Neuropediatrics
DOI: 10.1055/a-2271-8619
Review Article

Why Craniofacial Surgeons/Researchers Need to be Aware of Native American Myopathy?

1   Department of Neurosciences, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
,
Patrick G. Burgon
2   Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, State of Qatar
› Author Affiliations

Abstract

Congenital myopathy type 13 (CMYO13), also known as Native American myopathy, is a rare muscle disease characterized by early-onset hypotonia, muscle weakness, delayed motor milestones, and susceptibility to malignant hyperthermia. The phenotypic spectrum of congenital myopathy type 13 is expanding, with milder forms reported in non-native American patients. The first description of the disease dates to 1987 when Bailey and Bloch described an infant belonging to a Native American tribe with cleft palate, micrognathia, arthrogryposis, and general-anesthesia-induced malignant hyperthermia reaction; the cause of the latter remains poorly defined in this rare disease. The pan-ethnic distribution, as well as its predisposition to malignant hyperthermia, makes the identification of CMYO13 essential to avoid life-threatening, anesthesia-related complications. In this article, we are going to review the clinical phenotype of this disease and the pathophysiology of this rare disease with a focus on two unique features of the disease, namely cleft palate and malignant hyperthermia. We also highlight the importance of recognizing this disease's expanding phenotypic spectrum—including its susceptibility to malignant hyperthermia—and providing appropriate care to affected individuals and families.



Publication History

Received: 19 December 2023

Accepted: 16 February 2024

Accepted Manuscript online:
20 February 2024

Article published online:
26 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bailey AG, Bloch EC. Malignant hyperthermia in a three-month-old American Indian infant. Anesth Analg 1987; 66 (10) 1043-1045
  • 2 Stewart CR, Kahler SG, Gilchrist JM. Congenital myopathy with cleft palate and increased susceptibility to malignant hyperthermia: King syndrome?. Pediatr Neurol 1988; 4 (06) 371-374
  • 3 Murtazina A, Demina N, Chausova P, Shchagina O, Borovikov A, Dadali E. The first Russian patient with Native American myopathy. Genes (Basel) 2022; 13 (02) 341
  • 4 Telegrafi A, Webb BD, Robbins SM. et al; Moebius Syndrome Research Consortium. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome. Am J Med Genet A 2017; 173 (10) 2763-2771
  • 5 Zaharieva IT, Sarkozy A, Munot P. et al. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum Mutat 2018; 39 (12) 1980-1994
  • 6 Stamm DS, Aylsworth AS, Stajich JM. et al. Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A 2008; 146A (14) 1832-1841
  • 7 Grzybowski M, Schänzer A, Pepler A, Heller C, Neubauer BA, Hahn A. Novel STAC3 mutations in the first non-Amerindian patient with Native American Myopathy. Neuropediatrics 2017; 48 (06) 451-455
  • 8 Almomen M, Amer F, Alfaraj F, Burgon PG, Bashir S, Alghamdi F. STAC3-related myopathy: a report of a cohort of seven Saudi Arabian patients. Neuropediatrics 2024; •••: 2024
  • 9 Habib AS, Millar S, Deballi III P, Muir HA. Anesthetic management of a ventilator-dependent parturient with the King-Denborough syndrome. Can J Anaesth 2003; 50 (06) 589-592
  • 10 Meluch AM, Sibert KS, Bloch EC. Malignant hyperthermia following isoflurane anesthesia in an American Lumbee Indian. N C Med J 1989; 50 (09) 485-487
  • 11 Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10: 93
  • 12 Melzer W, Dietze B. Malignant hyperthermia and excitation-contraction coupling. Acta Physiol Scand 2001; 171 (03) 367-378
  • 13 McCarthy TV, Quane KA, Lynch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat 2000; 15 (05) 410-417
  • 14 Marinella G, Orsini A, Scacciati M. et al. Congenital myopathy as a phenotypic expression of CACNA1S gene mutation: case report and systematic review of the literature. Genes (Basel) 2023; 14 (07) 1363
  • 15 Stephens J, Schiemann AH, Roesl C. et al. Functional analysis of RYR1 variants linked to malignant hyperthermia. Temperature 2016; 3 (02) 328-339
  • 16 Zhou W, Zhao P, Gao J, Zhang Y. A novel CACNA1S gene variant in a child with hypokalemic periodic paralysis: a case report and literature review. BMC Pediatr 2023; 23 (01) 500
  • 17 Campiglio M, Kaplan MM, Flucher BE. STAC3 incorporation into skeletal muscle triads occurs independent of the dihydropyridine receptor. J Cell Physiol 2018; 233 (12) 9045-9051
  • 18 Muscle Biopsy - 5th Edition. Accessed February 27, 2024 at: https://www.elsevier.com/books/muscle-biopsy/dubowitz/978-0-7020-7471-4
  • 19 Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38 (01) 37-45
  • 20 Rufenach B, Van Petegem F. Structure and function of STAC proteins: calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 2021; 297 (01) 100874
  • 21 Rufenach B, Christy D, Flucher BE. et al. Multiple sequence variants in STAC3 affect interactions with CaV1.1 and excitation-contraction coupling. Structure 2020; 28 (08) 922-932.e5
  • 22 Johnston JJ, Dirksen RT, Girard T. et al. Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genet Med 2021; 23 (07) 1288-1295
  • 23 Horstick EJ, Linsley JW, Dowling JJ. et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013; 4: 1952
  • 24 Nelson BR, Wu F, Liu Y. et al. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci U S A 2013; 110 (29) 11881-11886
  • 25 Polster A, Nelson BR, Olson EN, Beam KG. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation. Proc Natl Acad Sci U S A 2016; 113 (39) 10986-10991
  • 26 Bower NI, de la Serrana DG, Cole NJ. et al. Stac3 is required for myotube formation and myogenic differentiation in vertebrate skeletal muscle. J Biol Chem 2012; 287 (52) 43936-43949
  • 27 Ge X, Zhang Y, Park S, Cong X, Gerrard DE, Jiang H. Stac3 inhibits myoblast differentiation into myotubes. PLoS One 2014; 9 (04) e95926
  • 28 Mai CT, Isenburg JL, Canfield MA. et al; National Birth Defects Prevention Network. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res 2019; 111 (18) 1420-1435
  • 29 Burg ML, Chai Y, Yao CA, Magee III W, Figueiredo JC. Epidemiology, etiology, and treatment of isolated cleft palate. Front Physiol 2016; 7: 67
  • 30 Altassan R, Radenkovic S, Edmondson AC. et al. International Consensus Guidelines for Phosphoglucomutase 1 Deficiency (PGM1-CDG): diagnosis, follow-up, and management. J Inherit Metab Dis 2021; 44 (01) 148-163
  • 31 Crefcoeur LL, Visser G, Ferdinandusse S, Wijburg FA, Langeveld M, Sjouke B. Clinical characteristics of primary carnitine deficiency: a structured review using a case-by-case approach. J Inherit Metab Dis 2022; 45 (03) 386-405
  • 32 Burton BK, Dillard RG, Weaver RG. Walker-Warburg syndrome with cleft lip and cleft palate in two sibs. Am J Med Genet 1987; 27 (03) 537-541
  • 33 van Reeuwijk J, Janssen M, van den Elzen C. et al. POMT2 mutations cause α-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 2005; 42 (12) 907-912
  • 34 Vajsar J, Baskin B, Swoboda K, Biggar DW, Schachter H, Ray PN. Walker-Warburg Syndrome with POMT1 mutations can be associated with cleft lip and cleft palate. Neuromuscul Disord 2008; 18 (08) 675-677
  • 35 Wu P-L, Yang Y-N, Tey S-L, Yang CH, Yang SN, Lin CS. Infantile form of muscle phosphofructokinase deficiency in a premature neonate. Pediatr Int 2015; 57 (04) 746-749
  • 36 Avasthi KK, Agarwal S, Panigrahi I. KLHL40 mutation associated with severe nemaline myopathy, fetal akinesia, and cleft palate. J Pediatr Neurosci 2019; 14 (04) 222-224
  • 37 McMillin MJ, Beck AE, Chong JX. et al; University of Washington Center for Mendelian Genomics. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet 2014; 94 (05) 734-744
  • 38 Bharucha-Goebel DX, Santi M, Medne L. et al. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology 2013; 80 (17) 1584-1589
  • 39 Godfrey ND, Dowlatshahi S, Martin MM, Rothkopf DM. Wieacker-Wolff syndrome with associated cleft palate in a female case. Am J Med Genet A 2018; 176 (01) 167-170
  • 40 Franklin JA, Lalikos JF, Wooden WA. A case of mitochondrial myopathy and cleft palate. Cleft Palate Craniofac J 2005; 42 (03) 327-330
  • 41 Castro-Gago M, Novo-Rodríguez MI, Pintos-Martínez E, Gallano P, Eirís-Puñal J. [Early onset adhalinopathy (LGMD2D) mimicking congenital muscular dystrophy]. Rev Neurol 2001; 32 (07) 631-635
  • 42 Di Gioia SA, Connors S, Matsunami N. et al; Moebius Syndrome Research Consortium. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun 2017; 8: 16077
  • 43 Gromand M, Gueguen P, Pervillé A. et al; STAC3 related congenital myopathy: A case series of seven Comorian patients. Eur J Med Genet 2022; 65 (10) 104598
  • 44 Waldrop MA, Boue DR, Sites E, Flanigan KM, Shell R. Clinicopathologic Conference: A Newborn With Hypotonia, Cleft Palate, Micrognathia, and Bilateral Club Feet. Pediatr Neurol 2017; 74: 11-14
  • 45 Murtazina A, Demina N, Chausova P, Shchagina O, Borovikov A, Dadali E. The First Russian Patient with Native American Myopathy. Genes 2022; 13 (02) 341
  • 46 Telegrafi A, Webb DB, Robbins SM. et al. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome. Am J Med Genet A 2017; 173 (10) 2763-2771
  • 47 Mock S, Jabaut J, Barra D, Angelo T, Benjamin J. Challenges in Obstetric Anesthesia in a Parturient With Native American Myopathy: A Case Report. AA Pract 2021; 15 (12) e01541
  • 48 Abel DE, Grotegut CA. King syndrome in pregnancy. Obstet Gynecol 2003; 101 (5 Pt 2) 1146-1149