RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00025710.xml
Sportphysio 2022; 10(05): 219-225
DOI: 10.1055/a-1955-5578
DOI: 10.1055/a-1955-5578
Focus
Einführung
Knorpelschaden am Kniegelenk: operative Behandlungsmöglichkeiten und Rückkehr zum Sport

Die Diagnose „Knorpelschaden am Knie“ weckt schlimme Befürchtungen. Doch dank moderner Operationsverfahren ist für viele Sportler eine Rückkehr zum Sport möglich.
Publikationsverlauf
Artikel online veröffentlicht:
23. November 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literaturverzeichnis
- 1 Behrens P, Bosch U, Bruns J. et al. Indikations- und Durchführungsempfehlungen der Arbeitsgemeinschaft „Geweberegeneration und Gewebeersatz“ zur Autologen Chondrozyten-Transplantation (ACT). Z Orthop Ihre Grenzgeb 2004; 142 (05) 529-539
- 2 Beletsky A, Naveen NB, Tauro T. et al. Microdrilling demonstrates superior patient-reported outcomes and lower revision rates than traditional microfracture: A matched cohort analysis. Arthrosc Sports Med Rehabil 2021; 3 (03) e629-e638
- 3 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
- 4 Brittberg M, Recker D, Ilgenfritz J. et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture. Am J Sports Med 2018; 46 (06) 1343-1351
- 5 Chen H, Sun J, Hoemann CD. et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009; 27 (11) 1432-1438
- 6 Faber S, Angele P, Zellner J. et al. Comparison of clinical outcome following cartilage repair for patients with underlying varus deformity with or without additional high tibial osteotomy: A propensity score-matched study based on the German Cartilage Registry (KnorpelRegister DGOU). Cartilage 2021; 13 (1_suppl): 1206S-1216S
- 7 Hirschmüller A, Baur H, Braun S. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 2011; 39 (12) 2686-96
- 8 Hirschmüller A, Schoch W. Baur. et al. Rehabilitation before regenerative cartilage knee surgery: A new prehabilitation guideline based on the best available evidence. Arch Orthop Traum Surg 2019; 139 (02) 217-230
- 9 Marlovits S, Zeller P, Singer P. et al. Cartilage repair: Generations of autologous chondrocyte transplantation. Eur J Radiol 2006; 57 (01) 24-31
- 10 McCormick F, Yanke A, Provencher M. et al. Minced articular cartilage – basic science, surgical technique, and clinical application. Sports Med Arthrosc Rev 2008; 16 (04) 217-220
- 11 Mithoefer K, Hambly K, Della Villa S. et al. Return to sports participation after articular cartilage repair in the knee: Scientific evidence. Am J Sports Med 2009; 37 (1_suppl), 167S-176S
- 12 Mithoefer K, Mcadams T, Williams RJ. et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis. Am Journal Sports Med 2009; 37 (10) 2053-2063
- 13 Niemeyer P, Albrecht D, Aurich M. et al. Empfehlungen der AG Klinische Geweberegeneration zur Behandlung von Knorpelschäden am Kniegelenk. Z Orthop Unfall 21.02.2022;
- 14 Niemeyer P, Becher C, Brucker PU. et al. Stellenwert der matrixaugmentierten Knochenmarkstimulation in der Behandlung von Knorpelschäden des Kniegelenks: Konsensusempfehlungen der AG Klinische Geweberegeneration der DGOU. Z Orthop Unfall 2018; 156 (05) 513-532
- 15 Niemeyer P, Faber S, Bumberger A. Handlungsempfehlung: Knorpeltherapie am Kniegelenk. Knie Journal 2022; 4: 72-75
- 16 Niemeyer P, Feucht MJ, Fritz J. et al. Cartilage repair surgery for full-thickness defects of the knee in Germany: Indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 2016; 136 (07) 891-7
- 17 Niemeyer P, Laute V, Zinser W. et al. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects. Orthop J Sports Med 2019; 7 (07) 232596711985444
- 18 Niemeyer P, Laute V, Zinser W. et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc 2020; 28 (04) 1130-1143
- 19 Peterson L, Vasiliadis HS, Brittberg M. et al. Autologous chondrocyte implantation: A long-term follow-up. Am J Sports Med 2010; 38 (06) 1117-1124
- 20 Rogan S, Taeymans J, Hirschmüller A. et al. Effect of continuous passive motion for cartilage regenerative surgery – a systematic literature review. Z Orthop Unfall 2013; 151 (05) 468-474
- 21 Saris DBF, Vanlauwe J, Victor J. et al. Treatment of symptomatic cartilage defects of the knee: Characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (Suppl. 01) 10S-19S
- 22 Steadman JR, Rodkey WG, Briggs KK. et al. The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade 1999; 28 (01) 26-32
- 23 Steinwachs MR, Gille J, Volz M. et al. Systematic review and meta-analysis of the clinical evidence on the use of autologous matrix-induced chondrogenesis in the knee. Cartilage 2021; 13 (1_suppl): 42S-56S