Subscribe to RSS

DOI: 10.1055/a-2501-5409
Sodium Nitrite (NaNO2): An Impressive and Efficient Nitrating/Nitrosating Reagent in Organic Synthesis
Abstract
This graphical review provides a concise overview of the key organic reactions reported in the literature that use sodium nitrite (NaNO2) as a nitrating or nitrosating agent. It summarizes the diverse reactivity of this reagent with various substrates, leading to the functionalization and synthesis of a wide variety of useful organic molecules.
#
Key words
sodium nitrite - nitrating - nitrosating - functionalization - synthesis - catalytic reactionsBiosketches


Lamark Carlos I graduated in chemistry from the Federal University of Rio Grande do Norte in 2019. Currently, he is studying for an M.Sc. in pharmaceutical sciences at the same institute under the supervision of Prof. Dr. A. K. Jordão and Prof. Dr. E. G. Barbosa. His work involves the synthesis and antimalarial evaluation of new 1H-1,2,3-triazoles derived from melatonin and tryptamine.


Euzebio Guimarães Barbosa received his Ph.D. in chemistry from Campinas University (UNICAMP) in 2011 under the supervision of Prof. Dr. Marcia Miguel Castro Ferreira. Currently he is a professor at the Federal University of Rio Grande do Norte. His research interests focus on medicinal chemistry and computer-aided drug design.


Alessandro Kappel Jordão received his Ph.D. in chemistry from Fluminense Federal University (UFF) in 2010 under the supervision of Prof. Vitor Francisco Ferreira and Prof. Anna Claudia. Currently, he is a professor at the Federal University of Rio Grande do Norte. His research interests focus on the synthesis of heterocyclic compounds.
Sodium nitrite (NaNO2) is a hygroscopic and crystalline inorganic salt that slowly oxidizes in air. It is highly soluble in water and slightly soluble in diethyl ether, methanol, and ethanol. Industrially, it is the most important salt produced from nitrous acid. It is obtained on large scale by the reaction between a mixture of nitrogen oxides and an alkaline solution of sodium hydroxide or sodium carbonate.[1a] [b] Sodium nitrite finds extensive use in the chemical and pharmaceutical industries for the production of nitroso and isonitroso compounds, and is utilized in diazotization reactions (especially for dyes) and the synthesis of pharmaceutical products (e.g., caffeine) and agricultural pesticides (e.g., pyramin). In the food industry, sodium nitrite is used as a preservative for cured meat products. It contributes to flavor enhancement, prevents discoloration, and protects against the growth and toxin production of Clostridium botulinum.[1h–k]
The applications of sodium nitrite in organic synthesis have been widely studied. NaNO2, in mixtures with mineral or organic acids, results in the formation of unstable nitrous acid (HNO2), a reactive species that readily participates in several reactions. Polyatomic species generated in situ, such as nitrosonium (NO+) and nitronium (NO2 +) ions, are capable of acting on several organic substrates.[1l] An important example is the reaction with primary aromatic amines to form aryl diazonium salts, which are widely used in modern organic synthesis. This reaction is exemplified by classic procedures such as those of Sandmeyer,[1`] [f] [g] Gomberg and Bachmann, and Balz and Schiemann, as well as the more robust methodologies developed by Heck and Matsuda.[1m,n]
The objective of this graphical review is to present methodologies that use sodium nitrite with different types of substrates for the synthesis of organic molecules, without involving the formation of aryl diazonium salt intermediates. NaNO2, as a source of nitrite ions, has been used in various reactions as a nitrating and nitrosating agent. Examples include the direct nitration of arenes,[2] the nitrosation of secondary amines,[3] the synthesis of nitriles[6] and oximes,[7] the functionalization and formation of heterocycles,[8a] and catalytic reactions involving the cleavage and formation of C–C bonds.[9] [10] Additionally, sodium nitrite plays a role in oxidation and halogenation reactions, acting as a catalyst or co-catalyst for the synthesis of organic compounds, specifically carbonyl and halogenated aromatic compounds.[4,5,11]
This graphical review explores pioneering studies and contemporary synthetic methodologies that encompass a variety of synthesized molecules, reaction yields, mechanistic aspects of reactions, and future prospects. All the figures are presented in color, highlighting the main reagents, and provide a logical and concise sequence of the key studies discussed.


































#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
The authors are grateful for the postgraduate program in pharmaceutical sciences at the Federal University of Rio Grande do Norte and acknowledge the collaborating members of the pharmaceutical chemistry laboratory of the pharmacy department.
-
References
- 1a The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Budavari S., Merck and Co., Inc; Rahway (NJ, USA): 1989: 8603
- 1b Laue W, Thiemann M, Scheibler E, Wiegand KW. Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000: 165
- 1c Ziegler GE. Phys. Rev. 1931; 38: 1040
- 1d Moore EA, Johnson C, Mortimer M, Wigglesworth C. Phys. Chem. Chem. Phys. 2000; 2: 1325
- 1e Griefs P. Justus Liebigs Ann. Chem. 1858; 106: 123
- 1f Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
- 1g Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
- 1h Parthasarathy DK, Bryan NS. Meat Sci. 2012; 92: 274
- 1i Stoica M, Antohi VM, Alexe P, Ivan AS, Stanciu S, Stoica D, Zlati ML, Stuparu-Cretu M. Food Bioprocess. Technol. 2022; 15: 514
- 1j Belai N, Harp BP, Mazzola EP, Lam Y, Abdeldayem E, Aziz A, Mossoba MM, Barrows JN. Dyes Pigm. 2012; 95: 304
- 1k Shuai F, Wang X, Zhang J. CN Patent 108069953, 2018
- 1l Mukhopadhyay S, Batra S. Eur. J. Org. Chem. 2019; 6424
- 1m Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
- 1n Patel SS, Patel DB, Patel HD. ChemistrySelect 2021; 6: 1337
- 2a Muppidi S, Kamatala CR, Voruvala SC, Mukka SK. Chem. Data Collect. 2019; 21: 100222
- 2b Zolfigol M, Madrakian E, Ghaemi E. Molecules 2002; 7: 734
- 2c Zolfigol MA, Ghaemi E, Madrakian E, Choghamarani AG. Mendeleev Commun. 2006; 16: 41
- 2d Jereb M. Curr. Org. Chem. 2013; 17: 1694
- 2e Srinivas P, Suresh M, Rajanna KC, Krishnaiah G. Int. J. Chem. Kinet. 2017; 49: 209
- 2f Rajanna KC, Muppidi S, Pasnoori S, Saiprakash PK. Res. Chem. Intermed. 2018; 44: 6023
- 2g Syvret RG, Butt KM, Nguyen TP, Bulleck VL, Rieth RD. J. Org. Chem. 2002; 67: 4487
- 2h Kumar MS, Sriram YH, Venkateswarlu M, Rajanna KC, Sudhakar MS, Venkanna P, Saiprakash PK. Synth. Commun. 2018; 48: 59
- 2i Krylov IB, Budnikov AS, Lopat’eva ER, Nikishin GI, Terent’ev AO. Chem. Eur. J. 2019; 25: 5922
- 2j He K, Zhang T, Zhang S, Sun Z, Zhang Y, Yuan Y, Jia X. Org. Lett. 2019; 21: 5030
- 2k Singh L, Ranjan N. J. Am. Chem. Soc. 2023; 145: 2745
- 2l Dhokale RA, Mhaske SB. Org. Lett. 2016; 18: 3010
- 2m Wang HH, Wan NW, Da X Y, Mou XQ, Wang ZX, Chen YZ, Liu ZQ, Zheng YG. Bioorg. Chem. 2023; 138: 106640
- 2n Kong M, Wang K, Dong R, Gao H. Enzyme Microb. Technol. 2015; 34: 73
- 2o Reitti M, Villo P, Olofsson B. Angew. Chem. Int. Ed. 2016; 55: 8928 ; Angew. Chem. 2016, 128, 9074
- 2p Saha M, Das AR. Org. Biomol. Chem. 2020; 18: 941
- 2q Li X.-H, Li L.-G, Mo X.-L, Mo D.-L. Synth. Commun. 2016; 46: 963
- 2r Li Y.-X, Li L.-H, Yang Y.-F, Hua H.-L, Yan X.-B, Zhao L.-B, Zhang J.-B, Ji F.-J, Liang Y.-M. Chem. Commun. 2014; 50: 9936
- 2s Kloeckner U, Nachtsheim BJ. Chem. Commun. 2014; 50: 10485
- 2t Kumar MS, Rajanna KC, Venkateswarlu M, Venkanna P, Saiprakash PK. Synth. Commun. 2015; 45: 2251
- 2u Zolfigol MA, Ghaemi E, Madrakian E. Synlett 2003; 191
- 2v Bhooshan M, Rajanna KC, Govardhan D, Venkanna P, Satish Kumar M. Int. J. Chem. Kinet. 2019; 51: 445
- 2w Govardhan D, Bhooshan M, Saiprakash PK, Rajanna KC. SN Appl. Sci. 2019; 1: 1004
- 2x Duguta G, Muddam B, Kamatala CR, Utkoor UK. Int. J. Chem. Kinet. 2021; 53: 164
- 2y Xie D.-X, Yu H.-J, Liu H, Xue W.-C, Qin Y.-S, Shao G. Tetrahedron 2019; 75: 1157
- 2z Gao T, Wang C, Tang K, Xu Y, Sun L. Eur. J. Org. Chem. 2019; 3005
- 2aa Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Adv. Synth. Catal. 2015; 357: 732
- 2ab Zhu X, Qiao L, Ye P, Ying B, Xu J, Shen C, Zhang P. RSC Adv. 2016; 6: 89979
- 2ac Kianmehr E, Nasab SB. Eur. J. Org. Chem. 2018; 6447
- 2ad Miao M, Luo Y, Xu H, Jin M, Chen Z, Xu J, Ren H. J. Org. Chem. 2017; 82: 12224
- 2ae Saito S, Koizumi Y. Tetrahedron Lett. 2005; 46: 4715
- 2af Al-Masum M, Saleh N, Islam T. Tetrahedron Lett. 2013; 54: 1141
- 2ag Hlekhlai S, Samakkanad N, Sawangphon T, Pohmakotr M, Reutrakul V, Soorukram D, Jaipetch T, Kuhakarn C. Eur. J. Org. Chem. 2014; 7433
- 2ah Zhao A, Jiang Q, Jia J, Xu B, Liu Y, Zhang M, Liu Q, Luo W, Guo C. Tetrahedron Lett. 2016; 57: 80
- 2ai Casiello M, Caputo D, Fusco C, Cotugno P, Rizzi V, Dell’Anna MM, D’Accolti L, Nacci A. Eur. J. Org. Chem. 2020; 6012
- 2aj Bonetti GA, DeSavigny CB, Michalski C, Rosenthal R. J. Org. Chem. 1968; 33: 237
- 2ak Hwu JR, Chen K.-L, Ananthan S. J. Chem. Soc., Chem. Commun. 1994; 1425
- 2al Hwu JR, Chen K.-L, Ananthan S, Patel HV. Organometallics 1996; 15: 499
- 2am Buevich AV, Wu Y, Chan T.-M, Stamford A. Tetrahedron Lett. 2008; 49: 2132
- 2an Motornov VA, Muzalevskiy VM, Tabolin AA, Novikov RA, Nelyubina YV, Nenajdenko VG, Ioffe SL. J. Org. Chem. 2017; 82: 5274
- 2ao Fors BP, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 12898
- 2ap Prakash GK. S, Gurung L, Schmid PC, Wang F, Thomas TE, Panja C, Mathew T, Olah GA. Tetrahedron Lett. 2014; 55: 1975
- 2aq Chatterjee N, Bhatt D, Goswami A. Org. Biomol. Chem. 2015; 13: 4828
- 2ar Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Mol. Catal. 2022; 531: 112639
- 2as Liang D, Zhang X, Li Y, Zhou Y, Ren M, Zhang X, Li Y, Zhu N. Sustainable Chem. Pharm. 2023; 33: 101077
- 2at Li S, Ma D. J. Org. Chem. 2024; 89: 6626
- 2au Feldman KS, Myhre PC. J. Am. Chem. Soc. 1979; 101: 4768
- 2av Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
- 2aw Mahanta A, Gour NK, Sarma PJ, Borah RK, Raul PK, Deka RC, Thakur AJ, Bora U. Appl. Organomet. Chem. 2019; 33: 4951
- 3a Hartman WW, Roll LJ. Org. Synth. 1933; 13: 8
- 3b Abidi SL. J. Org. Chem. 1986; 51: 2687
- 3c Zard SZ. J. Chem. Soc., Chem. Commun. 2002; 1555
- 3d Zolfigol MA, Habibi D, Mirjalili BB. F, Bamoniri A. Tetrahedron Lett. 2003; 44: 3345
- 3e Borikar SP, Paul V. Synth. Commun. 2010; 40: 654
- 3f Azadi R, Kolivand K. Tetrahedron Lett. 2015; 56: 5613
- 3g Gaur P, Banerjee S. Synth. Commun. 2019; 49: 2270
- 3h Derdau V, Sandvoss M. J. Labelled Compd. Radiopharm. 2023; 66: 41
- 3i Masui M, Yamawaki N, Ohmori H. Chem. Pharm. Bull. 1988; 36: 459
- 3j Ali R, Babaahmadi R, Didsbury M, Stephens R, Melen RL, Wirth T. Chem. Eur. J. 2023; 29: e202300957
- 3k Ali R, Wolfe CS, Wirth T. Chem. Methods 2024; 4: e20230005
- 3l Smith PA. S, Loeppky RN. J. Am. Chem. Soc. 1967; 89: 1147
- 3m Hecht SS, Chen C.-HB, Ornaf RM, Jacobs E, Adams JD, Hoffmann D. J. Org. Chem. 1978; 43: 72
- 3n Nakajima M, Warner JC, Anselme J.-P. Tetrahedron Lett. 1984; 25: 2619
- 3o Verardo G, Giumanini AG, Strazzolini P. Tetrahedron 1990; 46: 4303
- 3p Chehardoli G, Ali Zolfigol M, Faal-Rastegar T, Mallakpour S, Ghorbani-Choghamarani A. J. Chem. Sci. 2009; 121: 441 (4)
- 4a Nef JU. Justus Liebigs Ann. Chem. 1894; 280: 263
- 4b Kornblum N, Larson HO, Blackwood RK, Mooberry DD, Oliveto EP, Graham GE. J. Am. Chem. Soc. 1956; 78: 1497
- 4c Kornblum N, Wade PA. J. Org. Chem. 1973; 38: 1418
- 4d Matt C, Wagner A, Mioskowski C. J. Org. Chem. 1997; 62: 234
- 4e Ran C, Yang G, Wu T, Xie M. Tetrahedron Lett. 2003; 44: 8061
- 4f Barreto CB. Jr, Patrocinio Pereira VL. P. Tetrahedron Lett. 2009; 50: 6389
- 4g He X, Hu S, Xiao Y, Yu L, Duan W. Eur. J. Org. Chem. 2022; e202200731
- 4h Feng Q, Wang Y, Zheng B, Huang S. Org. Lett. 2023; 25: 293
- 4i Ballini R, Petrini M. Adv. Synth. Catal. 2015; 357: 2371
- 5a Zhang W, Ma H, Zhou L, Sun Z, Du Z, Miao H, Xu J. Molecules 2008; 13: 3236
- 5b Wang L, Li J, Yang H, Lv Y, Gao S. J. Org. Chem. 2012; 77: 790
- 5c Walsh K, Sneddon HF, Moody C. Org. Lett. 2014; 16: 5224
- 5d Tong X, Sun Y, Yan Y, Luo X, Liu J, Wu Z. J. Mol. Catal. A: Chem. 2014; 391: 1
- 5e Liu R, Liang X, Dong C, Hu X. J. Am. Chem. Soc. 2004; 126: 4112
- 5f Wang X, Liu R, Jin Y, Liang X. Chem. Eur. J. 2008; 14: 2679
- 5g Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R. Adv. Synth. Catal. 2010; 352: 113
- 5h Wang N, Liu R, Chen J, Liang X. J. Chem. Soc., Chem. Commun. 2005; 5322
- 5i Miao CX, He LN, Wang JQ, Wang JL. Adv. Synth. Catal. 2009; 351: 2209
- 5j Lou B.-H, Chen S.-B, Wang J, Chen Y, Li J.-H. J. Chem. Res. 2013; 409
- 5k Liu L, Zhang HY, Yin G, Zhang Y, Zhao J. J. Chem. Sci. 2020; 132: 122
- 5l Zhao Y, Li Y, Shen Z, Hu X, Hu B, Jin L, Sun N, Li M. Tetrahedron Lett. 2019; 60: 150994
- 5m Lauber MB, Stahl SS. ACS Catal. 2013; 3: 2612
- 5n Shibuya M, Osada Y, Sasano Y, Tomizawa M, Iwabuchi Y. J. Am. Chem. Soc. 2011; 133: 6497
- 5o Shibuya M, Nagasawa S, Osada Y, Iwabuchi Y. J. Org. Chem. 2014; 79: 10256
- 5p Furukawa K, Inada H, Shibuya M, Yamamoto Y. Org. Lett. 2016; 18: 4230
- 5q Zhang G, Xie X, Wang Y, Wen X, Zhao Y, Ding C. Org. Biomol. Chem. 2013; 11: 2947
- 5r Wickens ZK, Skakuj K, Morandi B, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 890
- 5s Wan B, Cheng F, Wang H.-H, Ali A, Sun Y.-M, Liu H.-Y, Chang C.-K. Org. Biomol. Chem. 2022; 20: 7814
- 5t Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Angew. Chem. Int. Ed. 2021; 60: 22230
- 5u Bosch E, Rathore R, Kochi JK. J. Org. Chem. 1994; 59: 2529
- 5v Liang X, Fu D, Liu R, Zhang Q, Zhang TY, Hu X. Angew. Chem. Int. Ed. 2005; 44: 5520
- 5w Du Z, Miao H, Hong M, Sun Z, Jiping M, Xu J. Adv. Synth. Catal. 2009; 351: 558
- 5x Zhao J, Shen T, Sun Z, Wang N, Yang L, Wu J, You H, Liu Z.-Q. Org. Lett. 2021; 23: 4057
- 5y Zhang G, Wen X, Wang Y, Mo W, Ding C. J. Org. Chem. 2011; 76: 4665
- 5z Tong Q, Liu Y, Gao X, Fan Z, Liu T, Li B, Su D, Wang Q, Cheng M. Adv. Synth. Catal. 2019; 361: 3137
- 5aa Sheykhan M, Moafi HF, Abbasnia M. RSC Adv. 2016; 6: 51347
- 5ab Jo G, Kim MH, Kim J. Org. Chem. Front. 2020; 7: 834
- 5ac Méndez Y, Vasco AV, Ivey G, Dias AL, Gierth P, Sousa BB, Navo CD, Torres-Mozas A, Rodrigues T, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2023; 62: 11186
- 6a Ge JJ, Yao CZ, Wang MM, Zheng HX, Kang YB, Li Y. Org. Lett. 2016; 18: 228
- 6b Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
- 6c Liu Q, Fang B, Bai X, Liu Y, Wu Y, Xu G, Guo C. Tetrahedron Lett. 2016; 57: 2620
- 6d Ghodse SM, Takale BS, Hatvate NT, Telvekar VN. ChemistrySelect 2018; 3: 4168
- 6e Shen Z, Liu W, Tian X, Zhao Z, Ren YL. Synlett 2020; 31: 1805
- 6f Jiang C, Chen Y, Gao P, Zhang S, Jia X, Yuan Y. Org. Lett. 2022; 24: 6341
- 6g Sato R, Itoh K, Itoh K, Nishina H, Goto T, Saito M. Chem. Lett. 1984; 13: 1913
- 6h Woltermann CJ, Shechter H. Helv. Chim. Acta 2005; 88: 354
- 7a Gissot A, N’Gouela S, Matt C, Wagner A, Mioskowski C. J. Org. Chem. 2004; 69: 8997
- 7b Chang Q, Qu H, Qin W, Liu L, Chen Z. Synth. Commun. 2013; 43: 2926
- 7c Chumnanvej N, Samakkanad N, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. RSC Adv. 2014; 4: 59726
- 7d Smith CC, Jacyno JM, Zeiter KK, Parkanzky PD, Paxson CE, Pekelnicky P, Harwood JS, Hunter AD, Lucarelli VG, Lufaso MW, Cutler HG. Tetrahedron Lett. 1998; 39: 6617
- 7e Padmanaban S, Choi J, Vazquez-Lima H, Ko D, Yoo D, Gwak J, Cho K.-B, Lee Y. J. Am. Chem. Soc. 2022; 144: 4585
- 7f Lashmanova EA, Shiryaev AK. Chem. Heterocycl. Compd. 2015; 51: 377
- 7g Chen D, Wang Y, Cai X.-M, Cao X, Jiang P, Wang F, Huang S. Org. Lett. 2020; 22: 6847
- 7h Katritzky AR, Wang Z, Hall CD, Akhmedov NG, Shestopalov AA, Steel PJ. J. Org. Chem. 2003; 68: 9093
- 7i Majid T, Hopkins CR, Pedgrift B, Collar N. Tetrahedron Lett. 2004; 45: 2137
- 7j Huggins MT, Barber PS, Florian D, Howton W. Synth. Commun. 2008; 38: 4226
- 7k Bobrov PS, Kirik SD, Peterson IV, Suboch GA. Org. Biomol. Chem. 2023; 21: 3604
- 7l Filyakova VI, Boltacheva NS, Slepukhin PA, Charushin VN. Chem. Heterocycl. Compd. 2023; 59: 546
- 7m Zheng J, Shoberu A, Zhou PJ, Sun W.-B, Ying L, Zou JP. Tetrahedron 2022; 124: 133010
- 7n Yang S, Wang Y, Xu W, Tian X, Bao M, Yu X. Org. Lett. 2023; 25: 8834
- 8a Mochalov SS, Gazzaeva RA, Kadzhaeva AZ, Fedotov AN, Trofimova EV. Chem. Heterocycl. Compd. 2012; 47: 1415
- 8b Li Y.-M, Wei X.-H, Li X.-A, Yang S.-D. Chem. Commun. 2013; 49: 11701
- 8c Sabbasani VR, Lee D. Org. Lett. 2013; 15: 3954
- 8d Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Angew. Chem. Int. Ed. 2015; 54: 10926 ; Angew. Chem. 2015, 127, 11076
- 8e Mukhopadhyay S, Dighe SU, Kolle S, Shukla PK, Batra S. Eur. J. Org. Chem. 2016; 3836
- 8f Liao YY, Gao YC, Zheng W, Tang RY. Adv. Synth. Catal. 2018; 360: 3391
- 8g Chen D, He T, Huang Y, Luo J, Wang F, Huang S. Org. Lett. 2020; 22: 4429
- 8h Yang WC, Shen LY, Li JN, Feng JG, Li P. Adv. Synth. Catal. 2022; 364: 3651
- 8i Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Eur. J. Org. Chem. 2022; e202101411
- 8j Liu H, Pan Y, Tan C.-H. Tetrahedron Lett. 2008; 49: 4424
- 8k Moreno-Clavijo E, Carmona AT, Reissig H.-U, Moreno-Vargas AJ, Alvarez E, Robina I. Org. Lett. 2009; 11: 4778
- 8l Unnava R, Deka MJ, Saikia AK. Asian. J. Org. Chem. 2016; 5: 528
- 8m Yugandar S, Konda S, Parameshwarappa G, Ila H. J. Org. Chem. 2016; 81: 5606
- 8n Patil DV, Lee Y, Kim HY, Oh K. Org. Lett. 2022; 24: 5840
- 8o McKillop A, Sayer TS. B. J. Org. Chem. 1976; 41: 1079
- 8p Nicholls AJ, Batsanov AS, Baxendale IR. Molecules 2019; 24: 4154
- 9a Su B, Li L, Hu Y, Liu Y, Wang Q. Adv. Synth. Catal. 2012; 354: 383
- 9b Xue J, Bao Y, Qin W, Zhu J, Kong Y, Qu H, Chen Z, Liu L. Synth. Commun. 2014; 44: 2215
- 9c Qu H, Li J, Li H, Wang H, Liu L. Synth. Commun. 2015; 45: 993
- 9d Su B, Deng M, Wang Q. Adv. Synth. Catal. 2014; 356: 977
- 9e Cheng D, Yuan K, Xu X, Yan J. Tetrahedron Lett. 2015; 56: 1641
- 9f Li L, Su B, Liu Y, Wang Q. Curr. Org. Synth. 2018; 15: 989
- 9g Basavaiah D, Reddy DM. RSC Adv. 2014; 4: 23966
- 10a Matsumura Y, Yamamoto Y, Moriyama N, Furukubo S, Iwasaki F, Onomura O. Tetrahedron Lett. 2004; 45: 8221
- 10b He T, Chen D, Qian S, Zheng Y, Huang S. Org. Lett. 2021; 23: 6525
- 10c Onomura O, Moriyama A, Fukae K, Yamamoto Y, Maki T, Matsumura Y, Demizu Y. Tetrahedron Lett. 2008; 49: 6728
- 10d Watanabe K, Hamada T, Moriyama K. Org. Lett. 2018; 20: 5803
- 11a Zhang G, Liu R, Xu Q, Ma L, Liang X. Adv. Synth. Catal. 2006; 348: 862
- 11b Iskra J, Stavber S, Zupan M. Tetrahedron Lett. 2008; 49: 893
- 11c Kiran Y, Konakahara T, Sakai N. Synthesis 2008; 2327
- 11d Stavber G, Iskra J, Zupan M, Stavber S. Adv. Synth. Catal. 2008; 350: 2921
- 11e Podgoršek A, Eissen M, Fleckenstein J, Stavber S, Zupan M, Iskra J. Green Chem. 2009; 11: 120
- 11f Stavber G, Iskra J, Zupan M, Stavber SJ. Green Chem. 2009; 11: 1262
- 11g Telvekar VN, Takale BS. Tetrahedron Lett. 2011; 52: 2394
- 11h Ghorpade AK, Huddar SN, Akamanchi KG. Tetrahedron Lett. 2016; 57: 4918
- 11i Xu L, Wang Y, Wen X, Ding C, Zhang G, Liang X. Synlett 2011; 2265
- 11j Zhao M, Lu W. Org. Lett. 2018; 20: 5264
Corresponding Authors
Publication History
Received: 08 August 2024
Accepted after revision: 09 December 2024
Accepted Manuscript online:
13 December 2024
Article published online:
03 March 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Budavari S., Merck and Co., Inc; Rahway (NJ, USA): 1989: 8603
- 1b Laue W, Thiemann M, Scheibler E, Wiegand KW. Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000: 165
- 1c Ziegler GE. Phys. Rev. 1931; 38: 1040
- 1d Moore EA, Johnson C, Mortimer M, Wigglesworth C. Phys. Chem. Chem. Phys. 2000; 2: 1325
- 1e Griefs P. Justus Liebigs Ann. Chem. 1858; 106: 123
- 1f Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
- 1g Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
- 1h Parthasarathy DK, Bryan NS. Meat Sci. 2012; 92: 274
- 1i Stoica M, Antohi VM, Alexe P, Ivan AS, Stanciu S, Stoica D, Zlati ML, Stuparu-Cretu M. Food Bioprocess. Technol. 2022; 15: 514
- 1j Belai N, Harp BP, Mazzola EP, Lam Y, Abdeldayem E, Aziz A, Mossoba MM, Barrows JN. Dyes Pigm. 2012; 95: 304
- 1k Shuai F, Wang X, Zhang J. CN Patent 108069953, 2018
- 1l Mukhopadhyay S, Batra S. Eur. J. Org. Chem. 2019; 6424
- 1m Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
- 1n Patel SS, Patel DB, Patel HD. ChemistrySelect 2021; 6: 1337
- 2a Muppidi S, Kamatala CR, Voruvala SC, Mukka SK. Chem. Data Collect. 2019; 21: 100222
- 2b Zolfigol M, Madrakian E, Ghaemi E. Molecules 2002; 7: 734
- 2c Zolfigol MA, Ghaemi E, Madrakian E, Choghamarani AG. Mendeleev Commun. 2006; 16: 41
- 2d Jereb M. Curr. Org. Chem. 2013; 17: 1694
- 2e Srinivas P, Suresh M, Rajanna KC, Krishnaiah G. Int. J. Chem. Kinet. 2017; 49: 209
- 2f Rajanna KC, Muppidi S, Pasnoori S, Saiprakash PK. Res. Chem. Intermed. 2018; 44: 6023
- 2g Syvret RG, Butt KM, Nguyen TP, Bulleck VL, Rieth RD. J. Org. Chem. 2002; 67: 4487
- 2h Kumar MS, Sriram YH, Venkateswarlu M, Rajanna KC, Sudhakar MS, Venkanna P, Saiprakash PK. Synth. Commun. 2018; 48: 59
- 2i Krylov IB, Budnikov AS, Lopat’eva ER, Nikishin GI, Terent’ev AO. Chem. Eur. J. 2019; 25: 5922
- 2j He K, Zhang T, Zhang S, Sun Z, Zhang Y, Yuan Y, Jia X. Org. Lett. 2019; 21: 5030
- 2k Singh L, Ranjan N. J. Am. Chem. Soc. 2023; 145: 2745
- 2l Dhokale RA, Mhaske SB. Org. Lett. 2016; 18: 3010
- 2m Wang HH, Wan NW, Da X Y, Mou XQ, Wang ZX, Chen YZ, Liu ZQ, Zheng YG. Bioorg. Chem. 2023; 138: 106640
- 2n Kong M, Wang K, Dong R, Gao H. Enzyme Microb. Technol. 2015; 34: 73
- 2o Reitti M, Villo P, Olofsson B. Angew. Chem. Int. Ed. 2016; 55: 8928 ; Angew. Chem. 2016, 128, 9074
- 2p Saha M, Das AR. Org. Biomol. Chem. 2020; 18: 941
- 2q Li X.-H, Li L.-G, Mo X.-L, Mo D.-L. Synth. Commun. 2016; 46: 963
- 2r Li Y.-X, Li L.-H, Yang Y.-F, Hua H.-L, Yan X.-B, Zhao L.-B, Zhang J.-B, Ji F.-J, Liang Y.-M. Chem. Commun. 2014; 50: 9936
- 2s Kloeckner U, Nachtsheim BJ. Chem. Commun. 2014; 50: 10485
- 2t Kumar MS, Rajanna KC, Venkateswarlu M, Venkanna P, Saiprakash PK. Synth. Commun. 2015; 45: 2251
- 2u Zolfigol MA, Ghaemi E, Madrakian E. Synlett 2003; 191
- 2v Bhooshan M, Rajanna KC, Govardhan D, Venkanna P, Satish Kumar M. Int. J. Chem. Kinet. 2019; 51: 445
- 2w Govardhan D, Bhooshan M, Saiprakash PK, Rajanna KC. SN Appl. Sci. 2019; 1: 1004
- 2x Duguta G, Muddam B, Kamatala CR, Utkoor UK. Int. J. Chem. Kinet. 2021; 53: 164
- 2y Xie D.-X, Yu H.-J, Liu H, Xue W.-C, Qin Y.-S, Shao G. Tetrahedron 2019; 75: 1157
- 2z Gao T, Wang C, Tang K, Xu Y, Sun L. Eur. J. Org. Chem. 2019; 3005
- 2aa Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Adv. Synth. Catal. 2015; 357: 732
- 2ab Zhu X, Qiao L, Ye P, Ying B, Xu J, Shen C, Zhang P. RSC Adv. 2016; 6: 89979
- 2ac Kianmehr E, Nasab SB. Eur. J. Org. Chem. 2018; 6447
- 2ad Miao M, Luo Y, Xu H, Jin M, Chen Z, Xu J, Ren H. J. Org. Chem. 2017; 82: 12224
- 2ae Saito S, Koizumi Y. Tetrahedron Lett. 2005; 46: 4715
- 2af Al-Masum M, Saleh N, Islam T. Tetrahedron Lett. 2013; 54: 1141
- 2ag Hlekhlai S, Samakkanad N, Sawangphon T, Pohmakotr M, Reutrakul V, Soorukram D, Jaipetch T, Kuhakarn C. Eur. J. Org. Chem. 2014; 7433
- 2ah Zhao A, Jiang Q, Jia J, Xu B, Liu Y, Zhang M, Liu Q, Luo W, Guo C. Tetrahedron Lett. 2016; 57: 80
- 2ai Casiello M, Caputo D, Fusco C, Cotugno P, Rizzi V, Dell’Anna MM, D’Accolti L, Nacci A. Eur. J. Org. Chem. 2020; 6012
- 2aj Bonetti GA, DeSavigny CB, Michalski C, Rosenthal R. J. Org. Chem. 1968; 33: 237
- 2ak Hwu JR, Chen K.-L, Ananthan S. J. Chem. Soc., Chem. Commun. 1994; 1425
- 2al Hwu JR, Chen K.-L, Ananthan S, Patel HV. Organometallics 1996; 15: 499
- 2am Buevich AV, Wu Y, Chan T.-M, Stamford A. Tetrahedron Lett. 2008; 49: 2132
- 2an Motornov VA, Muzalevskiy VM, Tabolin AA, Novikov RA, Nelyubina YV, Nenajdenko VG, Ioffe SL. J. Org. Chem. 2017; 82: 5274
- 2ao Fors BP, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 12898
- 2ap Prakash GK. S, Gurung L, Schmid PC, Wang F, Thomas TE, Panja C, Mathew T, Olah GA. Tetrahedron Lett. 2014; 55: 1975
- 2aq Chatterjee N, Bhatt D, Goswami A. Org. Biomol. Chem. 2015; 13: 4828
- 2ar Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Mol. Catal. 2022; 531: 112639
- 2as Liang D, Zhang X, Li Y, Zhou Y, Ren M, Zhang X, Li Y, Zhu N. Sustainable Chem. Pharm. 2023; 33: 101077
- 2at Li S, Ma D. J. Org. Chem. 2024; 89: 6626
- 2au Feldman KS, Myhre PC. J. Am. Chem. Soc. 1979; 101: 4768
- 2av Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
- 2aw Mahanta A, Gour NK, Sarma PJ, Borah RK, Raul PK, Deka RC, Thakur AJ, Bora U. Appl. Organomet. Chem. 2019; 33: 4951
- 3a Hartman WW, Roll LJ. Org. Synth. 1933; 13: 8
- 3b Abidi SL. J. Org. Chem. 1986; 51: 2687
- 3c Zard SZ. J. Chem. Soc., Chem. Commun. 2002; 1555
- 3d Zolfigol MA, Habibi D, Mirjalili BB. F, Bamoniri A. Tetrahedron Lett. 2003; 44: 3345
- 3e Borikar SP, Paul V. Synth. Commun. 2010; 40: 654
- 3f Azadi R, Kolivand K. Tetrahedron Lett. 2015; 56: 5613
- 3g Gaur P, Banerjee S. Synth. Commun. 2019; 49: 2270
- 3h Derdau V, Sandvoss M. J. Labelled Compd. Radiopharm. 2023; 66: 41
- 3i Masui M, Yamawaki N, Ohmori H. Chem. Pharm. Bull. 1988; 36: 459
- 3j Ali R, Babaahmadi R, Didsbury M, Stephens R, Melen RL, Wirth T. Chem. Eur. J. 2023; 29: e202300957
- 3k Ali R, Wolfe CS, Wirth T. Chem. Methods 2024; 4: e20230005
- 3l Smith PA. S, Loeppky RN. J. Am. Chem. Soc. 1967; 89: 1147
- 3m Hecht SS, Chen C.-HB, Ornaf RM, Jacobs E, Adams JD, Hoffmann D. J. Org. Chem. 1978; 43: 72
- 3n Nakajima M, Warner JC, Anselme J.-P. Tetrahedron Lett. 1984; 25: 2619
- 3o Verardo G, Giumanini AG, Strazzolini P. Tetrahedron 1990; 46: 4303
- 3p Chehardoli G, Ali Zolfigol M, Faal-Rastegar T, Mallakpour S, Ghorbani-Choghamarani A. J. Chem. Sci. 2009; 121: 441 (4)
- 4a Nef JU. Justus Liebigs Ann. Chem. 1894; 280: 263
- 4b Kornblum N, Larson HO, Blackwood RK, Mooberry DD, Oliveto EP, Graham GE. J. Am. Chem. Soc. 1956; 78: 1497
- 4c Kornblum N, Wade PA. J. Org. Chem. 1973; 38: 1418
- 4d Matt C, Wagner A, Mioskowski C. J. Org. Chem. 1997; 62: 234
- 4e Ran C, Yang G, Wu T, Xie M. Tetrahedron Lett. 2003; 44: 8061
- 4f Barreto CB. Jr, Patrocinio Pereira VL. P. Tetrahedron Lett. 2009; 50: 6389
- 4g He X, Hu S, Xiao Y, Yu L, Duan W. Eur. J. Org. Chem. 2022; e202200731
- 4h Feng Q, Wang Y, Zheng B, Huang S. Org. Lett. 2023; 25: 293
- 4i Ballini R, Petrini M. Adv. Synth. Catal. 2015; 357: 2371
- 5a Zhang W, Ma H, Zhou L, Sun Z, Du Z, Miao H, Xu J. Molecules 2008; 13: 3236
- 5b Wang L, Li J, Yang H, Lv Y, Gao S. J. Org. Chem. 2012; 77: 790
- 5c Walsh K, Sneddon HF, Moody C. Org. Lett. 2014; 16: 5224
- 5d Tong X, Sun Y, Yan Y, Luo X, Liu J, Wu Z. J. Mol. Catal. A: Chem. 2014; 391: 1
- 5e Liu R, Liang X, Dong C, Hu X. J. Am. Chem. Soc. 2004; 126: 4112
- 5f Wang X, Liu R, Jin Y, Liang X. Chem. Eur. J. 2008; 14: 2679
- 5g Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R. Adv. Synth. Catal. 2010; 352: 113
- 5h Wang N, Liu R, Chen J, Liang X. J. Chem. Soc., Chem. Commun. 2005; 5322
- 5i Miao CX, He LN, Wang JQ, Wang JL. Adv. Synth. Catal. 2009; 351: 2209
- 5j Lou B.-H, Chen S.-B, Wang J, Chen Y, Li J.-H. J. Chem. Res. 2013; 409
- 5k Liu L, Zhang HY, Yin G, Zhang Y, Zhao J. J. Chem. Sci. 2020; 132: 122
- 5l Zhao Y, Li Y, Shen Z, Hu X, Hu B, Jin L, Sun N, Li M. Tetrahedron Lett. 2019; 60: 150994
- 5m Lauber MB, Stahl SS. ACS Catal. 2013; 3: 2612
- 5n Shibuya M, Osada Y, Sasano Y, Tomizawa M, Iwabuchi Y. J. Am. Chem. Soc. 2011; 133: 6497
- 5o Shibuya M, Nagasawa S, Osada Y, Iwabuchi Y. J. Org. Chem. 2014; 79: 10256
- 5p Furukawa K, Inada H, Shibuya M, Yamamoto Y. Org. Lett. 2016; 18: 4230
- 5q Zhang G, Xie X, Wang Y, Wen X, Zhao Y, Ding C. Org. Biomol. Chem. 2013; 11: 2947
- 5r Wickens ZK, Skakuj K, Morandi B, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 890
- 5s Wan B, Cheng F, Wang H.-H, Ali A, Sun Y.-M, Liu H.-Y, Chang C.-K. Org. Biomol. Chem. 2022; 20: 7814
- 5t Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Angew. Chem. Int. Ed. 2021; 60: 22230
- 5u Bosch E, Rathore R, Kochi JK. J. Org. Chem. 1994; 59: 2529
- 5v Liang X, Fu D, Liu R, Zhang Q, Zhang TY, Hu X. Angew. Chem. Int. Ed. 2005; 44: 5520
- 5w Du Z, Miao H, Hong M, Sun Z, Jiping M, Xu J. Adv. Synth. Catal. 2009; 351: 558
- 5x Zhao J, Shen T, Sun Z, Wang N, Yang L, Wu J, You H, Liu Z.-Q. Org. Lett. 2021; 23: 4057
- 5y Zhang G, Wen X, Wang Y, Mo W, Ding C. J. Org. Chem. 2011; 76: 4665
- 5z Tong Q, Liu Y, Gao X, Fan Z, Liu T, Li B, Su D, Wang Q, Cheng M. Adv. Synth. Catal. 2019; 361: 3137
- 5aa Sheykhan M, Moafi HF, Abbasnia M. RSC Adv. 2016; 6: 51347
- 5ab Jo G, Kim MH, Kim J. Org. Chem. Front. 2020; 7: 834
- 5ac Méndez Y, Vasco AV, Ivey G, Dias AL, Gierth P, Sousa BB, Navo CD, Torres-Mozas A, Rodrigues T, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2023; 62: 11186
- 6a Ge JJ, Yao CZ, Wang MM, Zheng HX, Kang YB, Li Y. Org. Lett. 2016; 18: 228
- 6b Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
- 6c Liu Q, Fang B, Bai X, Liu Y, Wu Y, Xu G, Guo C. Tetrahedron Lett. 2016; 57: 2620
- 6d Ghodse SM, Takale BS, Hatvate NT, Telvekar VN. ChemistrySelect 2018; 3: 4168
- 6e Shen Z, Liu W, Tian X, Zhao Z, Ren YL. Synlett 2020; 31: 1805
- 6f Jiang C, Chen Y, Gao P, Zhang S, Jia X, Yuan Y. Org. Lett. 2022; 24: 6341
- 6g Sato R, Itoh K, Itoh K, Nishina H, Goto T, Saito M. Chem. Lett. 1984; 13: 1913
- 6h Woltermann CJ, Shechter H. Helv. Chim. Acta 2005; 88: 354
- 7a Gissot A, N’Gouela S, Matt C, Wagner A, Mioskowski C. J. Org. Chem. 2004; 69: 8997
- 7b Chang Q, Qu H, Qin W, Liu L, Chen Z. Synth. Commun. 2013; 43: 2926
- 7c Chumnanvej N, Samakkanad N, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. RSC Adv. 2014; 4: 59726
- 7d Smith CC, Jacyno JM, Zeiter KK, Parkanzky PD, Paxson CE, Pekelnicky P, Harwood JS, Hunter AD, Lucarelli VG, Lufaso MW, Cutler HG. Tetrahedron Lett. 1998; 39: 6617
- 7e Padmanaban S, Choi J, Vazquez-Lima H, Ko D, Yoo D, Gwak J, Cho K.-B, Lee Y. J. Am. Chem. Soc. 2022; 144: 4585
- 7f Lashmanova EA, Shiryaev AK. Chem. Heterocycl. Compd. 2015; 51: 377
- 7g Chen D, Wang Y, Cai X.-M, Cao X, Jiang P, Wang F, Huang S. Org. Lett. 2020; 22: 6847
- 7h Katritzky AR, Wang Z, Hall CD, Akhmedov NG, Shestopalov AA, Steel PJ. J. Org. Chem. 2003; 68: 9093
- 7i Majid T, Hopkins CR, Pedgrift B, Collar N. Tetrahedron Lett. 2004; 45: 2137
- 7j Huggins MT, Barber PS, Florian D, Howton W. Synth. Commun. 2008; 38: 4226
- 7k Bobrov PS, Kirik SD, Peterson IV, Suboch GA. Org. Biomol. Chem. 2023; 21: 3604
- 7l Filyakova VI, Boltacheva NS, Slepukhin PA, Charushin VN. Chem. Heterocycl. Compd. 2023; 59: 546
- 7m Zheng J, Shoberu A, Zhou PJ, Sun W.-B, Ying L, Zou JP. Tetrahedron 2022; 124: 133010
- 7n Yang S, Wang Y, Xu W, Tian X, Bao M, Yu X. Org. Lett. 2023; 25: 8834
- 8a Mochalov SS, Gazzaeva RA, Kadzhaeva AZ, Fedotov AN, Trofimova EV. Chem. Heterocycl. Compd. 2012; 47: 1415
- 8b Li Y.-M, Wei X.-H, Li X.-A, Yang S.-D. Chem. Commun. 2013; 49: 11701
- 8c Sabbasani VR, Lee D. Org. Lett. 2013; 15: 3954
- 8d Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Angew. Chem. Int. Ed. 2015; 54: 10926 ; Angew. Chem. 2015, 127, 11076
- 8e Mukhopadhyay S, Dighe SU, Kolle S, Shukla PK, Batra S. Eur. J. Org. Chem. 2016; 3836
- 8f Liao YY, Gao YC, Zheng W, Tang RY. Adv. Synth. Catal. 2018; 360: 3391
- 8g Chen D, He T, Huang Y, Luo J, Wang F, Huang S. Org. Lett. 2020; 22: 4429
- 8h Yang WC, Shen LY, Li JN, Feng JG, Li P. Adv. Synth. Catal. 2022; 364: 3651
- 8i Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Eur. J. Org. Chem. 2022; e202101411
- 8j Liu H, Pan Y, Tan C.-H. Tetrahedron Lett. 2008; 49: 4424
- 8k Moreno-Clavijo E, Carmona AT, Reissig H.-U, Moreno-Vargas AJ, Alvarez E, Robina I. Org. Lett. 2009; 11: 4778
- 8l Unnava R, Deka MJ, Saikia AK. Asian. J. Org. Chem. 2016; 5: 528
- 8m Yugandar S, Konda S, Parameshwarappa G, Ila H. J. Org. Chem. 2016; 81: 5606
- 8n Patil DV, Lee Y, Kim HY, Oh K. Org. Lett. 2022; 24: 5840
- 8o McKillop A, Sayer TS. B. J. Org. Chem. 1976; 41: 1079
- 8p Nicholls AJ, Batsanov AS, Baxendale IR. Molecules 2019; 24: 4154
- 9a Su B, Li L, Hu Y, Liu Y, Wang Q. Adv. Synth. Catal. 2012; 354: 383
- 9b Xue J, Bao Y, Qin W, Zhu J, Kong Y, Qu H, Chen Z, Liu L. Synth. Commun. 2014; 44: 2215
- 9c Qu H, Li J, Li H, Wang H, Liu L. Synth. Commun. 2015; 45: 993
- 9d Su B, Deng M, Wang Q. Adv. Synth. Catal. 2014; 356: 977
- 9e Cheng D, Yuan K, Xu X, Yan J. Tetrahedron Lett. 2015; 56: 1641
- 9f Li L, Su B, Liu Y, Wang Q. Curr. Org. Synth. 2018; 15: 989
- 9g Basavaiah D, Reddy DM. RSC Adv. 2014; 4: 23966
- 10a Matsumura Y, Yamamoto Y, Moriyama N, Furukubo S, Iwasaki F, Onomura O. Tetrahedron Lett. 2004; 45: 8221
- 10b He T, Chen D, Qian S, Zheng Y, Huang S. Org. Lett. 2021; 23: 6525
- 10c Onomura O, Moriyama A, Fukae K, Yamamoto Y, Maki T, Matsumura Y, Demizu Y. Tetrahedron Lett. 2008; 49: 6728
- 10d Watanabe K, Hamada T, Moriyama K. Org. Lett. 2018; 20: 5803
- 11a Zhang G, Liu R, Xu Q, Ma L, Liang X. Adv. Synth. Catal. 2006; 348: 862
- 11b Iskra J, Stavber S, Zupan M. Tetrahedron Lett. 2008; 49: 893
- 11c Kiran Y, Konakahara T, Sakai N. Synthesis 2008; 2327
- 11d Stavber G, Iskra J, Zupan M, Stavber S. Adv. Synth. Catal. 2008; 350: 2921
- 11e Podgoršek A, Eissen M, Fleckenstein J, Stavber S, Zupan M, Iskra J. Green Chem. 2009; 11: 120
- 11f Stavber G, Iskra J, Zupan M, Stavber SJ. Green Chem. 2009; 11: 1262
- 11g Telvekar VN, Takale BS. Tetrahedron Lett. 2011; 52: 2394
- 11h Ghorpade AK, Huddar SN, Akamanchi KG. Tetrahedron Lett. 2016; 57: 4918
- 11i Xu L, Wang Y, Wen X, Ding C, Zhang G, Liang X. Synlett 2011; 2265
- 11j Zhao M, Lu W. Org. Lett. 2018; 20: 5264







































