RSS-Feed abonnieren
DOI: 10.1055/a-2640-3081
Red Blood Cells are Critical for Hemostasis and Thrombosis

Abstract
Hemostasis in humans has traditionally been considered to be a function of platelets, coagulation, and the subendothelial matrix, but the role of red blood cells (RBCs) has been increasingly recognized. RBCs regulate hemostasis through biophysical and biochemical means. For the former, faster-moving RBCs in the center of vessels marginalize platelets and plasma to the vessel walls, where the platelets constantly probe the endothelial surface for injury. RBC counts also determine blood viscosity, which regulates the shear stress of laminar blood flow. For the latter, RBCs are the largest pool of adenosine triphosphate (ATP), which, upon release, is rapidly hydrolyzed to adenosine diphosphate (ADP). Both ATP and ADP activate platelets. Quantitative and qualitative abnormalities in RBCs have also been consistently identified as significant risk factors for arterial and venous thrombosis. Thrombosis is a major complication associated with diseases such as polycythemia vera, secondary erythrocytosis, and sickle cell anemia, all of which present with changes in numbers and physical properties of RBCs. Thrombosis is also common in conditions with significant hemolysis, such as paroxysmal nocturnal hemoglobinuria, severe infections, and when patients are on mechanical support. In this review, we discuss findings from clinical observations and mechanistic studies of how RBCs regulate hemostasis and contribute to thrombosis.
Publikationsverlauf
Eingereicht: 28. Februar 2025
Angenommen: 19. Juni 2025
Accepted Manuscript online:
20. Juni 2025
Artikel online veröffentlicht:
03. Juli 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Livio M, Gotti E, Marchesi D. et al. Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions. Lancet 1982; 2 (8306): 1013-1015
- 2 Valeri CR, Cassidy G, Pivacek LE. et al. Anemia-induced increase in the bleeding time: implications for treatment of nonsurgical blood loss. Transfusion 2001; 41 (08) 977-983
- 3 Crowley JP, Metzger JB, Valeri CR. The volume of blood shed during the bleeding time correlates with the peripheral venous hematocrit. Am J Clin Pathol 1997; 108 (05) 579-584
- 4 Ho CH. The hemostatic effect of packed red cell transfusion in patients with anemia. Transfusion 1998; 38 (11–12): 1011-1014
- 5 Hung Ho C. Increase of red blood cells can shorten the bleeding time in patients with iron deficiency anemia. Blood 1998; 91 (03) 1094
- 6 Escolar G, Garrido M, Mazzara R, Castillo R, Ordinas A. Experimental basis for the use of red cell transfusion in the management of anemic-thrombocytopenic patients. Transfusion 1988; 28 (05) 406-411
- 7 Hopkins RW, Fratianne RB, Rao KV, Damewood CA. Effects of hematocrit and viscosity on continuing hemorrhage. J Trauma 1974; 14 (06) 482-493
- 8 Chen H, Angerer JI, Napoleone M. et al. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics 2013; 7 (06) 64113
- 9 Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 1975; 9 (03) 335-344
- 10 Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science 1980; 207 (4430): 541-543
- 11 Jiang D, Houck KL, Murdiyarso L. et al. RBCs regulate platelet function and hemostasis under shear conditions through biophysical and biochemical means. Blood 2024; 144 (14) 1521-1531
- 12 Blajchman MA, Bordin JO, Bardossy L, Heddle NM. The contribution of the haematocrit to thrombocytopenic bleeding in experimental animals. Br J Haematol 1994; 86 (02) 347-350
- 13 Tomaiuolo M, Matzko CN, Poventud-Fuentes I. et al. Interrelationships between structure and function during the hemostatic response to injury. Proc Natl Acad Sci U S A 2019; 116 (06) 2243-2252
- 14 Stalker TJ, Traxler EA, Wu J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121 (10) 1875-1885
- 15 Klatt C, Krüger I, Zey S. et al. Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis. J Clin Invest 2018; 128 (09) 3906-3925
- 16 Du VX, Huskens D, Maas C. et al. New insights into the role of erythrocytes in thrombus formation. Semin Thromb Hemost 2014; 40 (01) 72-80
- 17 Aleman MM, Byrnes JR, Wang JG. et al. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124 (08) 3590-3600
- 18 Byrnes JR, Duval C, Wang Y. et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood 2015; 126 (16) 1940-1948
- 19 Uhl L, Assmann SF, Hamza TH. et al. Laboratory predictors of bleeding and the effect of platelet and RBC transfusions on bleeding outcomes in the PLADO trial. Blood 2017; 130 (10) 1247-1258
- 20 Gernsheimer TB, Brown SP, Triulzi DJ. et al. Prophylactic tranexamic acid in patients with hematologic malignancy: a placebo-controlled, randomized clinical trial. Blood 2022; 140 (11) 1254-1262
- 21 Spann AP, Campbell JE, Fitzgibbon SR. et al. The effect of hematocrit on platelet adhesion: Experiments and simulations. Biophys J 2016; 111 (03) 577-588
- 22 Fogelson AL, Neeves KB. Fluid mechanics of blood clot formation. Annu Rev Fluid Mech 2015; 47: 377-377
- 23 Uijttewaal WS, Nijhof EJ, Bronkhorst PJ, Den Hartog E, Heethaar RM. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am J Physiol 1993; 264 (4 Pt 2): H1239-H1244
- 24 Walton BL, Lehmann M, Skorczewski T. et al. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 2017; 129 (18) 2537-2546
- 25 Aarts PA, Bolhuis PA, Sakariassen KS, Heethaar RM, Sixma JJ. Red blood cell size is important for adherence of blood platelets to artery subendothelium. Blood 1983; 62 (01) 214-217
- 26 McMahon TJ, Darrow CC, Hoehn BA, Zhu H. Generation and export of red blood cell ATP in health and disease. Front Physiol 2021; 12: 754638
- 27 Sikora J, Orlov SN, Furuya K, Grygorczyk R. Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 2014; 124 (13) 2150-2157
- 28 Diez-Silva M, Dao M, Han J, Lim CT, Suresh S. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 2010; 35 (05) 382-388
- 29 Stafford NP, Pink AE, White AE, Glenn JR, Heptinstall S. Mechanisms involved in adenosine triphosphate–induced platelet aggregation in whole blood. Arterioscler Thromb Vasc Biol 2003; 23 (10) 1928-1933
- 30 Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF. The platelet ATP and ADP receptors. Curr Pharm Des 2006; 12 (07) 859-875
- 31 Yegutkin GG. Kinetic analysis of enzymatic hydrolysis of ATP in human and rat blood serum. Biochemistry (Mosc) 1997; 62 (06) 619-622
- 32 Elaïb Z, Adam F, Berrou E. et al. Full activation of mouse platelets requires ADP secretion regulated by SERCA3 ATPase-dependent calcium stores. Blood 2016; 128 (08) 1129-1138
- 33 Beck F, Geiger J, Gambaryan S. et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood 2017; 129 (02) e1-e12
- 34 Wan J, Forsyth AM, Stone HA. Red blood cell dynamics: From cell deformation to ATP release. Integr Biol (Camb) 2011; 3 (10) 972-981
- 35 Faris A, Spence DM. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes. Analyst 2008; 133 (05) 678-682
- 36 Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88 (05) 1525-1541
- 37 Konstantopoulos K, Chow TW, Turner NA, Hellums JD, Moake JL. Shear stress-induced binding of von Willebrand factor to platelets. Biorheology 1997; 34 (01) 57-71
- 38 Zhang JN, Bergeron AL, Yu Q. et al. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb Haemost 2003; 90 (04) 672-678
- 39 Hao Y, Tersteeg C, Hoekstra AG, Závodszky G. The effect of flow-derived mechanical cues on the growth and morphology of platelet aggregates under low, medium, and high shear rates. Comput Biol Med 2024; 180: 109010
- 40 Baskurt OK, Meiselman HJ. Iatrogenic hyperviscosity and thrombosis. Semin Thromb Hemost 2012; 38 (08) 854-864
- 41 Rand PW, Lacombe E, Hunt HE, Austin WH. Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 1964; 19: 117-122
- 42 Gertz MA. Acute hyperviscosity: Syndromes and management. Blood 2018; 132 (13) 1379-1385
- 43 Cinar Y, Demir G, Paç M, Cinar AB. Effect of hematocrit on blood pressure via hyperviscosity. Am J Hypertens 1999; 12 (07) 739-743
- 44 Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108 (06) 1903-1910
- 45 Rana A, Westein E, Niego B, Hagemeyer CE. Shear-dependent platelet aggregation: Mechanisms and therapeutic opportunities. Front Cardiovasc Med 2019; 6: 141
- 46 Chow TW, Hellums JD, Moake JL, Kroll MH. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood 1992; 80 (01) 113-120
- 47 Nascimbene A, Neelamegham S, Frazier OH, Moake JL, Dong JF. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 2016; 127 (25) 3133-3141
- 48 Yang M, Houck KL, Dong X. et al. Hyperadhesive von Willebrand factor promotes extracellular vesicle-induced angiogenesis: Implication for LVAD-induced bleeding. JACC Basic Transl Sci 2022; 7 (03) 247-261
- 49 Zhang X, Caruso C, Lam WA, Graham MD. Flow-induced segregation and dynamics of red blood cells in sickle cell disease. Phys Rev Fluids 2020; 5 (05) 053101
- 50 Piety NZ, Reinhart WH, Pourreau PH, Abidi R, Shevkoplyas SS. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network. Transfusion 2016; 56 (04) 844-851
- 51 Perazzo A, Peng Z, Young YN. et al. The effect of rigid cells on blood viscosity: linking rheology and sickle cell anemia. Soft Matter 2022; 18 (03) 554-565
- 52 Caruso C, Fay ME, Cheng X. et al. Pathologic mechanobiological interactions between red blood cells and endothelial cells directly induce vasculopathy in iron deficiency anemia. iScience 2022; 25 (07) 104606
- 53 Reinhart WH, Zehnder L, Schulzki T. Stored erythrocytes have less capacity than normal erythrocytes to support primary haemostasis. Thromb Haemost 2009; 101 (04) 720-723
- 54 Aarts PA, Banga JD, van Houwelingen HC, Heethaar RM, Sixma JJ. Increased red blood cell deformability due to isoxsuprine administration decreases platelet adherence in a perfusion chamber: a double-blind cross-over study in patients with intermittent claudication. Blood 1986; 67 (05) 1474-1481
- 55 van Gelder JM, Nair CH, Dhall DP. Erythrocyte aggregation and erythrocyte deformability modify the permeability of erythrocyte enriched fibrin network. Thromb Res 1996; 82 (01) 33-42
- 56 Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol stiffening of lipid membranes. J Membr Biol 2022; 255 (4–5): 385-405
- 57 Biswas A, Kashyap P, Datta S, Sengupta T, Sinha B. Cholesterol depletion by MbetaCD enhances cell membrane tension and its variations-reducing integrity. Biophys J 2019; 116 (08) 1456-1468
- 58 Freikman I, Fibach E. Distribution and shedding of the membrane phosphatidylserine during maturation and aging of erythroid cells. Biochim Biophys Acta 2011; 1808 (12) 2773-2780
- 59 Dasgupta SK, Abdel-Monem H, Guchhait P, Nagata S, Thiagarajan P. Role of lactadherin in the clearance of phosphatidylserine-expressing red blood cells. Transfusion 2008; 48 (11) 2370-2376
- 60 Wesseling MC, Wagner-Britz L, Huppert H. et al. Phosphatidylserine exposure in human red blood cells depending on cell age. Cell Physiol Biochem 2016; 38 (04) 1376-1390
- 61 Whelihan MF, Zachary V, Orfeo T, Mann KG. Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation. Blood 2012; 120 (18) 3837-3845
- 62 Sansone R, Stanske B, Keymel S. et al. Macrovascular and microvascular function after implantation of left ventricular assist devices in end-stage heart failure: Role of microparticles. J Heart Lung Transplant 2015; 34 (07) 921-932
- 63 Zecher D, Cumpelik A, Schifferli JA. Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement. Arterioscler Thromb Vasc Biol 2014; 34 (02) 313-320
- 64 Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci 2020; 22 (01) 153
- 65 Noubouossie DF, Henderson MW, Mooberry M. et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135 (10) 755-765
- 66 Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of stored red blood cells. Front Physiol 2021; 12: 722896
- 67 Spinella PC, Sparrow RL, Hess JR, Norris PJ. Properties of stored red blood cells: understanding immune and vascular reactivity. Transfusion 2011; 51 (04) 894-900
- 68 Öhlinger T, Müllner EW, Fritz M. et al. Storage of packed red blood cells impairs an inherent coagulation property of erythrocytes. Front Physiol 2022; 13: 1021553
- 69 Gersh KC, Nagaswami C, Weisel JW. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost 2009; 102 (06) 1169-1175
- 70 Carvalho FA, Connell S, Miltenberger-Miltenyi G. et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 2010; 4 (08) 4609-4620
- 71 Weisel JW, Litvinov RI. Red blood cells: The forgotten player in hemostasis and thrombosis. J Thromb Haemost 2019; 17 (02) 271-282
- 72 Sorlie PD, Garcia-Palmieri MR, Costas Jr R, Havlik RJ. Hematocrit and risk of coronary heart disease: The Puerto Rico Health Program. Am Heart J 1981; 101 (04) 456-461
- 73 Gagnon DR, Zhang TJ, Brand FN, Kannel WB. Hematocrit and the risk of cardiovascular disease–the Framingham study: a 34-year follow-up. Am Heart J 1994; 127 (03) 674-682
- 74 Wannamethee G, Shaper AG, Whincup PH. Ischaemic heart disease: association with haematocrit in the British Regional Heart Study. J Epidemiol Community Health 1994; 48 (02) 112-118
- 75 Braekkan SK, Mathiesen EB, Njølstad I, Wilsgaard T, Hansen JB. Hematocrit and risk of venous thromboembolism in a general population. The Tromso study. Haematologica 2010; 95 (02) 270-275
- 76 Eischer L, Tscholl V, Heinze G. et al. Hematocrit and the risk of recurrent venous thrombosis: a prospective cohort study. PLoS ONE 2012; 7 (06) e38705
- 77 Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100 (13) 4272-4290
- 78 Marchioli R, Finazzi G, Specchia G. et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013; 368 (01) 22-33
- 79 Wautier JL, Wautier MP. Molecular basis of erythrocyte adhesion to endothelial cells in diseases. Clin Hemorheol Microcirc 2013; 53 (1–2): 11-21
- 80 Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood 2002; 100 (10) 3797-3803
- 81 Colin Y, Le Van Kim C, El Nemer W. Red cell adhesion in human diseases. Curr Opin Hematol 2014; 21 (03) 186-192
- 82 Matsui NM, Borsig L, Rosen SD. et al. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood 2001; 98 (06) 1955-1962
- 83 Wick TM, Moake JL, Udden MM. et al. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest 1987; 80 (03) 905-910
- 84 Bridges DJ, Bunn J, van Mourik JA. et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 2010; 115 (07) 1472-1474
- 85 Sparrow RL. Red blood cell storage duration and trauma. Transfus Med Rev 2015; 29 (02) 120-126
- 86 Kwaan HC, Wang J. Hyperviscosity in polycythemia vera and other red cell abnormalities. Semin Thromb Hemost 2003; 29 (05) 451-458
- 87 Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 1992; 263 (6 Pt 2): H1770-H1778
- 88 Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: The Edinburgh Artery Study. Br J Haematol 1997; 96 (01) 168-173
- 89 Holley L, Woodland N, Hung WT, Cordatos K, Reuben A. Influence of fibrinogen and haematocrit on erythrocyte sedimentation kinetics. Biorheology 1999; 36 (04) 287-297
- 90 Rampling MW. The binding of fibrinogen and fibrinogen degradation products to the erythrocyte membrane and its relationship to haemorheology. Acta Biol Med Ger 1981; 40 (4–5): 373-378
- 91 Errill EW. Rheology of blood. Physiol Rev 1969; 49 (04) 863-888
- 92 Chien S, Usami S, Dellenback RJ. et al. Blood viscosity: influence of erythrocyte aggregation. Science 1967; 157 (3790): 829-831
- 93 Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G. A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 2011; 9 (03) 481-488
- 94 Xiong X, Li T, Yu S, Cheng B. Association between red blood cell indices and preoperative deep vein thrombosis in patients undergoing total joint arthroplasty: A retrospective study. Clin Appl Thromb Hemost 2022; 28: 10 760296221149029
- 95 Golcuk Y, Golcuk B, Elbi H. Relation between red blood cell distribution width and venous thrombosis. Am J Cardiol 2016; 117 (07) 1196-1197
- 96 Raslan IA, Solh Z, Kuo KHM, Abdulrehman J. Venous thromboembolism in individuals with sickle cell disease: A narrative review. Hemoglobin 2024; 48 (04) 231-243
- 97 Santos MT, Valles J, Marcus AJ. et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest 1991; 87 (02) 571-580
- 98 Davenport RD. Pathophysiology of hemolytic transfusion reactions. Semin Hematol 2005; 42 (03) 165-168
- 99 Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140 (17) 1837-1844
- 100 Repka T, Hebbel RP. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents. Blood 1991; 78 (10) 2753-2758
- 101 Peacock-Young B, Macrae FL, Newton DJ, Hill A, Ariëns RAS. The prothrombotic state in paroxysmal nocturnal hemoglobinuria: A multifaceted source. Haematologica 2018; 103 (01) 9-17
- 102 Noubouossie DF, Key NS. Red cell extracellular vesicles and coagulation activation pathways. Curr Opin Hematol 2023; 30 (06) 194-202
- 103 Rubin O, Crettaz D, Canellini G, Tissot JD, Lion N. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang 2008; 95 (04) 288-297
- 104 Franck PF, Bevers EM, Lubin BH. et al. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest 1985; 75 (01) 183-190
- 105 Said AS, Doctor A. Influence of red blood cell-derived microparticles upon vasoregulation. Blood Transfus 2017; 15 (06) 522-534
- 106 Kim Y, Goodman MD, Jung AD. et al. Microparticles from aged packed red blood cell units stimulate pulmonary microthrombus formation via P-selectin. Thromb Res 2020; 185: 160-166
- 107 Tutwiler V, Litvinov RI, Lozhkin AP. et al. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood 2016; 127 (01) 149-159
- 108 Cines DB, Lebedeva T, Nagaswami C. et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603
- 109 Varin R, Mirshahi S, Mirshahi P. et al. Whole blood clots are more resistant to lysis than plasma clots–greater efficacy of rivaroxaban. Thromb Res 2013; 131 (03) e100-e109