Subscribe to RSS
DOI: 10.1055/a-2575-0611
Electromyographic Activity of the Transversus Abdominis and Erector Spinae Muscles During the Y-Balance Test
Elektromyografische Aktivitäten der Muskeln Transversus Abdominis und Erector Spinae während des Y-Balance-Tests
Abstract
This study aimed to investigate the electromyographic activity of the transversus abdominis (TrA) and erector spinae (ES) muscles in three different directions during the Y-Balance Test (YBT), and to assess the co-activation between these muscles. A total of twenty-four participants (mean age = 22.71 ± 1.48 years) were evaluated. Electromyographic data from the TrA and ES were recorded using surface electromyography (sEMG) during the YBT. The results revealed that the mean and maximum activity of the TrA in the anterior direction, with the dominant extremity on the ground, was significantly higher (p = 0.014). Additionally, the mean activity of the TrA (p = 0.030) and both the mean (p < 0.001) and maximum (p = 0.047) activity of the ES in the posteromedial direction, with the dominant extremity on the ground, were significantly elevated. The onset times of the TrA and ES contractions were correlated in posteromedial and posterolateral directions, irrespective of extremity dominance (p<0.05). Furthermore, correlations were observed between the mean TrA activity and the onset of ES (r = 0.447, p = 0.029), as well as between the mean ES value and the onset of TrA (r = 0.430, p = 0.036), in the posteromedial direction. This study concluded that TrA activation was most pronounced in the anterior direction with the dominant extremity on the ground, whereas the highest co-activation of the TrA and ES occurred in the posteromedial direction when the non-dominant extremity was on the ground.
Zusammenfassung
Ziel dieser Studie war es, die elektromyografische Aktivität der Musculi transversus abdominis (TrA) und erector spinae (ES) in 3 verschiedenen Richtungen während des Y-Balance-Tests (YBT) zu untersuchen und die Koaktivierung zwischen diesen Muskeln zu bewerten. Es wurden insgesamt 24 Teilnehmer (Durchschnittsalter 22,71±1,48 Jahre) evaluiert. Die elektromyografischen Daten von TrA und ES wurden während des YBT mit einem Oberflächen-Elektromyografiegerät (sEMG) aufgezeichnet. Die Ergebnisse zeigten, dass die mittlere und maximale Aktivität des TrA in der anterioren Richtung mit der dominanten Extremität am Boden signifikant höher (p=0,014) war. Darüber hinaus waren die mittlere Aktivität des TrA (p=0,030) sowie sowohl die mittlere (p<0,001) als auch die maximale (p=0,047) Aktivität des ES in der posteromedialen Richtung mit der dominanten Extremität am Boden signifikant erhöht. Die Aktivierungszeiten von TrA und ES waren in den posteromedialen und posterolateralen Richtungen miteinander korreliert, unabhängig von der Dominanz der Extremität (p<0,05). Weitere Korrelationen wurden zwischen dem Mittelwert des TrA und der Einschaltzeit des ES (r=0,447; p=0,029) sowie dem Mittelwert des ES und der Einschaltzeit des TrA (r=0,430; p=0,036) in der posteromedialen Richtung beobachtet. Diese Studie kam zu dem Ergebnis, dass die TrA-Aktivierung in der anterioren Richtung mit der dominanten Extremität am Boden am stärksten war, während die höchste Koaktivierung von TrA und ES in der posteromedialen Richtung auftrat, wenn die nicht dominante Extremität am Boden war.
Schlüsselwörter
dynamisches Gleichgewicht - Elektromyografie - Transversus abdominis - Erector SpinaePublication History
Received: 17 July 2024
Accepted after revision: 16 March 2025
Article published online:
24 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Maszczyk A, Gołaś A, Pietraszewski P. et al. Neurofeedback for the enhancement of dynamic balance of judokas. Biol Sport 2018; 35 (01) 99-102
- 2 Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med 2006; 36 (03) 189-198
- 3 Leetun DT, Ireland ML, Willson JD. et al. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 2004; 36 (06) 926-934
- 4 Davidson BS, Madigan ML, Nussbaum MA. Effects of lumbar extensor fatigue and fatigue rate on postural sway. Eur J Appl Physiol 2004; 93: 183-189
- 5 Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 1992; 5 (04) 383-389
- 6 Akuthota V, Ferreiro A, Moore T. et al. Core stability exercise principles. Curr Sports Med Rep 2008; 7 (01) 39-44
- 7 Marras WS, Davis KG, Ferguson SA. et al. Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine (Phila Pa 1976) 2001; 26 (23) 2566-2574
- 8 Hodges PW. Is there a role for transversus abdominis in lumbo-pelvic stability?. Man Ther 1999; 4 (02) 74-86
- 9 Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 1996; 21 (22) 2640-2650
- 10 Cresswell AG, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain Res 1994; 98 (02) 336-341
- 11 Selkow NM, Eck MR, Rivas S. Transversus Abdominis Activation And Timing Improves Following Core Stability Training: A Randomized Trial. Int J Sports Phys Ther 2017; 12 (07) 1048-1056
- 12 Hooper TL, James CR, Brismée JM. et al. Dynamic balance as measured by the Y-Balance Test is reduced in individuals with low back pain: A cross-sectional comparative study. Phys Ther Sport 2016; 22: 29-34
- 13 Fullam K, Caulfield B, Coughlan GF. et al. Kinematic analysis of selected reach directions of the Star Excursion Balance Test compared with the Y-Balance Test. J Sport Rehabil 2014; 23 (01) 27-35
- 14 Lehr ME, Plisky PJ, Butler RJ. et al. Field-expedient screening and injury risk algorithm categories as predictors of noncontact lower extremity injury. Scand J Med Sci Sports 2013; 23 (04) e225-232
- 15 Kwon YU. Lower Extremity Muscle Activation during the Star Excursion Balance Test in Patients with Chronic Ankle Instability and Copers. Medicina (Kaunas) 2023; 59 (06) 1040
- 16 Karagiannakis DN, Iatridou KI, Mandalidis DG. Ankle muscles activation and postural stability with Star Excursion Balance Test in healthy individuals. Hum Mov Sci 2020; 69: 102563
- 17 Bhanot K, Kaur N, Brody LT. et al. Hip and Trunk Muscle Activity During the Star Excursion Balance Test in Healthy Adults. J Sport Rehabil 2019; 28 (07) 682-691
- 18 Kaur N, Bhanot K, Ferreira G. Lower Extremity and Trunk Electromyographic Muscle Activity During Performance of the Y-Balance Test on Stable and Unstable Surfaces. Int J Sports Phys Ther 2022; 17 (03) 483-492
- 19 Ylinen J, Pasanen T, Heinonen A. et al. Trunk muscle activation of core stabilization exercises in subjects with and without chronic low back pain. J Back Musculoskelet Rehabil 2024; 37 (04) 897-908
- 20 Khosrokiani Z, Letafatkar A, Sheikhi B. et al. Hip and Core Muscle Activation During High-Load Core Stabilization Exercises. Sports Health 2022; 14 (03) 415-423
- 21 Dolenec A, Svetina M, Strojnik V. Electromyographic Comparison of an Abdominal Rise on a Ball with a Traditional Crunch. Sensors (Basel) 2022; 22 (05) 1979
- 22 Stüpp L, Resende AP, Petricelli CD. et al. Pelvic floor muscle and transversus abdominis activation in abdominal hypopressive technique through surface electromyography. Neurourol Urodyn 2011; 30 (08) 1518-1521
- 23 Hermens HJ, Freriks B, Disselhorst-Klug C. et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000; 10 (05) 361-374
- 24 Fradkin AJ, Gabbe BJ, Cameron PA. Does warming up prevent injury in sport? The evidence from randomised controlled trials?. J Sci Med Sport 2006; 9 (03) 214-220
- 25 Norris B, Trudelle-Jackson E. Hip- and thigh-muscle activation during the star excursion balance test. J Sport Rehabil 2011; 20 (04) 428-441
- 26 Powden CJ, Dodds TK, Gabriel EH. The reliability of the star excursion balance test and lower quarter Y-balance test in healthy adults: a systematic review. Int J Sports Phys Ther 2019; 14 (05) 683-694
- 27 Plisky PJ, Gorman PP, Butler RJ. et al. The reliability of an instrumented device for measuring components of the star excursion balance test. N Am J Sports Phys Ther 2009; 4 (02) 92-99
- 28 Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther 1997; 77 (02) 132-142
- 29 Schorderet C, Hilfiker R, Allet L. The role of the dominant leg while assessing balance performance. A systematic review and meta-analysis. Gait Posture 2021; 84: 66-78
- 30 Tao H, Husher A, Schneider Z. et al. The Relationship Between Single Leg Balance And Isometric Ankle And Hip Strength In A Healthy Population. Int J Sports Phys Ther 2020; 15 (05) 712-721
- 31 Silva MF, Dias JM, Pereira LM. et al. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects. Muscle Nerve 2017; 55 (01) 28-34
- 32 Crommert ME, Ekblom MM, Thorstensson A. Activation of transversus abdominis varies with postural demand in standing. Gait Posture 2011; 33 (03) 473-477
- 33 Paillard T, Noé F. Does monopedal postural balance differ between the dominant leg and the non-dominant leg? A review. Hum Mov Sci 2020; 74: 102686