Subscribe to RSS
DOI: 10.1055/a-2406-9589
Neurochirurgisch relevante Krankheitsbilder bei Skoliose – Diagnostik und Therapie im interdisziplinären Kontext
Neurosurgical Implications in Juvenile Scoliosis – Diagnostics and Therapy in an interdisciplinary settingAuthors
Zusammenfassung
Die kindliche Skoliose ist eine der häufigsten Erkrankungen des Bewegungsapparates, die mit einer seitlichen Verkrümmung der Wirbelsäule und einer begleitenden Rotation der Wirbelkörper einhergeht. Die Prävalenz idiopathischer Skoliosen variiert weltweit, doch ist die Notwendigkeit einer frühzeitigen Diagnosestellung und adäquaten Therapie unerlässlich. Besonders herausfordernd wird die Behandlung, wenn eine sekundäre Skoliose aufgrund von neurologischen oder strukturellen Anomalien vorliegt. Die Ätiologie der Skoliose ist vielfältig, wobei idiopathische Formen den größten Anteil ausmachen. Weniger häufig treten jedoch auch sekundäre Skoliosen auf, die durch neurologische Störungen, kongenitale Fehlbildungen oder neurodegenerative Erkrankungen bedingt sind. Die Diagnostik und Therapie dieser sekundären Formen der Skoliose stellen nicht nur die Orthopäden, sondern auch Neurochirurgen vor große Herausforderungen. Daher erfordert die Behandlung ein hohes Maß an interdisziplinärer Zusammenarbeit. In diesem Artikel werden drei interdisziplinär relevante Krankheitsbilder beschrieben, die eine Skoliose bedingen, koinzident auftreten und ihren Verlauf beeinflussen können und bei ihrer Therapie berücksichtigt werden müssen: die Chiari-I-Malformation (CM), die Diastematomyelie (DM) und das Tethered Cord-Syndrom (TC). Zu jedem Krankheitsbild wird der neurologische Zusammenhang zur Skoliose erläutert und sowohl diagnostische als auch therapeutische Maßnahmen anhand aktueller Literatur vorgestellt. Die Bedeutung des interdisziplinären Ansatzes zwischen Orthopädie und Neurochirurgie steht dabei Im Fokus.
Abstract
Scoliosis in infants and youth is one of the most common diseases of the musculosceletoal system, commonly defined by a curvature and rotation of vertebrae. While its prevalence may differ globally, the necessity for adequate diagnostic and care is uniform. The concurrence with anamolies of neuronal structures may pose an additional challenge. The etiology of scoliosis is variable, while idiopathic forms comprise the larger part. Rarer are secondary scolioses, deriving from neurological disorders, congenital anomalies or neurodegenerative disease. Diagnostic and therapy in these cases challenges neurosurgeons and orthopedic surgeons alike. An interdisciplinary approach is crucial. In this article, we feature three cases with interdisciplinary relevance, in which disorders of the neuronal system led to scoliosis and need special attention in treatment: Chiari type 1 malformation (CM), split cord syndrom or diastematomyelia (DM) and the tethered-cord syndrome (TC). For each disorder, we elucidate ist link to scoliosis and elaborate on diagnostic and therapeutic implications in current literature. We focus on the intersection in-between orthopedic and neurosurgical approaches.
Publication History
Article published online:
02 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Brockmeyer D, Gollogly S, Smith JT. Scoliosis associated with Chiari 1 malformations: the effect of suboccipital decompression on scoliosis curve progression: a preliminary study. Spine (Phila Pa 1976) 2003; 28: 2505-2509
- 2 Strahle J, Muraszko KM, Kapurch J. et al. Chiari malformation Type I and syrinx in children undergoing magnetic resonance imaging. J Neurosurg Pediatr 2011; 8: 205-213
- 3 Heemskerk JL, Kruyt MC, Colo D. et al. Prevalence and risk factors for neural axis anomalies in idiopathic scoliosis: a systematic review. Spine J 2018; 18: 1261-1271
- 4 Martínez-Gil N, Mellibovsky L, Manzano-López González D. et al. On the association between Chiari malformation type 1, bone mineral density and bone related genes. Bone Rep 2022; 16: 101181
- 5 Di Rocco F, Licci ML, Garde A. et al. Surgical management of Chiari malformation type 1 associated to MCAP syndrome and study of cerebellar and adjacent tissues for PIK3CA mosaicism. Eur J Med Genet 2023; 66: 104678
- 6 Eppelheimer MS, Houston JR, Bapuraj JR. et al. A Retrospective 2D Morphometric Analysis of Adult Female Chiari Type I Patients with Commonly Reported and Related Conditions. Front Neuroanat 2018; 12: 2
- 7 Pan KS, Heiss JD, Brown SM. et al. Chiari I Malformation and Basilar Invagination in Fibrous Dysplasia: Prevalence, Mechanisms, and Clinical Implications. J Bone Miner Res 2018; 33: 1990-1998
- 8 Jenq CB, Jenq LL, Bear HM. et al. Conditioning lesions of peripheral nerves change regenerated axon numbers. Brain Res 1988; 457: 63-69
- 9 Godzik J, Dardas A, Kelly MP. et al. Comparison of spinal deformity in children with Chiari I malformation with and without syringomyelia: matched cohort study. Eur Spine J 2016; 25: 619-626
- 10 Eule JM, Erickson MA, O'Brien MF. et al. Chiari I malformation associated with syringomyelia and scoliosis: a twenty-year review of surgical and nonsurgical treatment in a pediatric population. Spine (Phila Pa 1976) 2002; 27: 1451-1455
- 11 Bitler J, Cernadas CC, Montivero NA. et al. Escoliosis juvenil como primera manifestación de siringomielia asociada con malformación de Chiari tipo I. Bol Med Hosp Infant Mex 2023; 80: 28-32
- 12 Noureldine MHA, Shimony N, Jallo GI. et al. Scoliosis in patients with Chiari malformation type I. Childs Nerv Syst 2019; 35: 1853-1862
- 13 Colombo LF, Motta F. Consensus conference on Chiari: a malformation or an anomaly? Scoliosis and others orthopaedic deformities related to Chiari 1 malformation. Neurol Sci 2011; 32: S341-3
- 14 O'Neill NP, Miller PE, Hresko MT. et al. Scoliosis with Chiari I malformation without associated syringomyelia. Spine Deform 2021; 9: 1105-1113
- 15 Chotai S, Nadel JL, Holste KG. et al. Longitudinal scoliosis behavior in Chiari malformation with and without syringomyelia. J Neurosurg Pediatr 2021; 28: 585-591
- 16 Hwang SW, Samdani AF, Jea A. et al. Outcomes of Chiari I-associated scoliosis after intervention: a meta-analysis of the pediatric literature. Childs Nerv Syst 2012; 28: 1213-1219
- 17 Hershkovich O, Lotan R, Steinberg N. et al. Treatment of Chiari Malformation and Concomitant Paediatric Scoliosis Long-Term Follow-Up in One Major Referral Centre in the UK. J Clin Med 2023; 12
- 18 Xie J, Wang Y, Zhao Z. et al. One-stage and posterior approach for correction of moderate to severe scoliosis in adolescents associated with Chiari I malformation: is a prior suboccipital decompression always necessary?. Eur Spine J 2011; 20: 1106-1113
- 19 Naessig S, Tretiakov P, Patel K. et al. Concurrent Presence of Thoracolumbar Scoliosis and Chiari Malformation: Is Operative Risk Magnified?. Asian Spine J 2023; 17: 703-711
- 20 Kancherla V. Neural tube defects: a review of global prevalence, causes, and primary prevention. Childs Nerv Syst 2023; 39: 1703-1710
- 21 Mitchell LE, Adzick NS, Melchionne J. et al. Spina bifida. Lancet 2004; 364: 1885-1895
- 22 Trapp B, de Andrade Lourenção Freddi T, de Oliveira Morais Hans M. et al. A Practical Approach to Diagnosis of Spinal Dysraphism. Radiographics 2021; 41: 559-575
- 23 Tortori-Donati P, Rossi A, Cama A. Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 2000; 42: 471-491
- 24 Kumar J, Afsal M, Garg A. Imaging spectrum of spinal dysraphism on magnetic resonance: A pictorial review. World J Radiol 2017; 9: 178-190
- 25 Vaja H, Kapoor A, Kaur G. et al. Split Cord Malformation Presentation and Management in Pediatric and Adult Cases: a Case Series. Childs Nerv Syst 2024; 40: 3849-3852
- 26 Beuriat P-A, Di Rocco F, Szathmari A. et al. Management of split cord malformation in children: the Lyon experience. Childs Nerv Syst 2018; 34: 883-891
- 27 Akhmediev M, Alikhodjaeva G, Usmankhanov O. et al. Management of split cord malformation and tethered cord syndrome: Experience of a main referral center in Uzbekistan. Clin Neurol Neurosurg 2024; 245: 108510
- 28 Singh S, Bhaisora KS, Das KK. et al. Type 1 Split Cord Malformation: The Significance of the 3D Orientation of the Bony Spur, Its Clinical Relevance, and Surgical Nuances. J Pediatr Neurosci 2018; 13: 429-436
- 29 Lew SM, Kothbauer KF. Tethered cord syndrome: an updated review. Pediatr Neurosurg 2007; 43: 236-248
- 30 Kobets AJ, Oliver J, Cohen A. et al. Split cord malformation and tethered cord syndrome: case series with long-term follow-up and literature review. Childs Nerv Syst 2021; 37: 1301-1306
- 31 Agarwalla PK, Dunn IF, Scott RM. et al. Tethered cord syndrome. Neurosurg Clin N Am 2007; 18: 531-547
- 32 Johnson KMK, Suarez L, Felkner MM. et al. Prevalence of craniorachischisis in a Texas-Mexico border population. Birth Defects Res A Clin Mol Teratol 2004; 70: 92-94
- 33 Moore CA, Li S, Li Z. et al. Elevated rates of severe neural tube defects in a high-prevalence area in northern China. Am J Med Genet 1997; 73: 113-118
- 34 van Gool JD, Hirche H, Lax H. et al. Folic acid and primary prevention of neural tube defects: A review. Reprod Toxicol 2018; 80: 73-84
- 35 Heyns A, Negrini S, Jansen K. et al. The Prevalence of Scoliosis in Spina Bifida Subpopulations: A Systematic Review. Am J Phys Med Rehabil 2018; 97: 848-854
- 36 Hwang SW, Thomas JG, Blumberg TJ. et al. Kyphectomy in patients with myelomeningocele treated with pedicle screw-only constructs: case reports and review. J Neurosurg Pediatr 2011; 8: 63-70
- 37 Müller EB, Nordwall A. Prevalence of scoliosis in children with myelomeningocele in western Sweden. Spine (Phila Pa 1976) 1992; 17: 1097-1102
- 38 Valentini LG, Babini M, Cordella R. et al. Early de-tethering: analysis of urological and clinical consequences in a series of 40 children. Childs Nerv Syst 2021; 37: 941-949
- 39 McLone DG, Herman JM, Gabrieli AP. et al. Tethered cord as a cause of scoliosis in children with a myelomeningocele. Pediatr Neurosurg 1990; 16: 8-13
- 40 McGirt MJ, Mehta V, Garces-Ambrossi G. et al. Pediatric tethered cord syndrome: response of scoliosis to untethering procedures. Clinical article. J Neurosurg Pediatr 2009; 4: 270-274
- 41 Altiok H, Riordan A, Graf A. et al. Response of Scoliosis in Children with Myelomeningocele to Surgical Release of Tethered Spinal Cord. Top Spinal Cord Inj Rehabil 2016; 22: 247-252
- 42 Xu T, Xu J, Ji J. Letter to the editor concerning "Is detethering necessary before deformity correction in congenital scoliosis associated with tethered cord syndrome: a meta-analysis of current evidence" by Ahuja K, et al. (2021) Eur Spine J 30(3):599–611. Eur Spine J 2021; 30: 3324-3325
- 43 Ahuja K, Ifthekar S, Mittal S. et al. Is detethering necessary before deformity correction in congenital scoliosis associated with tethered cord syndrome: a meta-analysis of current evidence. Eur Spine J 2021; 30: 599-611
- 44 Muñoz AM, Alvandi LM, Gjonbalaj E. et al. Comparison of Perioperative Complication Rates in Congenital Scoliosis Patients With and Without Tethered Spinal Cord. J Pediatr Orthop 2025; 45: e352-e357
- 45 Huang J-H, Yang W-Z, Shen C. et al. Surgical Treatment of Congenital Scoliosis Associated With Tethered Cord by Thoracic Spine-shortening Osteotomy Without Cord Detethering. Spine (Phila Pa 1976) 2015; 40: E1103-9
- 46 Hamzaoglu A, Ozturk C, Tezer M. et al. Simultaneous surgical treatment in congenital scoliosis and/or kyphosis associated with intraspinal abnormalities. Spine (Phila Pa 1976) 2007; 32: 2880-2884
- 47 Singrakhia M, Malewar N, Deshmukh S. et al. Simultaneous Surgical Treatment of Congenital Spinal Deformity Associated with Intraspinal Anomalies. Asian Spine J 2018; 12: 466-475
