; 76 (06) 891-899
- 48 Zhang XP, Kelemen SE, Eisen HJ. Quantitative assessment of cell adhesion molecule gene expression in endomyocardial biopsy specimens from cardiac transplant recipients using competitive polymerase chain reaction. Transplantation 2000; 70 (03) 505-513
- 49 Harris PE, Bian H, Reed EF. Induction of high affinity fibroblast growth factor receptor expression and proliferation in human endothelial cells by anti-HLA antibodies: a possible mechanism for transplant atherosclerosis. J Immunol 1997; 159 (11) 5697-5704
- 50 Jindra PT, Jin YP, Rozengurt E, Reed EF. HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway. J Immunol 2008; 180 (04) 2357-2366
- 51 Tambur AR, Pamboukian SV, Costanzo MR. et al. The presence of HLA-directed antibodies after heart transplantation is associated with poor allograft outcome. Transplantation 2005; 80 (08) 1019-1025
- 52 Delgado JF, Reyne AG, de Dios S. et al. Influence of cytomegalovirus infection in the development of cardiac allograft vasculopathy after heart transplantation. J Heart Lung Transplant 2015; 34 (08) 1112-1119
- 53 Koskinen PK. The association of the induction of vascular cell adhesion molecule-1 with cytomegalovirus antigenemia in human heart allografts. Transplantation 1993; 56 (05) 1103-1108
- 54 Weis M, Kledal TN, Lin KY. et al. Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation 2004; 109 (04) 500-505
- 55 Lunardi C, Bason C, Corrocher R, Puccetti A. Induction of endothelial cell damage by hCMV molecular mimicry. Trends Immunol 2005; 26 (01) 19-24
- 56 Chih S, Chong AY, Mielniczuk LM, Bhatt DL, Beanlands RSB. Allograft vasculopathy: The Achilles' heel of heart transplantation. J Am Coll Cardiol 2016; 68 (01) 80-91
- 57 Abou Sherif S, Ozden Tok O, Taşköylü Ö, Goktekin O, Kilic ID. Coronary artery aneurysms: A review of the epidemiology, pathophysiology, diagnosis, and treatment. Front Cardiovasc Med 2017; 4: 24
- 58 Kawsara A, Núñez Gil IJ, Alqahtani F, Moreland J, Rihal CS, Alkhouli M. Management of coronary artery aneurysms. JACC Cardiovasc Interv 2018; 11 (13) 1211-1223
- 59 Veenu J, Shetty GG, Adhyapak SM, Jayadev SM, Varghese K, Patil CB. Giant coronary artery aneurysms involving all three coronary arteries. Indian Heart J 2014; 66 (06) 727-730
- 60 ElGuindy MS, ElGuindy AM. Aneurysmal coronary artery disease: An overview. Glob Cardiol Sci Pract 2017; 2017 (03) e201726
- 61 Gentile F, Castiglione V, De Caterina R. Coronary artery anomalies. Circulation 2021; 144 (12) 983-996
- 62 Sorathia S, Arockiam AD, Agrawal A. et al. Contemporary review of the clinical features, multi-modality imaging, and management of coronary artery aneurysms. Eur Heart J Imaging Methods Pract 2025; 3 (01) qyaf054
- 63 Belhoul-Fakir H, Brown ML, Thompson PL, Hamzah J, Jansen S. Connecting the dots: How injury in the arterial wall contributes to atherosclerotic disease. Clin Ther 2023; 45 (11) 1092-1098
- 64 Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004; 109 (21 Suppl 1): II2-II10
- 65 Zhao TX, Mallat Z. Targeting the immune system in atherosclerosis: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73 (13) 1691-1706
- 66 Gasparyan AY. Cardiovascular risk and inflammation: pathophysiological mechanisms, drug design, and targets. Curr Pharm Des 2012; 18 (11) 1447-1449
- 67 Weber BN, Giles JT, Liao KP. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol 2023; 19 (07) 417-428
- 68 Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis 2005; 64 (Suppl. 02) ii14-ii17
- 69 Bengtsson K, Forsblad-d'Elia H, Lie E. et al. Are ankylosing spondylitis, psoriatic arthritis and undifferentiated spondyloarthritis associated with an increased risk of cardiovascular events? A prospective nationwide population-based cohort study. Arthritis Res Ther 2017; 19 (01) 102
- 70 Weber BN, Paik JJ, Aghayev A. et al. Novel imaging approaches to cardiac manifestations of systemic inflammatory diseases: JACC Scientific Statement. J Am Coll Cardiol 2023; 82 (22) 2128-2151
- 71 Kiani AN, Magder LS, Post WS. et al. Coronary calcification in SLE: comparison with the Multi-Ethnic Study of Atherosclerosis. Rheumatology (Oxford) 2015; 54 (11) 1976-1981
- 72 Miner JJ, Kim AHJ. Cardiac manifestations of systemic lupus erythematosus. Rheum Dis Clin North Am 2014; 40 (01) 51-60
- 73 Cainzos-Achirica M, Glassner K, Zawahir HS. et al. Inflammatory bowel disease and atherosclerotic cardiovascular disease: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 76 (24) 2895-2905
- 74 Kovacs L, Kress TC, Belin de Chantemèle EJ. HIV, combination antiretroviral therapy, and vascular diseases in men and women. JACC Basic Transl Sci 2022; 7 (04) 410-421
- 75 Boccara F, Lang S, Meuleman C. et al. HIV and coronary heart disease: time for a better understanding. J Am Coll Cardiol 2013; 61 (05) 511-523