CC BY 4.0 · SynOpen 2023; 07(04): 466-485
DOI: 10.1055/a-2167-8298
graphical review

Half-Sandwich d6-Metal (CoIII, RhIII, IrIII, RuII)-Catalyzed Enantioselective C–H Activation

Pu-Fan Qian
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Jun-Yi Li
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Yi-Bo Zhou
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Tao Zhou
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Bing-Feng Shi
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
b   College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. of China
c   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. of China
d   College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. of China
e   School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China [22271250 (T.Z.), 21925109 (B.-F.S.)], Zhejiang Provincial Natural Science Foundation [LD22B030003 (B.-F.S.)], the National Key Research and Development Program of China [2021YFF0701600 (B.-F.S.)], the Fundamental Research Funds for the Central Universities [226-2022-00224 (B.-F. S.), 226-2022-00175 (T.Z.)], the Open Research Fund of School Chemistry and Chemical Engineering, Henan Normal University and the Center of Chemistry for Frontier Technologies of Zhejiang University is gratefully acknowledged.
 


Abstract

Transition-metal-catalyzed enantioselective C–H activation provides a straightforward strategy to synthesize chiral molecules from readily available sources. In this graphical review, we summarize the progress on half-sandwich d6-metal (CoIII, RhIII, IrIII, RuII)-catalyzed enantioselective C–H functionalization reactions. The review is categorized according to the type of metal catalyst and chiral ligand employed. Representative enantio-determining models and catalytic cycles are presented.


#

Biographical Sketches

Zoom Image

from left to right


Pu-Fan Qian was born in Zhejiang, China. He joined the research group of Prof. Dr. Bing-Feng Shi in 2019 and received his B.Sc. degree from Zhejiang University in 2022. He is currently a Ph.D. student at Zhejiang University under the guidance of Prof. Dr. Bing-Feng Shi. His research interests focus on transition-metal-catalyzed asymmetric C–H functionalization.


Jun-Yi Li was born in 2000 in Zhejiang Province, China. He received his B.Sc. degree from Zhejiang University in 2022. In the same year, he joined the Department of Chemistry, Zhejiang University for his Ph.D. studies in the laboratories of Prof. Dr. Bing-Feng Shi. His research interests focus on transition-metal-catalyzed asymmetric C–H functionalization.


Yi-Bo Zhou was born in Henan, China. He joined the Bing-Feng Shi group in 2020 and received his B.Sc. degree from Zhejiang University in 2022. He is currently a Ph.D. student at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. His research interests focus on asymmetric C–H functionalization.


Tao Zhou was born in Hubei, China. He received his B.Sc. degree in 2012 at Shandong University and his Ph.D. in 2017 from Nankai University under the supervision of Professor Bai-Quan Wang. He subsequently worked as a postdoctoral fellow in the group of Prof. Bing-Feng Shi at Zhejiang University, and was promoted to associate professor in 2021. His current research interests are focused on transition-metal-catalyzed asymmetric C–H activation.


Bing-Feng Shi was born in Shandong, China. He received his B.S. degree from Nankai University in 2001 and his Ph.D. in 2006 from the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences under the guidance of Professor Biao Yu. Following a period as a postdoctoral fellow at the University of California, San Diego (2006–2007), he moved to The Scripps Research Institute working with Professor Jin-Quan Yu as a research associate. In 2010, he joined the Department of Chemistry at Zhejiang University as a professor. His research focus is directed towards transition metal-catalyzed C–H functionalization and its application in the synthesis of biologically important small molecules.

Direct asymmetric C–H activation, which is a process capable of transforming C–H bonds into C–C or C–X bonds and generating new stereocenters in a single step, is a particularly attractive strategy for the concise synthesis of chiral molecules from readily available sources. To date, one of the most successful methods is directing-group-assisted enantioselective C–H activation using high-valent metal catalysts. In 2008, pioneering work was reported by Yu and co-workers on Pd(II)-catalyzed enantioselective C–H activation using monoprotected amino acids (MPAAs) as chiral ligands.[1] The use of MPAAs or related bidentate ligands realized various enantioselective C(sp2)–H and C(sp3)–H functionalization reactions. Furthermore, mechanistic studies indicated that chelation of the MPAAs or related bidentate ligands at the square planar Pd center with four coordination sites is key to the high enantiocontrol. However, the bidentate monoprotected amino acids and related ligands could not be applied to piano-stool CoIII, RhIII, IrIII, and RuII catalysts as there is only one coordination site available for an external chiral ligand.

On the other hand, half-sandwich d6 metals (e.g., CoIII, RhIII, IrIII, RuII) have attracted significant attentions due to their versatile reactivity and selectivity, good functional group tolerance, and stability. Through the continuous efforts of chemists, three main strategies have been developed to enable half-sandwich d6-metal-catalyzed asymmetric C–H activation. The first strategy involves the use of tailor-made chiral Cpx ligands to bind with CoIII, RhIII, or IrIII, or chiral arene ligands to bind with RuII. The chiral Cpx or chiral arene pre-coordinating strategy is powerful for its board substrate scope and various functionalization. Besides, several types of well-designed monodentate chiral carboxylic acids (CCAs) have also been developed to realize half-sandwich d6-metal-catalyzed enantioselective C–H functionalization reactions. The third strategy takes advantage of a chiral transient directing group (cTDG). Some other specialized strategies have also been disclosed, including enantioselective alkylation of olefins enabled by disulfonates, transition-metal/organocatalyst synergetic catalysis and so on. These works has greatly promote the development of enantioselective C–H activation and provide efficient and convenient methods to access diverse chiral skeletons. In this graphical review, we have summarized the rapid progress made on half-sandwich d6-metal-catalyzed enantioselective C–H activation in the past years, which was categorized according to different metal catalysts. We hope that this graphical review will stimulate further researches on the development of novel chiral ligands and strategies in this emerging research topic.[2]

Zoom Image
Figure 1 The development and challenges of half-sandwich d6-metal (CoIII, RhIII, IrIII, RuII)-catalyzed enantioselective C–H activation and two pioneering reports on Rh-catalyzed asymmetric C–H activation in 2012[3a–ad]
Zoom Image
Figure 2 Chiral CpxRh-catalyzed enantioselective C–H activation with olefins[4`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 3 Chiral CpxRh-catalyzed enantioselective C–H activation/nucleophilic addition with alkenes, alkynes and aldehydes[5`] [b] [c] [d] [e] [f]
Zoom Image
Figure 4 Chiral CpxRh-catalyzed asymmetric synthesis of chiral amides and heterocycles[6`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 5 Enantioselective [4+1]-annulations of acrylamides/acids catalyzed by chiral CpxRh catalysts[7`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 6 Asymmetric construction of quaternary carbon centers in spirocyclic compounds via chiral CpxRh-catalyzed annulations[8`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 7 Asymmetric construction of axially chiral compounds via chiral CpxRh-catalyzed annulations with alkynes[9`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 8 Chiral CpxRh-catalyzed asymmetric formation of axially chiral compounds and chiral helicenes[4c] , [10`] [b] [c] [d] [e] [f]
Zoom Image
Figure 9 Synthesis of P- and S-stereogenic compounds via chiral CpxRh-catalyzed enantioselective C–H functionalization[11`] [b] [c] [d] [e] [f]
Zoom Image
Figure 10 Construction of compounds with multiple chirality using a chiral CpxRh complex or an achiral Cp*Rh species combined with asymmetric organocatalysis[12`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 11 Cp*RhIII-catalyzed enantioselective C–H functionalization enabled by chiral carboxylic acids/disulfonates as ligands or by a chiral amide as a chiral transient directing group[13`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 12 IrIII-catalyzed enantioselective C–H functionalization with chiral Cpx [14`] [b] [c] [d]
Zoom Image
Figure 13 Achiral Cp*IrIII-catalyzed enantioselective C–H functionalization using chiral carboxylic acids as ligands[15`] [b] [c] [d] [e]
Zoom Image
Figure 14 CpxCoIII-catalyzed enantioselective C–H functionalization via asymmetric alkylation[16`] [b] [c] [d]
Zoom Image
Figure 15 Achiral Cp*CoIII-catalyzed enantioselective C–H functionalization using chiral carboxylic acids as ligands[17`] [b] [c] [d] [e] [f]
Zoom Image
Figure 16 RuII-catalyzed enantioselective C–H functionalization[18`] [b] [c] [d] [e] [f] [g] [h] [i]

#

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We are grateful to current and former members of the Shi group who have contributed to the development of this field.

  • References

  • 1 Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882

    • During the preparation of this graphical review, several reports on this topic appeared highlighting the importance of these chiral catalysts, see:
    • 2a Huang L.-T, Kitakawa Y, Yamada K, Kamiyama F, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2023; 62: e202305480
    • 2b Yang H, Zhang R, Zhang S.-Z, Gu Q, You S.-L. ACS. Catal. 2023; 13: 8838
    • 2c Yang H, Yang Z.-Q, Zhang S.-Z, Zhang W.-W, Gu Q, You S.-L. Sci. China Chem. 2023; 66 in press; DOI: 10.1007/s11426 -023-1637-8
    • 2d Zhang S.-Z, Zhang W.-W, Yang H, Gu Q, You S.-L. Chin. J. Org. Chem. 2023; 43: 2926
    • 2e Zheng Y, Zhang W.-Y, Gu Q, Zheng C, You S.-L. Nat. Commun. 2023; 14: 1094
    • 2f Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
    • 2g Guo W, Pang X, Jiang J, Wang J. Org. Lett. 2023; 25: 3823
    • 2h Zhu X, Wu H, Wang Y, Huang G, Wang F, Li X. Chem. Sci. 2023; 14: 8564
    • 2i Zhu X, Mi R, Yin J, Wang F, Li X. Chem. Sci. 2023; 14: 7999
    • 2j Mi R, Ding Z, Yu S, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8150
    • 2k Zhu M, Zhao Y, Li X, Liu B. Org. Lett. 2023; 25: 1839
    • 2l Wang P, Wu H, Zhang X.-P, Huang G, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8417
    • 2m Zheng D.-S, Zhang W.-W, Gu Q, You S.-L. ACS Catal. 2023; 13: 5127
    • 3a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3b Wencel-Delord J, Colobert F. Chem. Eur. J. 2013; 19: 14010
    • 3c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 3d Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 3e Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
    • 3f Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3g Wozniak Ł, Cramer N. Trends Chem. 2019; 1: 471
    • 3h Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
    • 3i Zhang Q, Shi B.-F. Acc. Chem. Res. 2021; 54: 2750
    • 3j Zhan B.-B, Jin L, Shi B.-F. Trends Chem. 2022; 4: 220
    • 3k McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3l Gutekunsta WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 3m Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 3n Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 3o Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 3p Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
    • 3q Liang H, Wang J. Chem. Eur. J. 2023; 29: e202202461
    • 3r Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 3s Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
    • 3t Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 3u Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 3v Achar T, Maiti KS, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 3w Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
    • 3x Pan C, Yin S.-Y, Gua Q, You S.-L. Org. Biomol. Chem. 2021; 19: 7264
    • 3y Yue Q, Liu B, Liao G, Shi B.-F. ACS Catal. 2022; 12: 9359
    • 3z Yoshino T. Bull. Chem. Soc. Jpn. 2022; 95: 1280
    • 3aa Qian P.-F, Li J.-Y, Zhou T, Shi B.-F. Synthesis 2022; 54: 4784
    • 3ab Ye B, Cramer N. Science 2012; 338: 504
    • 3ac Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
    • 3ad Hassan IS, Ta AN, Danneman MW, Semakul N, Burns M, Basch CH, Dippon VN, McNaughton BR, Rovis T. J. Am. Chem. Soc. 2019; 141: 4815
    • 4a Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 4b Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
    • 4c Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 4d Audic B, Wodrich MD, Cramer N. Chem. Sci. 2019; 10: 781
    • 4e Potter TJ, Kamber DN, Mercado DN, Ellman JA. ACS Catal. 2017; 7: 150
    • 4f Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
    • 4g Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
    • 4h Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
    • 4i Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 4j Ye B, Donets PA, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 507
    • 6a Wu L, Xu H, Gao H, Li L, Chen W, Zhou Z, Yi W. ACS Catal. 2021; 11: 2279
    • 6b Wu L, Li L, Zhang H, Gao H, Zhou Z, Yi W. Org. Lett. 2021; 23: 3844
    • 6c Wei Y, Xu H, Chen F, Gao H, Huang Y, Yi W, Zhou Z. New J. Chem. 2022; 46: 5705
    • 6d Wu M, Gao H, Xu H, Yi W, Zhou Z. Chin. Chem. Lett. 2022; 33: 842
    • 6e Maity S, Potter TJ, Ellman JA. Nat. Catal. 2019; 2: 756
    • 6f Mi R, Zhang X, Wang J, Chen H, Lan Y, Wang F, Li X. ACS Catal. 2021; 11: 6692
    • 6g Brandes DS, Sirvent A, Mercado BQ, Ellman JA. Org. Lett. 2021; 23: 2836
    • 6h Wang S.-G, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 2514
    • 6i Yang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2019; 58: 322
    • 6j Mi R, Zheng G, Qi Z, Li X. Angew. Chem. Int. Ed. 2019; 58: 17666
    • 7a Ye B, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 7896
    • 7b Chen X, Yang S, Li H, Wang B, Song G. ACS Catal. 2017; 7: 2392
    • 7c Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Angew. Chem. Int. Ed. 2021; 60: 8396
    • 7d Li T, Zhou C, Yan X, Wang J. Angew. Chem. Int. Ed. 2018; 57: 4048
    • 7e Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
    • 7f Wang S.-G, Cramer N. ACS Catal. 2020; 10: 8231
    • 7g Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
    • 8a Kong L, Han X, Liu S, Zou Y, Lan Y, Li X. Angew. Chem. Int. Ed. 2020; 59: 7188
    • 8b Sun L, Liu B, Wang F, Deng W.-Q, Zhao Y, Chang J, Kong L, Li X. Chem. Commun. 2021; 57: 8268
    • 8c Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880
    • 8d Zheng C, Zheng J, You S.-L. ACS Catal. 2016; 6: 262
    • 8e Chidipudi SR, Burns DJ, Khan I, Lam HW. Angew. Chem. Int. Ed. 2015; 54: 13975
    • 8f Zheng J, Wang S.-B, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 4540
    • 8g Pham MV, Cramer N. Chem. Eur. J. 2016; 22: 2270
    • 8h Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 8i Huang Y.-Q, Wu Z.-J, Zhu L, Gu Q, Lu X, You S.-L, Mei T.-S. CCS Chem. 2022; 4: 3181
    • 8j Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
    • 9a Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
    • 9b Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 9c Wang F, Qi Z, Zhao Y, Zhai S, Zheng G, Mi R, Huang Z, Zhu X, He X, Li X. Angew. Chem. Int. Ed. 2020; 59: 13288
    • 9d Wang F, Jing J, Zhao Y, Zhu X, Zhang X.-P, Zhao L, Hu P, Deng W.-Q, Li X. Angew. Chem. Int. Ed. 2021; 60: 16628
    • 9e Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2022; 61: e202111860
    • 9f Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
    • 9g Yan Y, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202201522
    • 10a Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
    • 10b Shaaban S, Merten C, Waldmann H. Chem. Eur. J. 2022; 28: e202103365
    • 10c Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
    • 10d Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 10e Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
    • 10f Zou Y, Wang P, Kong L, Li X. Org. Lett. 2022; 24: 3189
    • 11a Sun Y, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 364
    • 11b Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
    • 11c Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
    • 11d Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
    • 11e Hu P, Kong L, Wang F, Zhu X, Li X. Angew. Chem. Int. Ed. 2021; 60: 20424
    • 11f Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
    • 12a Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. ACS Catal. 2021; 11: 9151
    • 12b Wang S.-B, Zheng J, You S.-L. Organometallics 2016; 35: 1420
    • 12c Wang S.-B, Gu Q, You S.-L. Organometallics 2017; 36: 4359
    • 12d Wang Q, Nie Y.-H, Liu C.-X, Zhang W.-W, Wu Z.-J, Gu Q, Zheng C, You S.-L. ACS Catal. 2022; 12: 3083
    • 12e Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
    • 12f Zhang W.-W, Liu C.-X, Yang P, Zhang S.-Z, Gu Q, You S.-L. Org. Lett. 2022; 24: 564
    • 12g Kurihara T, Kojima M, Yoshino T, Matsunaga S. J. Am. Chem. Soc. 2022; 144: 7058
    • 13a Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
    • 13b Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 18154
    • 13c Huang L.-T, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Org. Lett. 2020; 22: 8256
    • 13d Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 4271
    • 13e Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
    • 13f Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 15187
    • 13g Li G, Jiang J, Xie H, Wang J. Chem. Eur. J. 2019; 25: 4688
    • 14a Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
    • 14b Jang Y.-S, Wozniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
    • 14c Wozniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 18532
    • 14d Zimbron JM, Heinisch T, Schmid M, Hamels D, Nogueira ES, Schirmer T, Ward TR. J. Am. Chem. Soc. 2013; 135: 5384
    • 15a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
    • 15b Zhang C.-W, Hu X.-Q, Dai Y.-H, Yin P, Wang C, Duan W.-L. ACS Catal. 2022; 12: 193
    • 15c Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
    • 15d Liu L, Song H, Liu Y.-H, Wu L.-S, Shi B.-F. ACS Catal. 2020; 10: 7117
    • 15e Li J.-Y, Xie P.-P, Zhou T, Qian P.-F, Zhou Y.-B, Li H.-C, Hong X, Shi B.-F. ACS Catal. 2022; 12: 9083
    • 16a Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 16b Ozols K, Onodera S, Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 655
    • 16c Herraiz AG, Cramer N. ACS Catal. 2021; 11: 11938
    • 16d Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
    • 17a Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
    • 17b Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
    • 17c Liu Y.-H, Li P.-X, Yao Q.-J, Zhang Z.-Z, Huang D.-Y, Le MD, Song H, Liu L, Shi B.-F. Org. Lett. 2019; 21: 1895
    • 17d Liu Y.-H, Xie P.-P, Liu L, Fan J, Zhang Z.-Z, Hong X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 19112
    • 17e Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2022; 61: e202205341
    • 17f Zhou Y.-B, Zhou T, Qian P.-F, Li J.-Y, Shi B.-F. ACS Catal. 2022; 12: 9806
    • 18a Liang H, Guo W, Li J, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202204926
    • 18b Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
    • 18c Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
    • 18d Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. J. Org. Chem. 2022; 87: 4617
    • 18e Zhou T, Qian P-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
    • 18f Huang L.-T, Hirata Y, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Synthesis 2022; 54: 4703
    • 18g Qian P.-F, Zhou T, Li J.-Y, Zhou Y.-B, Shi B.-F. ACS Catal. 2022; 12: 13876
    • 18h Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
    • 18i Li Y, Liou Y.-C, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2022; 61: e202212595

Corresponding Authors

Tao Zhou
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University
Hangzhou 310027
P. R. of China   
Bing-Feng Shi
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University
Hangzhou 310027
P. R. of China   

Publication History

Received: 25 July 2023

Accepted after revision: 04 September 2023

Accepted Manuscript online:
06 September 2023

Article published online:
05 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882

    • During the preparation of this graphical review, several reports on this topic appeared highlighting the importance of these chiral catalysts, see:
    • 2a Huang L.-T, Kitakawa Y, Yamada K, Kamiyama F, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2023; 62: e202305480
    • 2b Yang H, Zhang R, Zhang S.-Z, Gu Q, You S.-L. ACS. Catal. 2023; 13: 8838
    • 2c Yang H, Yang Z.-Q, Zhang S.-Z, Zhang W.-W, Gu Q, You S.-L. Sci. China Chem. 2023; 66 in press; DOI: 10.1007/s11426 -023-1637-8
    • 2d Zhang S.-Z, Zhang W.-W, Yang H, Gu Q, You S.-L. Chin. J. Org. Chem. 2023; 43: 2926
    • 2e Zheng Y, Zhang W.-Y, Gu Q, Zheng C, You S.-L. Nat. Commun. 2023; 14: 1094
    • 2f Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
    • 2g Guo W, Pang X, Jiang J, Wang J. Org. Lett. 2023; 25: 3823
    • 2h Zhu X, Wu H, Wang Y, Huang G, Wang F, Li X. Chem. Sci. 2023; 14: 8564
    • 2i Zhu X, Mi R, Yin J, Wang F, Li X. Chem. Sci. 2023; 14: 7999
    • 2j Mi R, Ding Z, Yu S, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8150
    • 2k Zhu M, Zhao Y, Li X, Liu B. Org. Lett. 2023; 25: 1839
    • 2l Wang P, Wu H, Zhang X.-P, Huang G, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8417
    • 2m Zheng D.-S, Zhang W.-W, Gu Q, You S.-L. ACS Catal. 2023; 13: 5127
    • 3a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 3b Wencel-Delord J, Colobert F. Chem. Eur. J. 2013; 19: 14010
    • 3c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 3d Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 3e Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
    • 3f Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3g Wozniak Ł, Cramer N. Trends Chem. 2019; 1: 471
    • 3h Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
    • 3i Zhang Q, Shi B.-F. Acc. Chem. Res. 2021; 54: 2750
    • 3j Zhan B.-B, Jin L, Shi B.-F. Trends Chem. 2022; 4: 220
    • 3k McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3l Gutekunsta WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 3m Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 3n Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 3o Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 3p Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
    • 3q Liang H, Wang J. Chem. Eur. J. 2023; 29: e202202461
    • 3r Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 3s Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
    • 3t Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 3u Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 3v Achar T, Maiti KS, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 3w Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
    • 3x Pan C, Yin S.-Y, Gua Q, You S.-L. Org. Biomol. Chem. 2021; 19: 7264
    • 3y Yue Q, Liu B, Liao G, Shi B.-F. ACS Catal. 2022; 12: 9359
    • 3z Yoshino T. Bull. Chem. Soc. Jpn. 2022; 95: 1280
    • 3aa Qian P.-F, Li J.-Y, Zhou T, Shi B.-F. Synthesis 2022; 54: 4784
    • 3ab Ye B, Cramer N. Science 2012; 338: 504
    • 3ac Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
    • 3ad Hassan IS, Ta AN, Danneman MW, Semakul N, Burns M, Basch CH, Dippon VN, McNaughton BR, Rovis T. J. Am. Chem. Soc. 2019; 141: 4815
    • 4a Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 4b Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
    • 4c Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 4d Audic B, Wodrich MD, Cramer N. Chem. Sci. 2019; 10: 781
    • 4e Potter TJ, Kamber DN, Mercado DN, Ellman JA. ACS Catal. 2017; 7: 150
    • 4f Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
    • 4g Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
    • 4h Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
    • 4i Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 4j Ye B, Donets PA, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 507
    • 6a Wu L, Xu H, Gao H, Li L, Chen W, Zhou Z, Yi W. ACS Catal. 2021; 11: 2279
    • 6b Wu L, Li L, Zhang H, Gao H, Zhou Z, Yi W. Org. Lett. 2021; 23: 3844
    • 6c Wei Y, Xu H, Chen F, Gao H, Huang Y, Yi W, Zhou Z. New J. Chem. 2022; 46: 5705
    • 6d Wu M, Gao H, Xu H, Yi W, Zhou Z. Chin. Chem. Lett. 2022; 33: 842
    • 6e Maity S, Potter TJ, Ellman JA. Nat. Catal. 2019; 2: 756
    • 6f Mi R, Zhang X, Wang J, Chen H, Lan Y, Wang F, Li X. ACS Catal. 2021; 11: 6692
    • 6g Brandes DS, Sirvent A, Mercado BQ, Ellman JA. Org. Lett. 2021; 23: 2836
    • 6h Wang S.-G, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 2514
    • 6i Yang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2019; 58: 322
    • 6j Mi R, Zheng G, Qi Z, Li X. Angew. Chem. Int. Ed. 2019; 58: 17666
    • 7a Ye B, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 7896
    • 7b Chen X, Yang S, Li H, Wang B, Song G. ACS Catal. 2017; 7: 2392
    • 7c Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Angew. Chem. Int. Ed. 2021; 60: 8396
    • 7d Li T, Zhou C, Yan X, Wang J. Angew. Chem. Int. Ed. 2018; 57: 4048
    • 7e Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
    • 7f Wang S.-G, Cramer N. ACS Catal. 2020; 10: 8231
    • 7g Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
    • 8a Kong L, Han X, Liu S, Zou Y, Lan Y, Li X. Angew. Chem. Int. Ed. 2020; 59: 7188
    • 8b Sun L, Liu B, Wang F, Deng W.-Q, Zhao Y, Chang J, Kong L, Li X. Chem. Commun. 2021; 57: 8268
    • 8c Zheng J, Wang S.-B, Zheng C, You S.-L. J. Am. Chem. Soc. 2015; 137: 4880
    • 8d Zheng C, Zheng J, You S.-L. ACS Catal. 2016; 6: 262
    • 8e Chidipudi SR, Burns DJ, Khan I, Lam HW. Angew. Chem. Int. Ed. 2015; 54: 13975
    • 8f Zheng J, Wang S.-B, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 4540
    • 8g Pham MV, Cramer N. Chem. Eur. J. 2016; 22: 2270
    • 8h Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 8i Huang Y.-Q, Wu Z.-J, Zhu L, Gu Q, Lu X, You S.-L, Mei T.-S. CCS Chem. 2022; 4: 3181
    • 8j Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
    • 9a Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
    • 9b Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 9c Wang F, Qi Z, Zhao Y, Zhai S, Zheng G, Mi R, Huang Z, Zhu X, He X, Li X. Angew. Chem. Int. Ed. 2020; 59: 13288
    • 9d Wang F, Jing J, Zhao Y, Zhu X, Zhang X.-P, Zhao L, Hu P, Deng W.-Q, Li X. Angew. Chem. Int. Ed. 2021; 60: 16628
    • 9e Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2022; 61: e202111860
    • 9f Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
    • 9g Yan Y, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202201522
    • 10a Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
    • 10b Shaaban S, Merten C, Waldmann H. Chem. Eur. J. 2022; 28: e202103365
    • 10c Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
    • 10d Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 10e Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
    • 10f Zou Y, Wang P, Kong L, Li X. Org. Lett. 2022; 24: 3189
    • 11a Sun Y, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 364
    • 11b Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
    • 11c Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
    • 11d Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
    • 11e Hu P, Kong L, Wang F, Zhu X, Li X. Angew. Chem. Int. Ed. 2021; 60: 20424
    • 11f Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
    • 12a Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. ACS Catal. 2021; 11: 9151
    • 12b Wang S.-B, Zheng J, You S.-L. Organometallics 2016; 35: 1420
    • 12c Wang S.-B, Gu Q, You S.-L. Organometallics 2017; 36: 4359
    • 12d Wang Q, Nie Y.-H, Liu C.-X, Zhang W.-W, Wu Z.-J, Gu Q, Zheng C, You S.-L. ACS Catal. 2022; 12: 3083
    • 12e Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
    • 12f Zhang W.-W, Liu C.-X, Yang P, Zhang S.-Z, Gu Q, You S.-L. Org. Lett. 2022; 24: 564
    • 12g Kurihara T, Kojima M, Yoshino T, Matsunaga S. J. Am. Chem. Soc. 2022; 144: 7058
    • 13a Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
    • 13b Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 18154
    • 13c Huang L.-T, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Org. Lett. 2020; 22: 8256
    • 13d Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 4271
    • 13e Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
    • 13f Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 15187
    • 13g Li G, Jiang J, Xie H, Wang J. Chem. Eur. J. 2019; 25: 4688
    • 14a Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
    • 14b Jang Y.-S, Wozniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
    • 14c Wozniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 18532
    • 14d Zimbron JM, Heinisch T, Schmid M, Hamels D, Nogueira ES, Schirmer T, Ward TR. J. Am. Chem. Soc. 2013; 135: 5384
    • 15a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
    • 15b Zhang C.-W, Hu X.-Q, Dai Y.-H, Yin P, Wang C, Duan W.-L. ACS Catal. 2022; 12: 193
    • 15c Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
    • 15d Liu L, Song H, Liu Y.-H, Wu L.-S, Shi B.-F. ACS Catal. 2020; 10: 7117
    • 15e Li J.-Y, Xie P.-P, Zhou T, Qian P.-F, Zhou Y.-B, Li H.-C, Hong X, Shi B.-F. ACS Catal. 2022; 12: 9083
    • 16a Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 16b Ozols K, Onodera S, Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 655
    • 16c Herraiz AG, Cramer N. ACS Catal. 2021; 11: 11938
    • 16d Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
    • 17a Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
    • 17b Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
    • 17c Liu Y.-H, Li P.-X, Yao Q.-J, Zhang Z.-Z, Huang D.-Y, Le MD, Song H, Liu L, Shi B.-F. Org. Lett. 2019; 21: 1895
    • 17d Liu Y.-H, Xie P.-P, Liu L, Fan J, Zhang Z.-Z, Hong X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 19112
    • 17e Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2022; 61: e202205341
    • 17f Zhou Y.-B, Zhou T, Qian P.-F, Li J.-Y, Shi B.-F. ACS Catal. 2022; 12: 9806
    • 18a Liang H, Guo W, Li J, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202204926
    • 18b Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
    • 18c Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
    • 18d Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. J. Org. Chem. 2022; 87: 4617
    • 18e Zhou T, Qian P-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
    • 18f Huang L.-T, Hirata Y, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Synthesis 2022; 54: 4703
    • 18g Qian P.-F, Zhou T, Li J.-Y, Zhou Y.-B, Shi B.-F. ACS Catal. 2022; 12: 13876
    • 18h Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
    • 18i Li Y, Liou Y.-C, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2022; 61: e202212595

Zoom Image
Zoom Image
Figure 1 The development and challenges of half-sandwich d6-metal (CoIII, RhIII, IrIII, RuII)-catalyzed enantioselective C–H activation and two pioneering reports on Rh-catalyzed asymmetric C–H activation in 2012[3a–ad]
Zoom Image
Figure 2 Chiral CpxRh-catalyzed enantioselective C–H activation with olefins[4`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 3 Chiral CpxRh-catalyzed enantioselective C–H activation/nucleophilic addition with alkenes, alkynes and aldehydes[5`] [b] [c] [d] [e] [f]
Zoom Image
Figure 4 Chiral CpxRh-catalyzed asymmetric synthesis of chiral amides and heterocycles[6`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 5 Enantioselective [4+1]-annulations of acrylamides/acids catalyzed by chiral CpxRh catalysts[7`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 6 Asymmetric construction of quaternary carbon centers in spirocyclic compounds via chiral CpxRh-catalyzed annulations[8`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 7 Asymmetric construction of axially chiral compounds via chiral CpxRh-catalyzed annulations with alkynes[9`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 8 Chiral CpxRh-catalyzed asymmetric formation of axially chiral compounds and chiral helicenes[4c] , [10`] [b] [c] [d] [e] [f]
Zoom Image
Figure 9 Synthesis of P- and S-stereogenic compounds via chiral CpxRh-catalyzed enantioselective C–H functionalization[11`] [b] [c] [d] [e] [f]
Zoom Image
Figure 10 Construction of compounds with multiple chirality using a chiral CpxRh complex or an achiral Cp*Rh species combined with asymmetric organocatalysis[12`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 11 Cp*RhIII-catalyzed enantioselective C–H functionalization enabled by chiral carboxylic acids/disulfonates as ligands or by a chiral amide as a chiral transient directing group[13`] [b] [c] [d] [e] [f] [g]
Zoom Image
Figure 12 IrIII-catalyzed enantioselective C–H functionalization with chiral Cpx [14`] [b] [c] [d]
Zoom Image
Figure 13 Achiral Cp*IrIII-catalyzed enantioselective C–H functionalization using chiral carboxylic acids as ligands[15`] [b] [c] [d] [e]
Zoom Image
Figure 14 CpxCoIII-catalyzed enantioselective C–H functionalization via asymmetric alkylation[16`] [b] [c] [d]
Zoom Image
Figure 15 Achiral Cp*CoIII-catalyzed enantioselective C–H functionalization using chiral carboxylic acids as ligands[17`] [b] [c] [d] [e] [f]
Zoom Image
Figure 16 RuII-catalyzed enantioselective C–H functionalization[18`] [b] [c] [d] [e] [f] [g] [h] [i]