Semin Neurol
DOI: 10.1055/a-2562-1964
Invited Review

Invasive Neurostimulation for the Treatment of Epilepsy

Shirin Jamal Omidi
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
,
Brian Nils Lundstrom
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Funding B.N.L. was supported by NIH NINDS (R01NS129622).

Abstract

Although electricity has been used in medicine for thousands of years, bioelectronic medicine for treating epilepsy has become increasingly common in recent years. Invasive neurostimulation centers primarily around three approaches: vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). These approaches differ by target (e.g., cranial nerve, cortex, or thalamus) and stimulation parameters (e.g., triggered stimulation or continuous stimulation). Although typically noncurative, these approaches can dramatically reduce the seizure burden and offer patients new treatment options. There remains much to be understood about optimal targets and individualized stimulation protocols. Objective markers of seizure burden and biomarkers that quickly quantify neural excitability are still needed. In the future, bioelectronic medicine could become a curative approach that remodels neural networks to reduce pathological activity.



Publication History

Accepted Manuscript online:
19 March 2025

Article published online:
21 April 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 The Shocking Medical History of Electric Fish. Long Now. April 5, 2023. Accessed December 22, 2024 at: https://longnow.org/ideas/the-shocking-medical-history-of-electric-fish/
  • 2 Wexler A. The medical battery in the United States (1870-1920): electrotherapy at home and in the clinic. J Hist Med Allied Sci 2017; 72 (02) 166-192
  • 3 Epilepsy and the Functional Anatomy of the Human Brain. AMA Arch Neurol Psychiatry 1954; 72 (05) 663-664
  • 4 Lanska DJJL. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 2002; 58 (03) 452-459
  • 5 Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 2002; 1 (08) 477-482
  • 6 Kokoszka MA, Panov F, La Vega-Talbott M, McGoldrick PE, Wolf SM, Ghatan S. Treatment of medically refractory seizures with responsive neurostimulation: 2 pediatric cases. J Neurosurg Pediatr 2018; 21 (04) 421-427
  • 7 Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol 1976; 33 (08) 559-570
  • 8 Van Buren JM, Wood JH, Oakley J, Hambrecht F. Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg 1978; 48 (03) 407-416
  • 9 Kwan P, Arzimanoglou A, Berg AT. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 2010; 51 (06) 1069-1077
  • 10 Fisher B, DesMarteau JA, Koontz EH, Wilks SJ, Melamed SE. Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers. Front Neurol 2021; 11: 610379
  • 11 Ortiz-Guerrero G, Park S, Starnes K. et al. Seizure detection and lateralization using thalamic deep brain stimulator recordings. J Clin Neurophysiol 2025; 42 (03) 279-283
  • 12 Sanger ZT, Henry TR, Park MC, Darrow D, McGovern RA, Netoff TI. Neural signal data collection and analysis of Percept PC BrainSense recordings for thalamic stimulation in epilepsy. J Neural Eng 2024; 21 (01)
  • 13 Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 2021; 20 (12) 1038-1047
  • 14 Lundstrom BN, Lin C, Starnes DK. et al. Safety and management of implanted epilepsy devices for imaging and surgery. Mayo Clin Proc 2022; 97 (11) 2123-2138
  • 15 Markert MS, Fisher RS. Neuromodulation - science and practice in epilepsy: vagus nerve stimulation, thalamic deep brain stimulation, and responsive neurostimulation. Expert Rev Neurother 2019; 19 (01) 17-29
  • 16 Shorvon S, Tomson T. Sudden unexpected death in epilepsy. Lancet 2011; 378 (9808): 2028-2038
  • 17 Harden C, Tomson T, Gloss D. et al. Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2017; 88 (17) 1674-1680
  • 18 Sperling MR, Harris A, Nei M, Liporace JD, O'Connor MJ. Mortality after epilepsy surgery. Epilepsia 2005; 46 (Suppl. 11) 49-53
  • 19 Ryvlin P, So EL, Gordon CM. et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia 2018; 59 (03) 562-572
  • 20 Salanova V, Sperling MR, Gross RE. et al; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021; 62 (06) 1306-1317
  • 21 Nair DR, Laxer KD, Weber PB. et al; RNS System LTT Study. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020; 95 (09) e1244-e1256
  • 22 Bailey P, Bremer F. A sensory cortical representation of the vagus nerve: with a note on the effects of low blood pressure on the cortical electrogram. J Neurophysiol 1938; 1 (05) 405-412
  • 23 Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics 2024; 21 (03) e00308
  • 24 Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 1990; 31 (Suppl. 02) S40-S43
  • 25 Ben-Menachem E, Mañon-Espaillat R, Ristanovic R. et al; First International Vagus Nerve Stimulation Study Group. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 1994; 35 (03) 616-626
  • 26 Handforth A, DeGiorgio CM, Schachter SC. et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 1998; 51 (01) 48-55
  • 27 Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int 2012; 3 (Suppl. 04) S255-S259
  • 28 Ibrahim GM, Sharma P, Hyslop A. et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. Neuroimage Clin 2017; 16: 634-642
  • 29 Liu WC, Mosier K, Kalnin AJ, Marks D. BOLD fMRI activation induced by vagus nerve stimulation in seizure patients. J Neurol Neurosurg Psychiatry 2003; 74 (06) 811-813
  • 30 Marrosu F, Serra A, Maleci A, Puligheddu M, Biggio G, Piga M. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res 2003; 55 (1-2): 59-70
  • 31 Warsi NM, Yan H, Wong SM. et al. Vagus nerve stimulation modulates phase-amplitude coupling in thalamic local field potentials. Neuromodulation 2023; 26 (03) 601-606
  • 32 Conway CR, Aaronson ST, Sackeim HA. et al. Vagus nerve stimulation in treatment-resistant depression: a one-year, randomized, sham-controlled trial. Brain Stimul 2024;
  • 33 Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: a critical review. Seizure 2020; 83: 104-123
  • 34 Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery 2016; 79 (03) 345-353
  • 35 Jain P, Arya R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: systematic review and meta-analysis. Neurology 2021; 96 (22) 1041-1051
  • 36 Mithani K, Wong SM, Mikhail M. et al. Somatosensory evoked fields predict response to vagus nerve stimulation. Neuroimage Clin 2020; 26: 102205
  • 37 Boon P, Vonck K, Van Walleghem P, D'Havé M, Caemaert J, De Reuck J. Vagus nerve stimulation for epilepsy, clinical efficacy of programmed and magnet stimulation. Acta Neurochir Suppl (Wien) 2002; 79: 93-98
  • 38 Qin X, Yuan Y, Yu H, Yao Y, Li L. Acute effect of vagus nerve stimulation in patients with drug-resistant epilepsy: a preliminary exploration via stereoelectroencephalogram. Neurosurg Clin N Am 2024; 35 (01) 105-118
  • 39 Eggleston KS, Olin BD, Fisher RS. Ictal tachycardia: the head-heart connection. Seizure 2014; 23 (07) 496-505
  • 40 Kulju T, Haapasalo J, Verner R. et al. Frequency of automatic stimulations in responsive vagal nerve stimulation in patients with refractory epilepsy. Neuromodulation 2020; 23 (06) 852-858
  • 41 Drees C, Afra P, Verner R. et al; Microburst Study Group. Feasibility study of microburst VNS therapy in drug-resistant focal and generalized epilepsy. Brain Stimul 2024; 17 (02) 382-391
  • 42 Chae JH, Nahas Z, Lomarev M. et al. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res 2003; 37 (06) 443-455
  • 43 Narayanan JT, Watts R, Haddad N, Labar DR, Li PM, Filippi CG. Cerebral activation during vagus nerve stimulation: a functional MR study. Epilepsia 2002; 43 (12) 1509-1514
  • 44 Szaflarski JP, Allendorfer JB, Begnaud J, Ranuzzi G, Shamshiri E, Verner R. Microburst Study Group. Optimized microburst VNS elicits fMRI responses beyond thalamic-specific response from standard VNS. Ann Clin Transl Neurol 2024; 11 (05) 1135-1147
  • 45 Starnes K, Miller K, Wong-Kisiel L, Lundstrom BN. A review of neurostimulation for epilepsy in pediatrics. Brain Sci 2019; 9 (10) 283
  • 46 Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 2001; 18 (05) 415-418
  • 47 Malow BA, Edwards J, Marzec M, Sagher O, Fromes G. Effects of vagus nerve stimulation on respiration during sleep: a pilot study. Neurology 2000; 55 (10) 1450-1454
  • 48 Marzec M, Edwards J, Sagher O, Fromes G, Malow BA. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia 2003; 44 (07) 930-935
  • 49 Hsieh T, Chen M, McAfee A, Kifle Y. Sleep-related breathing disorder in children with vagal nerve stimulators. Pediatr Neurol 2008; 38 (02) 99-103
  • 50 Tatum IV WO, Moore DB, Stecker MM. et al. Ventricular asystole during vagus nerve stimulation for epilepsy in humans. Neurology 1999; 52 (06) 1267-1269
  • 51 Warnock J, Ashcroft C, Sabado RJ, Keithler A, Perdikis S. Complete heart block and ventricular asystole caused by vagus nerve stimulation therapy. Cureus 2024; 16 (01) e53314
  • 52 Safety Information about VNS Therapy | VNS Therapy. Accessed October 26, 2024 at: https://www.livanova.com/epilepsy-vnstherapy/en-us/hcp/safety-information
  • 53 Bindman LJ, Lippold OCJ, Redfearn JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964; 172 (03) 369-382
  • 54 Durand D. Electrical stimulation can inhibit synchronized neuronal activity. Brain Res 1986; 382 (01) 139-144
  • 55 Nakagawa M, Durand D. Suppression of spontaneous epileptiform activity with applied currents. Brain Res 1991; 567 (02) 241-247
  • 56 Bawin SM, Sheppard AR, Mahoney MD, Abu-Assal M, Adey WR. Comparison between the effects of extracellular direct and sinusoidal currents on excitability in hippocampal slices. Brain Res 1986; 362 (02) 350-354
  • 57 Faber DS, Korn H. Electrical field effects: their relevance in central neural networks. Physiol Rev 1989; 69 (03) 821-863
  • 58 Weiss SR, Li XL, Rosen JB, Li H, Heynen T, Post RM. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995; 6 (16) 2171-2176
  • 59 Wilson CL, Khan SU, Engel Jr J, Isokawa M, Babb TL, Behnke EJ. Paired pulse suppression and facilitation in human epileptogenic hippocampal formation. Epilepsy Res 1998; 31 (03) 211-230
  • 60 Lesser RP, Kim SH, Beyderman L. et al. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 1999; 53 (09) 2073-2081
  • 61 Fountas KN, Smith JR, Murro AM, Politsky J, Park YD, Jenkins PD. Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy: a technical note. Stereotact Funct Neurosurg 2005; 83 (04) 153-158
  • 62 Sun FT, Morrell MJ. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices 2014; 11 (06) 563-572
  • 63 Rao VR, Rolston JD. Unearthing the mechanisms of responsive neurostimulation for epilepsy. Commun Med (Lond) 2023; 3 (01) 166
  • 64 Wong S, Mani R, Danish S. Comparison and selection of current implantable anti-epileptic devices. Neurotherapeutics 2019; 16 (02) 369-380
  • 65 Geller EB, Skarpaas TL, Gross RE. et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017; 58 (06) 994-1004
  • 66 Gigante PR, Goodman RR. Responsive neurostimulation for the treatment of epilepsy. Neurosurg Clin N Am 2011; 22 (04) 477-480 , vi
  • 67 Morrell MJ, System RNS. RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 2011; 77 (13) 1295-1304
  • 68 Bergey GK, Morrell MJ, Mizrahi EM. et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015; 84 (08) 810-817
  • 69 Jobst BC, Kap R, Barkley GL. et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 2017; 58 (06) 1005-1014
  • 70 Sisterson ND, Kokkinos V, Urban A, Li N, Richardson RM. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series. J Neurol Neurosurg Psychiatry 2022; 93 (05) 491-498
  • 71 Loring DW, Kapur R, Meador KJ, Morrell MJ. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia 2015; 56 (11) 1836-1844
  • 72 Ma BB, Fields MC, Knowlton RC. et al. Responsive neurostimulation for regional neocortical epilepsy. Epilepsia 2020; 61 (01) 96-106
  • 73 Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series. Epilepsia Open 2021; 6 (03) 611-617
  • 74 Wang R, Sacknovitz A, Vazquez S. et al. Bilateral pulvinar responsive neurostimulation for bilateral multifocal posteriorly dominant drug resistant epilepsy. Epilepsia Open 2024; 9 (06) 2263-2273
  • 75 Nanda P, Sisterson N, Walton A. et al. Centromedian region thalamic responsive neurostimulation mitigates idiopathic generalized and multifocal epilepsy with focal to bilateral tonic-cloc seizures. Epilepsia 2024; 65 (09) 2626-2640
  • 76 Kwon CS, Schupper AJ, Fields MC. et al. Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol 2020; 7 (10) 2035-2040
  • 77 Falowski SM. Deep brain stimulation for chronic pain. Curr Pain Headache Rep 2015; 19 (07) 27
  • 78 Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121: 105980
  • 79 Salanova V, Witt T, Worth R. et al; SANTE Study Group. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015; 84 (10) 1017-1025
  • 80 Kamali A, Milosavljevic S, Gandhi A. et al. The cortico-limbo-thalamo-cortical circuits: an update to the original papez circuit of the human limbic system. Brain Topogr 2023; 36 (03) 371-389
  • 81 Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 2014; 11 (03) 508-526
  • 82 Liu HG, Yang AC, Meng DW, Chen N, Zhang JG. Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 2012; 1477: 37-44
  • 83 Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG. Favorable modulation in neurotransmitters: effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol 2015; 265: 94-101
  • 84 Yu T, Wang X, Li Y. et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain 2018; 141 (09) 2631-2643
  • 85 Scherer M, Milosevic L, Guggenberger R. et al. Desynchronization of temporal lobe theta-band activity during effective anterior thalamus deep brain stimulation in epilepsy. Neuroimage 2020; 218: 116967
  • 86 Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, Van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 2018; 45 (02) E7
  • 87 Fisher R, Salanova V, Witt T. et al; SANTE Study Group. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010; 51 (05) 899-908
  • 88 Velasco F, Carrillo-Ruiz JD, Brito F. et al. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 2005; 46 (07) 1071-1081
  • 89 Valentín A, García Navarrete E, Chelvarajah R. et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 2013; 54 (10) 1823-1833
  • 90 Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Curr Opin Neurol 2023; 36 (02) 69-76
  • 91 Alcala-Zermeno JL, Gregg NM, Wirrell EC. et al. Centromedian thalamic nucleus with or without anterior thalamic nucleus deep brain stimulation for epilepsy in children and adults: a retrospective case series. Seizure 2021; 84: 101-107
  • 92 Andrade DM, Zumsteg D, Hamani C. et al. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology 2006; 66 (10) 1571-1573
  • 93 Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 2002; 43 (06) 603-608
  • 94 Kerrigan JF, Litt B, Fisher RS. et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 2004; 45 (04) 346-354
  • 95 Lim SN, Lee ST, Tsai YT. et al. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia 2007; 48 (02) 342-347
  • 96 Wang YC, Kremen V, Brinkmann BH. et al. Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials. Epilepsy Res 2020; 159: 106248
  • 97 Lehtimäki K, Coenen VA, Gonçalves Ferreira A. et al; MORE investigators. The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the international multicenter registry (MORE). Neurosurgery 2019; 84 (01) 141-150
  • 98 Peltola J, Colon AJ, Pimentel J. et al; MORE Study Group. Deep brain stimulation of the anterior nucleus of the thalamus in drug-resistant epilepsy in the MORE multicenter patient registry. Neurology 2023; 100 (18) e1852-e1865
  • 99 Lundstrom BN, Gregg NM. What should we expect for real-world outcomes of deep brain stimulation of the anterior nucleus of the thalamus for epilepsy?. Neurology 2023; 100 (18) 845-846
  • 100 Wang YC, Grewal SS, Middlebrooks EH. et al. Targeting analysis of a novel parietal approach for deep brain stimulation of the anterior nucleus of the thalamus for epilepsy. Epilepsy Res 2019; 153: 1-6
  • 101 Velasco F, Velasco M, Ogarrio C, Fanghanel G. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia 1987; 28 (04) 421-430
  • 102 Velasco F, Velasco M, Velasco AL, Jiménez F. Effect of chronic electrical stimulation of the centromedian thalamic nuclei on various intractable seizure patterns: i. clinical seizures and paroxysmal EEG activity. Epilepsia 1993; 34 (06) 1052-1064
  • 103 Velasco F, Velasco M, Velasco AL, Jimenez F, Marquez I, Rise M. Electrical stimulation of the centromedian thalamic nucleus in control of seizures: long-term studies. Epilepsia 1995; 36 (01) 63-71
  • 104 Fisher RS, Uematsu S, Krauss GL. et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia 1992; 33 (05) 841-851
  • 105 Rosenberg DS, Mauguière F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex 2009; 19 (06) 1462-1473
  • 106 Grieve KL, Acuña C, Cudeiro J. The primate pulvinar nuclei: vision and action. Trends Neurosci 2000; 23 (01) 35-39
  • 107 Filipescu C, Lagarde S, Lambert I. et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 2019; 60 (04) e25-e30
  • 108 McGinn R, Von Stein EL, Datta A. et al. Ictal involvement of the pulvinar and the anterior nucleus of the thalamus in patients with refractory epilepsy. Neurology 2024; 103 (11) e210039
  • 109 Levy LF, Auchterlonie WC. Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia 1979; 20 (03) 235-245
  • 110 Wright GD, McLellan DL, Brice JG. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry 1984; 47 (08) 769-774
  • 111 Chkhenkeli SA, Chkhenkeli IS. Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy. Stereotact Funct Neurosurg 1997; 69 (1–4 Pt 2): 221-224
  • 112 Schmitt FC, Voges J, Heinze HJ, Zaehle T, Holtkamp M, Kowski AB. Safety and feasibility of nucleus accumbens stimulation in five patients with epilepsy. J Neurol 2014; 261 (08) 1477-1484
  • 113 Kowski AB, Voges J, Heinze HJ, Oltmanns F, Holtkamp M, Schmitt FC. Nucleus accumbens stimulation in partial epilepsy–a randomized controlled case series. Epilepsia 2015; 56 (06) e78-e82
  • 114 Ren L, Yu T, Wang D. et al. Subthalamic nucleus stimulation modulates motor epileptic activity in humans. Ann Neurol 2020; 88 (02) 283-296
  • 115 Wille C, Steinhoff BJ, Altenmüller DM. et al. Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood–report of five cases. Epilepsia 2011; 52 (03) 489-496
  • 116 Handforth A, DeSalles AAF, Krahl SE. Deep brain stimulation of the subthalamic nucleus as adjunct treatment for refractory epilepsy. Epilepsia 2006; 47 (07) 1239-1241
  • 117 Vesper J, Steinhoff B, Rona S. et al. Chronic high-frequency deep brain stimulation of the STN/SNr for progressive myoclonic epilepsy. Epilepsia 2007; 48 (10) 1984-1989
  • 118 Xu Z, Wang Y, Chen B. et al. Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy. EBioMedicine 2016; 14: 148-160
  • 119 Cukiert A, Cukiert CM, Burattini JA, Guimaraes RB. Combined neuromodulation (vagus nerve stimulation and deep brain stimulation) in patients with refractory generalized epilepsy: an observational study. Neuromodulation 2023; 26 (08) 1742-1746
  • 120 Velasco AL, Velasco F, Velasco M, Trejo D, Castro G, Carrillo-Ruiz JD. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 2007; 48 (10) 1895-1903
  • 121 Sobstyl M, Konopko M, Wierzbicka A, Pietras T, Prokopienko M, Sipowicz K. Deep brain stimulation of hippocampus in treatment of refractory temporal lobe epilepsy. Neurol Neurochir Pol 2024; 58 (04) 393-404
  • 122 Bondallaz P, Boëx C, Rossetti AO. et al. Electrode location and clinical outcome in hippocampal electrical stimulation for mesial temporal lobe epilepsy. Seizure 2013; 22 (05) 390-395
  • 123 Koubeissi MZ, Joshi S, Eid A. et al. Low-frequency stimulation of a fiber tract in bilateral temporal lobe epilepsy. Epilepsy Behav 2022; 130: 108667
  • 124 Harrison DJ, Oushy S, Gregg NM, Lundstrom BN, Van Gompel JJ. Stereotactic depth electrode placement for chronic subthreshold cortical stimulation: surgical technique video. Neurosurg Focus Video 2024; 11 (01) V10
  • 125 Lundstrom BN, Van Gompel J, Britton J. et al. Chronic subthreshold cortical stimulation to treat focal epilepsy. JAMA Neurol 2016; 73 (11) 1370-1372
  • 126 Lundstrom BN, Gompel JV, Khadjevand F, Worrell G, Stead M. Chronic subthreshold cortical stimulation and stimulation-related EEG biomarkers for focal epilepsy. Brain Commun 2019; 1 (01) fcz010
  • 127 Haneef Z, Skrehot HC. Neurostimulation in generalized epilepsy: a systematic review and meta-analysis. Epilepsia 2023; 64 (04) 811-820
  • 128 Dalic LJ, Warren AEL, Bulluss KJ. et al. DBS of thalamic centromedian nucleus for Lennox-Gastaut syndrome (ESTEL trial). Ann Neurol 2022; 91 (02) 253-267
  • 129 Warren AEL, Dalic LJ, Bulluss KJ, BAppSci AR, Thevathasan W, Archer JS. The optimal target and connectivity for deep brain stimulation in lennox-gastaut syndrome. Ann Neurol 2022; 92 (01) 61-74
  • 130 Ilyas A, Snyder KM, Pati S, Tandon N. Optimally targeting the centromedian nucleus of the thalamus for generalized epilepsy: a meta-analysis. Epilepsy Res 2022; 184: 106954
  • 131 Son BC, Shon YM, Choi JG. et al. Clinical outcome of patients with deep brain stimulation of the centromedian thalamic nucleus for refractory epilepsy and location of the active contacts. Stereotact Funct Neurosurg 2016; 94 (03) 187-197
  • 132 Park S, Permezel F, Agashe S. et al. Centromedian thalamic deep brain stimulation for idiopathic generalized epilepsy: connectivity and target optimization. Epilepsia 2024; 65 (11) e197-e203
  • 133 NeuroPace. RNS System Responsive Thalamic Stimulation for Primary Generalized Seizures (NAUTILUS) Study. clinicaltrials.gov; 2024. Accessed December 22, 2024 at: https://clinicaltrials.gov/study/NCT05147571
  • 134 Gregg NM, Marks VS, Sladky V. et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia 2021; 62 (10) e158-e164
  • 135 Miron G, Strauss I, Fried I, Fahoum F. Anterior thalamic deep brain stimulation in epilepsy patients refractory to vagus nerve stimulation: a single center observational study. Epilepsy Behav Rep 2022; 20: 100563
  • 136 Parisi V, Lundstrom BN, Kerezoudis P, Alcala Zermeno JL, Worrell GA, Van Gompel JJ. Anterior nucleus of the thalamus deep brain stimulation with concomitant vagus nerve stimulation for drug-resistant epilepsy. Neurosurgery 2021; 89 (04) 686-694
  • 137 Skelton HM, Brandman DM, Bullinger K, Isbaine F, Gross RE. Distinct biomarkers of ANT stimulation and seizure freedom in an epilepsy patient with ambulatory hippocampal electrocorticography. Stereotact Funct Neurosurg 2023; 101 (06) 349-358
  • 138 Tatum WO, Freund B, Middlebrooks EH. et al. CM-Pf deep brain stimulation in polyneuromodulation for epilepsy. Epileptic Disord 2024; 26 (05) 626-637
  • 139 Jones SE, Zhang M, Avitsian R. et al. Functional magnetic resonance imaging networks induced by intracranial stimulation may help defining the epileptogenic zone. Brain Connect 2014; 4 (04) 286-298
  • 140 Middlebrooks EH, Jain A, Okromelidze L. et al. Acute brain activation patterns of high- versus low-frequency stimulation of the anterior nucleus of the thalamus during deep brain stimulation for epilepsy. Neurosurgery 2021; 89 (05) 901-908
  • 141 Saucedo-Alvarado PE, Velasco AL, Aguado-Carrillo G. et al. Optimizing deep brain stimulation for the treatment of drug-resistant temporal lobe epilepsy: a pilot study. J Neurosurg 2022; 137 (03) 768-775
  • 142 Schwaderlapp N, Paschen E, LeVan P, von Elverfeldt D, Haas CA. Probing hippocampal stimulation in experimental temporal lobe epilepsy with functional MRI. Front Neuroimaging 2024; 3: 1423770
  • 143 Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front Neurol 2019; 10: 601
  • 144 Manzouri F, Meisel C, Kunz L, Dümpelmann M, Stieglitz T, Schulze-Bonhage A. Low-frequency electrical stimulation reduces cortical excitability in the human brain. Neuroimage Clin 2021; 31: 102778
  • 145 Westin K, Lundstrom BN, Van Gompel J, Cooray G. Neurophysiological effects of continuous cortical stimulation in epilepsy - spike and spontaneous ECoG activity. Clin Neurophysiol 2019; 130 (01) 38-45
  • 146 Alcala-Zermeno JL, Starnes K, Gregg NM, Worrell G, Lundstrom BN. Responsive neurostimulation with low-frequency stimulation. Epilepsia 2023; 64 (02) e16-e22
  • 147 Alcala-Zermeno JL, Osman G, Mandrekar JN. et al. Optimizing stimulation parameters for anterior thalamic nuclei deep brain stimulation in epilepsy: A randomized cross-over trial.
  • 148 Chaitanya G, Toth E, Pizarro D. et al. Acute modulation of the limbic network with low and high-frequency stimulation of the human fornix. Epilepsy Behav Rep 2020; 14: 100363
  • 149 Gadot R, Korst G, Shofty B, Gavvala JR, Sheth SA. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J Neurosurg 2022; 137 (05) 1210-1225
  • 150 Xie H, Ji T, Ma J. et al. Remote programming: a convenient and cost-effective measure of vagus nerve stimulation for children with epilepsy. Epilepsy Res 2020; 159: 106246
  • 151 Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 2023; 64 (Suppl. 03) S49-S61
  • 152 Leeman-Markowski BA, Smart OL, Faught RE, Gross RE, Meador KJ. Cessation of gamma activity in the dorsomedial nucleus associated with loss of consciousness during focal seizures. Epilepsy Behav 2015; 51: 215-220