CC BY-NC-ND 4.0 · SynOpen 2022; 06(03): 173-178
DOI: 10.1055/a-1896-3987
letter

MnVI-NP–Catalyzed Generation of Nitrile Oxides: Easy Access to Isoxazolines and Isoxazoles via Stereoselective 1,3-Dipolar Cyclo­addition Reactions

Yasmin Saima
a   Vivekananda College, Madhyamgram, India
,
b   Government General Degree College, Kalna-1, India
› Author Affiliations
Research funding by the University Grants Commission (UGC) is gratefully acknowledged.
 


Abstract

The versatility and effectiveness of MnVI-NPs as a catalyst is examined for the generation of nitrile oxides from aldoximes and subsequent 1,3-dipolar cycloaddition reactions. This synthetic protocol features­ fast reaction convergence under benign reaction conditions, operational simplicity, and the use of inexpensive precursors; it avoids the use of acids or bases. The strategy offers excellent chemo-, regio-, and diastereoselectivity in the 1,3-dipolar cycloaddition reaction of in situ generated nitrile oxides with alkenes and alkynes.


#

Applications of nanoparticles (NPs) have been explored in the chemical, biological, and materials fields.[1] It has been observed that the chemical reactivity of a bulk material is significantly improved by transformation into low-dimensional NPs.[2] Fabrication of MoVI nanowires has been reported, along with their applications in the construction of lithium-ion batteries, solar cells, and lubricating materials.[3] Recently, we have developed high-valency Mn-NPs with a highly active surface, strong oxidizing ability, improved magnetism, and catalytic properties, which helped us to construct new O–C/N–C/S–C and C–C bonds in approaches to biologically important flavones and their analogs.[4] The fabrication of MnIII-NPs requires thermal decomposition of manganese oxalate at 450 °C,[5] and the preparation of MnIV-NPs needs extra stabilization from co-metal ions (Zn+2, Ni+2, Cu+2 and Mg+2).[6] We were surprised to find that there are only a few reports on applications of Mn-NPs in fundamental organic transformations.[7] High-valency bulk Mn reagents have found many applications in synthetic organic chemistry as oxidants.[8] KMnO4 is an inexpensive oxidizing agent, but its strong oxidizing properties prevent it from wide utility in organic synthesis. Copper, ruthenium, barium, ammonium, phosphonium, and crown ether stabilized permanganates have found only limited success.[9] Even with these reagents, explosions have been reported under certain reaction conditions.[9a] The transformation of the strong metal oxidant KMnO4 into MnVI-NPs with an appropriately polarized surface could permit smooth exchange of electrons for oxidative organic reactions.[4] The 1,3-dipolar cycloaddition reaction is an atom-economical process that can construct bonds in a regio- and stereoselective way.[10] [11] [12] [13] [14] [15] Recently, much effort has been devoted toward the development of improved variants of the Huisgen reaction.[10,11] For instance, several groups have recently demonstrated the 1,3-dipolar cycloaddition reaction as an outstanding tool for the construction of N-heterocycles involving nitrilium betaines with highly functionalized substituents.[13] [14] Nitrile oxides have been identified as an important class of 1,3-dipoles that undergo 1,3-dipolar cycloaddition reactions with variety of unsaturated bonds in a unique regio- and stereocontrolled fashion to afford isoxazolines and isoxazoles.[12a] [d] [13a] [15] These types of cycloadducts have been found to show antidepressant, antipsychotic, anti-anxiety, and anticancer activities.[16] They have also been utilized for the construction of natural products, pharmaceuticals, and agrochemicals.[17] Isoxazolines and isoxazoles offer high synthetic potential because a range of functionalities can be accessed by reductive cleavage of the N–O bond, followed by hydrolysis of the intermediates and nucleophilic and electrophilic functionalizations.[15a] [18] Thus, a nitrile oxide cycloaddition with excellent regio- and stereoselectivity provides an important synthetic alternative to the stereoselective aldol condensation and related reactions. However, the generation of nitrile oxides and their subsequent 1,3-dipolar cycloaddition reactions are challenging under benign reaction conditions because of the tendency of nitrile oxides to undergo dimerization and poor selectivity in the cycloaddition step. Nitrile oxides are generally prepared by acid- or base-mediated dehydration of primary nitro compounds[19] or oxidation of aldoximes by a chlorinating agent in the presence of base.[20] Other approaches include the use of oxidizing agents such as hypervalent iodine (PhICl2, (diacetoxyiodo)benzene, [hydroxy(tosyloxy)iodo]benzene, PhIO),[13a] [21] KI/I2,[22] t-BuOX,[23] and chloramine-T.[24] In this context, the use of a metallic oxidant offers an advantage over bases or acids because the latter generate an aldehyde and form dimerized byproducts of the in situ generated nitrile oxide[25] and can lead to racemization of the sensitive stereogenic centers.[26] Hg(OAc)2, Pb(OAc)4, MnO2, and ceric ammonium nitrate[27c] have been efficiently utilized for the generation of nitrile oxides.[27] However, elevated temperatures (80 °C), and large excesses of the metal oxidant (six to ten equivalents) are generally employed in the conventional procedures. High-valency Mn-NPs possessing a highly active surface could offer an ideal reagent for the smooth generation of nitrile oxides from aldoximes and could achieve excellent regio- and stereoselectivity in the 1,3-dipolar cycloaddition reaction.

A surfactant-assembled supramolecular architecture can play dual roles. It can absorb precursors and undergo subsequent chemical transformations inside its core, in this case oxidative transformation of the organic substrate by controlled electron transfer to the surface of the high-valency metal-NPs. We envisaged that such a process could be utilized as an ideal protocol for the chemo-, regio-, and stereoselective transformation of aldoximes to nitrile oxides and subsequent inter- and intramolecular 1,3-dipolar cycloaddition reactions toward valuable N-heterocycles such as isoxazoles.[28] As we reported earlier, a combination of the cationic surfactant cetyl trimethyl ammonium bromide, KMnO4, trimethylsilylchloride, and water in CH2Cl2 produces a reverse micelle architecture,[2a] [b] wherein the desired MnVI-NPs are formed at the core of the supramolecular assembly.[4]

To develop an operationally simple method, we examined the in situ transformation of 4-chlorophenyl aldoxime (1a) to the corresponding nitrile oxide (I) by using Br(Me3SiO)MnVIO2-NPs (Scheme [1]). Formation of nitrile oxide I was confirmed by trapping it with ethyl acrylate (2a) to afford ∆2-isoxazoline 3a (Scheme [1]).[13a] With this system, the use of KMnO4 as an oxidant produced (3a) in a yield of 60%. However, an improved yield of 79% was obtained by using a catalytic amount of the Br(Me3SiO)MnVIO2-NPs (5 mol %) with an additional oxidant such as NaIO4. Likewise, the use of NaIO4 alone led to 65% conversion. The Br(Me3SiO)MnVIO2-NPs could be recovered and used successfully for a subsequent 1,3-dipolar cycloaddition reaction with a comparable yield.

Zoom Image
Scheme 1 Generation of nitrile oxides and their regioselective cyclization to Δ2-isoxazolines 3

With these developed reaction conditions, the versatility of the intermolecular 1,3-dipolar cycloaddition approach with MnVI-NPs (Scheme [1]) was tested with several aldoximes 1 and alkenes 2 to afford the corresponding functionalized ∆2-isoxazolines 3ah (Figure [1]) Both electron-rich and electron-deficient aromatic substituents and functional groups, such as esters, nitriles, and vinyl sulfones, are tolerated in this protocol. The results indicate that the reaction time (3.5–5.0 h) and yield (71–85%) are almost independent of nature of the substrates used (Figure [1]). The regioisomeric products (4) were not found in the reaction mixture.

Zoom Image
Figure 1 Synthesized Δ2-isoxazolines 3

Carbohydrates are inexpensive, abundant, biocompatible, and valuable precursors for the installation of multiple chiral centers in target molecules.[29] The synthesis of sugar-based chiral compounds has gained importance in the areas of catalysis, asymmetric synthesis, and organic nanostructured materials.[30] [31] Sugar-derived nitrile oxides have been used for the construction of pseudo-disaccharides and higher carbon-chain monosaccharides,[32c] cyclization to give chiral benzimidazoles, benzoxazoles, and benzthiazoles,[32b] and the multistep synthesis of bioactive natural products[32a] and bioactive isoxazolines.[33] [34] Jäger and co-workers reported efficient routes to l-furanomycin and l-carbafuranomycin from sugar-derived nitrile oxides by utilizing the N-chlorosuccinimide/HCl protocol.[35] However, HCl is incompatible with sugar moieties possessing labile glycoside linkages.

Zoom Image
Figure 2 Preparation of sugar-based chiral isoxazolines 5/6

Thus, pursuing our interest in the construction of sugar-derived heterocycles,[13a] [c] [d] [31] [36] we have successfully utilized MnVI-NPs for the generation of chiral nitrile oxides bearing sugar moieties and their subsequent intermolecular 1,3-dipolar cycloaddition reaction with achiral olefins 2. Gratifyingly, excellent chemo-, regio-, and stereoselectivities were observed by using sugar-derived aldoximes 1f and 1g with trans-ethylcinnamate (2e: X = CO2Et and Y = Ph). In general, sugar-based chiral nitrile oxides are known to produce chiral isoxazolines (5a/6a and 5b/6b).[12a] In this case, the MnVI-NPs played an important role in controlling the stereoselection during the cycloaddition step to furnish a single stereoisomer with 100% de (Figure [2], entries 1 and 2). Earlier, however, we observed that the selectivity is lower with other olefins and sugar-based aldoximes (Figure [2], entries 3 and 4). Bode and Carreira synthesized optically pure isoxazolines by using non-sugar chiral nitrile oxides.[15a]

The total reaction times were 4–16 h, and the optically pure cycloadducts were isolated by silica column chromatography in good yields (64–75%). Moderate diastereoselectivity was observed for 1,3-dipolar cycloaddition reactions of sugar-based chiral olefins with in situ generated achiral nitrile oxides (Figure [2], entries 5 and 6).

Owing to favorable entropy and conformational restriction in the transition state, excellent regio- and stereoselectivity can be achieved in intramolecular nitrile oxide cycloadditions.[15b] [20d] [37] [38] We therefore extended the scope of this MnVI-NP-mediated synthetic protocol to the intramolecular variant with alkenes and alkynes to furnish fused isoxazolines 7 and isoxazoles 8, as shown in Scheme [2].

Zoom Image
Scheme 2 Intramolecular nitrile oxide cycloaddition toward isoxazolines 7 and isoxazoles 8

As shown in Scheme [2], the intramolecular reaction provides the desired benzopyranoisoxazolines regardless of the presence or nature of the aromatic moieties on the dipolarophilic moiety. Complete cis stereoselectivity was observed in the intramolecular cycloaddition processes by using a trans-alkene (7ac, Figure [3]). Heterocycles (7df) were obtained under similar reaction conditions. The reaction times are 3.5–5.0 h and the yields are 68–76% in these examples. Synthesis of isoxazoles (8a,b) resulted from the reaction of aldoximes having a terminal alkyne. Likewise, we have extended this protocol to afford optically pure fused ∆2-isoxazoles (8cf) in good yields (62–72%).

Zoom Image
Figure 3 Synthesized isoxazolines 7 and isoxazoles 8

In conclusion, the catalytic application of MnVI-NPs has been demonstrated for the generation of nitrile oxides from aldoximes and subsequent 1,3-dipolar cycloaddition reactions under mild reaction conditions. [39] High degrees of chemo-, regio-, and diastereoselectivities are observed in both the inter- and intramolecular 1,3-dipolar cycloaddition reactions with alkenes and alkynes.


#

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We wish to acknowledge Prof. Dilip Kumar Maiti, University of Calcutta, for his continuous support.

Supporting Information

  • References and Notes

    • 1a Sun S, Murray CB, Weller D, Folks L, Moser A. Science 2000; 287: 1989
    • 1b Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L.-H. Nano Lett. 2004; 4: 2191
    • 1c Hu A, Yee GT, Lin W. J. Am. Chem. Soc. 2005; 127: 12486
    • 1d Turner M, Golovko VB, Vaughan OP, Abdulkin HP, Berenguer-Murcia A, Tikhov MS, Johnson BF. G, Lambert RM. Nature 2008; 454: 981
    • 1e Sokolova V, Epple M. Angew. Chem. Int. Ed. 2008; 47: 1382
    • 1f Sperling RA, Gil PR, Zhang F, Zanella M, Parak W. J. Chem. Soc. Rev. 2008; 37: 1896
    • 1g Riha SC, Johnson DC, Prieto AL. J. Am. Chem. Soc. 2011; 133: 1383
    • 1h Gayen KS, Sengupta T, Saima Y, Das A, Maiti DK, Mitra A. Green Chem. 2012; 14: 1589
    • 2a Lee YS. Self-Assembly and Nanotechnology: A Force Balance Approach, Chap. 10. John Wiley and Sons; Hoboken: 2008
    • 2b Roduner E. Nanoscopic Materials: Size-Dependent Phenomena . RSC Publishing; Cambridge: 2006
    • 2c Ghosh SK, Pal T. Chem. Rev. 2007; 107: 4797
    • 2d Jiang Q, Lu HM. Surf. Sci. Rep. 2008; 63: 427
    • 2e Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Adv. Mater. 2010; 22: 1805
    • 3a Liang R, Cao H, Qian D. Chem. Commun. 2011; 47: 10305
    • 3b Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP. ACS Appl. Mater. Interfaces 2011; 3: 3244
  • 4 Khamarui S, Saima Y, Laha RM, Ghosh S, Maiti DK. Sci. Rep. 2015; 863 (5): 1
  • 5 Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK. J. Mater. Chem. 2004; 14: 3406
  • 6 Menaka, Samal SL, Ramanujachary KV, Lofland SE, Govind, Ganguli AK. J. Mater. Chem. 2011; 21: 8566
  • 7 For a report on oxidation of CO by MnO2-NPs, see: Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL. Chem. Commun. 2011; 47: 8286
  • 8 Nagashima K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2010; 12: 2142
    • 9a McCleverty JA, Meyer TJ. Comprehensive Coordination Chemistry II: Transition Metal Group 7 and 8, Vol. 5. Elsevier Pergamon; Oxford (UK): 2005
    • 9b Mark IE, Richardson PR, Bailey M, Maguire AR, Coughlan N. Tetrahedron Lett. 1997; 38: 2339
    • 9c Baqi Y, Giroux S. Corey E. J. 2009; 11: 959

      For the first report on 1,3-dipoles and 1,3-dipolar cycloaddition reactions, see:
    • 10a Curtius T. Ber. Dtsch. Chem. Ges. 1883; 16: 2230
    • 10b Buchner E. Ber. Dtsch. Chem. Ges. 1888; 21: 2637
    • 11a Huisgen R, Sauer J. Chemistry of Alkenes . Interscience; New York: 1964: 806
    • 11b Huisgen R. 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. Padwa A. Wiley; New York: 1984
    • 11c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 11d Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
    • 12a Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 12b Fišera L, Ondruš V, Kubáň J, Mičúch P, Blanáriková I, Jäger V. J. Heterocycl. Chem. 2000; 37: 551
    • 12c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 12d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 12e Pellissier H. Tetrahedron 2007; 63: 3235
    • 12f Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 12g Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 13a Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. J. Org. Chem. 2008; 73: 7775
    • 13b Pandit P, Chatterjee N, Halder S, Hota SK, Patra A, Maiti DK. J. Org. Chem. 2009; 74: 2581
    • 13c Maiti DK, Chatterjee N, Pandit P, Hota SK. Chem. Commun. 2010; 46: 2022
    • 13d Pandit P, Chatterjee N, Maiti DK. Chem. Commun. 2011; 47: 1285
    • 13e Saima Y, Khamarui S, Gayen KS, Pandit P, Maiti DK. Chem. Commun. 2012; 48: 6601
    • 14a Wang Y, Lin CI. R, Vera Q. Org. Lett. 2007; 9: 4155
    • 14b Tsubogo T, Saito S, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 13321
    • 14c López-Pérez A, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 340
    • 14d Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 14e Schoder F, Plaia U, Metzner R, Sperber W, Beck W, Fehlhammer WP. Z. Anorg. Allg. Chem. 2010; 636: 700
    • 14f Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930
    • 14g Wang M, Wang Z, Shi Y.-H, Shi X.-X, Fossey JS, Deng W.-P. Angew. Chem. Int. Ed. 2011; 50: 4897
    • 14h Kvaskoff D, Vosswinkel M, Wentrup C. J. Am. Chem. Soc. 2011; 133: 5413
    • 15a Bode JW, Carreira EM. J. Am. Chem. Soc. 2001; 123: 3611
    • 15b Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 397
    • 15c Cabrera S, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2005; 127: 16394
    • 15d Trost BM, Silverman SM, Stambuli JP. J. Am. Chem. Soc. 2007; 129: 12398
    • 15e Becer CR, Hoogenboom R, Schubert US. Angew. Chem. Int. Ed. 2009; 48: 4900
    • 15f Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
    • 15g Su D, Wang X, Shao C, Xu J, Zhu R, Hu Y. J. Org. Chem. 2011; 76: 188
    • 16a Β2 Isoxazoline derivatives as antidepressants, US Patent 7169786, 2007
    • 16b Andrés JI, Alcázar J, Alonso JM, Alvarez RM, Bakker MH, Biesmans I, Cid JM, De Lucas AI, Drinkenburg W, Fernández J, Font LM, Iturrino L, Langlois X, Lenaerts I, Martínez S, Megens AA, Pastor J, Pullan S, Steckler T. Bioorg. Med. Chem. 2007; 15: 3649
    • 16c Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD. J. Med. Chem. 2008; 51: 4370
    • 17a Jäger V, Colinas PA. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. John Wiley and Sons; Hoboken (NJ): 2003: 361
    • 17b Giomi D, Cordero FM, Machetti F. Comprehensive Heterocyclic Chemistry III, Vol. 4. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 365
    • 17c Sengupta J, Mukhopadhyay R, Bhattacharjya A, Bhadbhade MM. G, Bhosekar V. J. Org. Chem. 2005; 70: 8579
    • 17d Muri D, Carreira EM. J. Org. Chem. 2009; 74: 8695
    • 17e Sperry J, Harris JE. B, Brimble MA. Org. Lett. 2010; 12: 420
    • 17f Singh A, Roth GP. Org. Lett. 2011; 13: 2118
    • 18a Curran DP. J. Am. Chem. Soc. 1983; 105: 5826
    • 18b Kozikowski AP. Acc. Chem. Res. 1984; 17: 410
    • 18c Lee CK. Y, Herlt AJ, Simpson GW, Willis AC, Easton CJ. J. Org. Chem. 2006; 71: 3221
    • 19a Mukaiyama T, Hoshino T. J. Am. Chem. Soc. 1960; 82: 5339
    • 19b Liu K.-C, Shelton BR, Howe RK. J. Org. Chem. 1980; 45: 3916
    • 19c Lee GA. Synthesis 1982; 508
    • 19d Maiti DK, Bhattacharya PK. Synlett 1998; 386
    • 19e Kadowaki A, Nagata Y, Uno H, Kamimura A. Tetrahedron Lett. 2007; 48: 1823
    • 19f Trogu E, Vinattieri C, Sarlo FD, Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 21a Radhakrishna AS, Sivaprakash K, Singh BB. Synth. Commun. 1991; 21: 1625
    • 21b Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Tetrahedron Lett. 2004; 45: 7347
    • 21c Prakash O, Pannu K. ARKIVOC 2007; (xiii): 28
    • 21d Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 21e Raihan MJ, Kavala V, Kuo C.-W, Raju BR, Yao C.-F. Green Chem. 2010; 12: 1090
  • 22 Liaskopoulos T, Skoulika S, Tsoungas PG, Varvounis G. Synthesis 2008; 5: 711
    • 23a Muri D, Lohse-Fraefel N, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 4036
    • 23b Becker N, Carreira EM. Org. Lett. 2007; 9: 3857
    • 23c Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
    • 24a Shing TK. M, Wong WF, Cheng HM, Kwok WS, So KH. Org. Lett. 2007; 9: 753
    • 24b Tsantali GG, Dimtsas J, Tsoleridis CA, Takakis IM. Eur. J. Org. Chem. 2007; 258
  • 26 Jones RH, Robinson GC, Thomas EJ. Tetrahedron 1984; 40: 177
    • 27a Just G, Dahl K. Tetrahedron 1968; 24: 5251
    • 27b Kiegiel J, Poplawska M, Jozwik J, Kosior M, Jurczak J. Tetrahedron Lett. 1999; 40: 5605
    • 27c Das B, Mahender G, Holla H, Banerjee J. ARKIVOC 2005; (iii): 27
    • 27d Bhosale MS, Kurhade S, Prasad UV, Palle VP, Bhuniya D. Tetrahedron Lett. 2009; 50: 3948
    • 27e Bhosale S, Kurhade S, Vyas S, Palle VP, Bhuniya D. Tetrahedron 2010; 66: 9582
    • 28a Antony PM, Balaji GL, Iniyavan P, Ila H. J. Org. Chem. 2020; 85: 15422
    • 28b You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 28c Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 28d Khairnar PV, Lung T.-H, Lin Y.-J, Wu C.-Y, Koppolu SR, Edukondalu A, Karanam P, Lin W. Org. Lett. 2019; 21: 4219
    • 28e Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 28f Tang S, He J, Sun Y, He L, She X. Org. Lett. 2009; 11: 3982
    • 29a Chapleur Y. Carbohydrate Mimics: Concepts and Methods . Wiley-VCH; Weinheim: 1998
    • 29b Hollingsworth RI, Wang G. Chem. Rev. 2000; 100: 4267
    • 29c Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
    • 29d Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809
    • 30a Marco-Contelles J, de Opazo E. J. Org. Chem. 2002; 67: 3705
    • 30b Nath M, Mukhopadhyay R, Bhattacharjya A. Org. Lett. 2006; 8: 317
    • 30c Khiar N, Mallouk S, Valdivia V, Bougrin K, Soufiaoui M, Fernández I. Org. Lett. 2007; 9: 1255
    • 30d Kumar A, Srivastava S, Gupta G, Chaturvedi V, Sinha S, Srivastava R. ACS Comb. Sci. 2011; 13: 65

      For reports of sugar-based organic nanostructured materials, see:
    • 31a Ghosh R, Chakraborty A, Maiti DK, Puranik VG. Org. Lett. 2006; 8: 1061
    • 31b Maiti DK, Halder S, Pandit P, Chatterjee N, De Joarder D, Pramanik N, Saima Y, Patra A, Maiti PK. J. Org. Chem. 2009; 74: 8086
    • 32a Shing TK. M, So KH, Kwok WS. Org. Lett. 2009; 11: 5070
    • 32b Smellie AS, Fromm AI, Fabbiani F, Oswald ID. H, White FJ, Paton RM. Tetrahedron 2010; 66: 7155
    • 32c Smellie IA. S, Moggach SA, Paton RM. Tetrahedron Lett. 2011; 52: 95
    • 33a Mishra RC, Tewari N, Verma SS, Tripathi RP, Kumar M, Shukla PK. J. Carbohydr. Chem. 2004; 23: 353
    • 33b Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly J.-P, Kizilis G, Tiraidis C, Alexacou K.-M, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG. Bioorg. Med. Chem. 2009; 17: 7368
    • 34a Milller I, Jäger V. Tetrahedron Lett. 1982; 23: 4777
    • 34b Jager V, Schohe R. Tetrahedron 1984; 40: 2199
    • 34c Jager V, Milller I. Tetrahedron Lett. 1985; 41: 3519
    • 34d Jäger V, Schohe R, Paulus EF. Tetrahedron Lett. 1983; 24: 5501
    • 34e Colinas PA, Jager V, Lieberknechta A, Bravo RD. Tetrahedron Lett. 2003; 44: 1071
    • 34f Jäger V, Schroter D. Synthesis 1990; 556
    • 35a Zimmermann PJ, Lee JY, Hlobilova I, Endermann R, Häbich D, Jäger V. Eur. J. Org. Chem. 2005; 3450
    • 35b Lee JY, Schiffer G, Jäger V. Org. Lett. 2005; 7: 2317
  • 36 Sengupta T, Gayen KS, Pandit P, Maiti DK. Chem. Eur. J. 2012; 18: 1905
  • 37 Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 585
    • 38a Kim D, Lee J, Shim PJ, Lim JI, Jo H, Kim S. J. Org. Chem. 2002; 67: 764
    • 38b Paek S.-M, Seo S.-Y, Kim S.-H, Jung J.-W, Lee Y.-S, Jung J.-K, Suh Y.-G. Org. Lett. 2005; 7: 3159
    • 38c Nair V, Suja TD. Tetrahedron 2007; 63: 12247
    • 38d Browder CC. Curr. Org. Synth. 2011; 8: 628
  • 39 Representative procedure for preparation of 3b: Oxime 1 (1 mmol) and alkene 2 (2.5 mmol) were dissolved in CH2Cl2 (10 mL), and MnVI-NPs (13 mg, 5 mol%) and NaIO4 (214 mg, 1 mmol) were added. The mixture was then stirred for 3.5–5.0 h at 25 °C, with the progress of the reaction being monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure at room temperature. The reaction mixture was filtered and washed with a mixture of ethyl acetate and cold water. The filtrate was transferred to a separatory funnel and extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with water (3 × 30 mL) and brine (1 × 30 mL) and then dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure at room temperature. The residue was purified by column chromatography over silica gel (60–120 mesh) with ethyl acetate–petroleum ether as the eluent to furnish pure Δ2-isoxazoline 3b.3-(3,4-Dichlorophenyl)-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3b): Rf = 0.6 (1:4 ethyl acetate–petroleum ether); yield: 76% (218 mg, 0.76 mmol); yellow solid; mp 70 °C. 1H NMR (300 MHz, CDCl3): δ = 1.26 (3 H, t, J = 7.2 Hz), 3.49–3.55 (2 H, m), 4.21 (2 H, q, J = 7.2 Hz), 5.09–5.16 (1 H, m), 7.39–7.68 (2 H, m), 7.78 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 14.1, 38.4, 62.2, 78.6, 125.9, 126.1, 128.7, 130.9, 133.2, 134.7, 154.3, 169.7. FT-IR (KBr): 1030, 1397, 1734, 3140 cm–1. HRMS: m/z calcd for C12H12Cl2NO3 [M+ + H]: 288.0194; found: 288.0190.

Corresponding Author

S. Khamarui
Government General Degree College
Kalna-1
India   

Publication History

Received: 14 June 2022

Accepted after revision: 08 July 2022

Accepted Manuscript online:
11 July 2022

Article published online:
02 August 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References and Notes

    • 1a Sun S, Murray CB, Weller D, Folks L, Moser A. Science 2000; 287: 1989
    • 1b Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L.-H. Nano Lett. 2004; 4: 2191
    • 1c Hu A, Yee GT, Lin W. J. Am. Chem. Soc. 2005; 127: 12486
    • 1d Turner M, Golovko VB, Vaughan OP, Abdulkin HP, Berenguer-Murcia A, Tikhov MS, Johnson BF. G, Lambert RM. Nature 2008; 454: 981
    • 1e Sokolova V, Epple M. Angew. Chem. Int. Ed. 2008; 47: 1382
    • 1f Sperling RA, Gil PR, Zhang F, Zanella M, Parak W. J. Chem. Soc. Rev. 2008; 37: 1896
    • 1g Riha SC, Johnson DC, Prieto AL. J. Am. Chem. Soc. 2011; 133: 1383
    • 1h Gayen KS, Sengupta T, Saima Y, Das A, Maiti DK, Mitra A. Green Chem. 2012; 14: 1589
    • 2a Lee YS. Self-Assembly and Nanotechnology: A Force Balance Approach, Chap. 10. John Wiley and Sons; Hoboken: 2008
    • 2b Roduner E. Nanoscopic Materials: Size-Dependent Phenomena . RSC Publishing; Cambridge: 2006
    • 2c Ghosh SK, Pal T. Chem. Rev. 2007; 107: 4797
    • 2d Jiang Q, Lu HM. Surf. Sci. Rep. 2008; 63: 427
    • 2e Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Adv. Mater. 2010; 22: 1805
    • 3a Liang R, Cao H, Qian D. Chem. Commun. 2011; 47: 10305
    • 3b Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP. ACS Appl. Mater. Interfaces 2011; 3: 3244
  • 4 Khamarui S, Saima Y, Laha RM, Ghosh S, Maiti DK. Sci. Rep. 2015; 863 (5): 1
  • 5 Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK. J. Mater. Chem. 2004; 14: 3406
  • 6 Menaka, Samal SL, Ramanujachary KV, Lofland SE, Govind, Ganguli AK. J. Mater. Chem. 2011; 21: 8566
  • 7 For a report on oxidation of CO by MnO2-NPs, see: Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL. Chem. Commun. 2011; 47: 8286
  • 8 Nagashima K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2010; 12: 2142
    • 9a McCleverty JA, Meyer TJ. Comprehensive Coordination Chemistry II: Transition Metal Group 7 and 8, Vol. 5. Elsevier Pergamon; Oxford (UK): 2005
    • 9b Mark IE, Richardson PR, Bailey M, Maguire AR, Coughlan N. Tetrahedron Lett. 1997; 38: 2339
    • 9c Baqi Y, Giroux S. Corey E. J. 2009; 11: 959

      For the first report on 1,3-dipoles and 1,3-dipolar cycloaddition reactions, see:
    • 10a Curtius T. Ber. Dtsch. Chem. Ges. 1883; 16: 2230
    • 10b Buchner E. Ber. Dtsch. Chem. Ges. 1888; 21: 2637
    • 11a Huisgen R, Sauer J. Chemistry of Alkenes . Interscience; New York: 1964: 806
    • 11b Huisgen R. 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. Padwa A. Wiley; New York: 1984
    • 11c Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 11d Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 633
    • 12a Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 12b Fišera L, Ondruš V, Kubáň J, Mičúch P, Blanáriková I, Jäger V. J. Heterocycl. Chem. 2000; 37: 551
    • 12c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 12d Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 12e Pellissier H. Tetrahedron 2007; 63: 3235
    • 12f Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
    • 12g Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 13a Chatterjee N, Pandit P, Halder S, Patra A, Maiti DK. J. Org. Chem. 2008; 73: 7775
    • 13b Pandit P, Chatterjee N, Halder S, Hota SK, Patra A, Maiti DK. J. Org. Chem. 2009; 74: 2581
    • 13c Maiti DK, Chatterjee N, Pandit P, Hota SK. Chem. Commun. 2010; 46: 2022
    • 13d Pandit P, Chatterjee N, Maiti DK. Chem. Commun. 2011; 47: 1285
    • 13e Saima Y, Khamarui S, Gayen KS, Pandit P, Maiti DK. Chem. Commun. 2012; 48: 6601
    • 14a Wang Y, Lin CI. R, Vera Q. Org. Lett. 2007; 9: 4155
    • 14b Tsubogo T, Saito S, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 13321
    • 14c López-Pérez A, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 340
    • 14d Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 14e Schoder F, Plaia U, Metzner R, Sperber W, Beck W, Fehlhammer WP. Z. Anorg. Allg. Chem. 2010; 636: 700
    • 14f Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930
    • 14g Wang M, Wang Z, Shi Y.-H, Shi X.-X, Fossey JS, Deng W.-P. Angew. Chem. Int. Ed. 2011; 50: 4897
    • 14h Kvaskoff D, Vosswinkel M, Wentrup C. J. Am. Chem. Soc. 2011; 133: 5413
    • 15a Bode JW, Carreira EM. J. Am. Chem. Soc. 2001; 123: 3611
    • 15b Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 397
    • 15c Cabrera S, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2005; 127: 16394
    • 15d Trost BM, Silverman SM, Stambuli JP. J. Am. Chem. Soc. 2007; 129: 12398
    • 15e Becer CR, Hoogenboom R, Schubert US. Angew. Chem. Int. Ed. 2009; 48: 4900
    • 15f Candeias NR, Branco LC, Gois PM. P, Afonso CA. M, Trindade AF. Chem. Rev. 2009; 109: 2703
    • 15g Su D, Wang X, Shao C, Xu J, Zhu R, Hu Y. J. Org. Chem. 2011; 76: 188
    • 16a Β2 Isoxazoline derivatives as antidepressants, US Patent 7169786, 2007
    • 16b Andrés JI, Alcázar J, Alonso JM, Alvarez RM, Bakker MH, Biesmans I, Cid JM, De Lucas AI, Drinkenburg W, Fernández J, Font LM, Iturrino L, Langlois X, Lenaerts I, Martínez S, Megens AA, Pastor J, Pullan S, Steckler T. Bioorg. Med. Chem. 2007; 15: 3649
    • 16c Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD. J. Med. Chem. 2008; 51: 4370
    • 17a Jäger V, Colinas PA. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. John Wiley and Sons; Hoboken (NJ): 2003: 361
    • 17b Giomi D, Cordero FM, Machetti F. Comprehensive Heterocyclic Chemistry III, Vol. 4. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 365
    • 17c Sengupta J, Mukhopadhyay R, Bhattacharjya A, Bhadbhade MM. G, Bhosekar V. J. Org. Chem. 2005; 70: 8579
    • 17d Muri D, Carreira EM. J. Org. Chem. 2009; 74: 8695
    • 17e Sperry J, Harris JE. B, Brimble MA. Org. Lett. 2010; 12: 420
    • 17f Singh A, Roth GP. Org. Lett. 2011; 13: 2118
    • 18a Curran DP. J. Am. Chem. Soc. 1983; 105: 5826
    • 18b Kozikowski AP. Acc. Chem. Res. 1984; 17: 410
    • 18c Lee CK. Y, Herlt AJ, Simpson GW, Willis AC, Easton CJ. J. Org. Chem. 2006; 71: 3221
    • 19a Mukaiyama T, Hoshino T. J. Am. Chem. Soc. 1960; 82: 5339
    • 19b Liu K.-C, Shelton BR, Howe RK. J. Org. Chem. 1980; 45: 3916
    • 19c Lee GA. Synthesis 1982; 508
    • 19d Maiti DK, Bhattacharya PK. Synlett 1998; 386
    • 19e Kadowaki A, Nagata Y, Uno H, Kamimura A. Tetrahedron Lett. 2007; 48: 1823
    • 19f Trogu E, Vinattieri C, Sarlo FD, Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 21a Radhakrishna AS, Sivaprakash K, Singh BB. Synth. Commun. 1991; 21: 1625
    • 21b Das B, Holla H, Mahender G, Banerjee J, Reddy MR. Tetrahedron Lett. 2004; 45: 7347
    • 21c Prakash O, Pannu K. ARKIVOC 2007; (xiii): 28
    • 21d Mendelsohn BA, Lee S, Kim S, Teyssier F, Aulakh VS, Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 21e Raihan MJ, Kavala V, Kuo C.-W, Raju BR, Yao C.-F. Green Chem. 2010; 12: 1090
  • 22 Liaskopoulos T, Skoulika S, Tsoungas PG, Varvounis G. Synthesis 2008; 5: 711
    • 23a Muri D, Lohse-Fraefel N, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 4036
    • 23b Becker N, Carreira EM. Org. Lett. 2007; 9: 3857
    • 23c Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
    • 24a Shing TK. M, Wong WF, Cheng HM, Kwok WS, So KH. Org. Lett. 2007; 9: 753
    • 24b Tsantali GG, Dimtsas J, Tsoleridis CA, Takakis IM. Eur. J. Org. Chem. 2007; 258
  • 26 Jones RH, Robinson GC, Thomas EJ. Tetrahedron 1984; 40: 177
    • 27a Just G, Dahl K. Tetrahedron 1968; 24: 5251
    • 27b Kiegiel J, Poplawska M, Jozwik J, Kosior M, Jurczak J. Tetrahedron Lett. 1999; 40: 5605
    • 27c Das B, Mahender G, Holla H, Banerjee J. ARKIVOC 2005; (iii): 27
    • 27d Bhosale MS, Kurhade S, Prasad UV, Palle VP, Bhuniya D. Tetrahedron Lett. 2009; 50: 3948
    • 27e Bhosale S, Kurhade S, Vyas S, Palle VP, Bhuniya D. Tetrahedron 2010; 66: 9582
    • 28a Antony PM, Balaji GL, Iniyavan P, Ila H. J. Org. Chem. 2020; 85: 15422
    • 28b You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 28c Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 28d Khairnar PV, Lung T.-H, Lin Y.-J, Wu C.-Y, Koppolu SR, Edukondalu A, Karanam P, Lin W. Org. Lett. 2019; 21: 4219
    • 28e Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 28f Tang S, He J, Sun Y, He L, She X. Org. Lett. 2009; 11: 3982
    • 29a Chapleur Y. Carbohydrate Mimics: Concepts and Methods . Wiley-VCH; Weinheim: 1998
    • 29b Hollingsworth RI, Wang G. Chem. Rev. 2000; 100: 4267
    • 29c Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
    • 29d Kurteva VB, Afonso CA. M. Chem. Rev. 2009; 109: 6809
    • 30a Marco-Contelles J, de Opazo E. J. Org. Chem. 2002; 67: 3705
    • 30b Nath M, Mukhopadhyay R, Bhattacharjya A. Org. Lett. 2006; 8: 317
    • 30c Khiar N, Mallouk S, Valdivia V, Bougrin K, Soufiaoui M, Fernández I. Org. Lett. 2007; 9: 1255
    • 30d Kumar A, Srivastava S, Gupta G, Chaturvedi V, Sinha S, Srivastava R. ACS Comb. Sci. 2011; 13: 65

      For reports of sugar-based organic nanostructured materials, see:
    • 31a Ghosh R, Chakraborty A, Maiti DK, Puranik VG. Org. Lett. 2006; 8: 1061
    • 31b Maiti DK, Halder S, Pandit P, Chatterjee N, De Joarder D, Pramanik N, Saima Y, Patra A, Maiti PK. J. Org. Chem. 2009; 74: 8086
    • 32a Shing TK. M, So KH, Kwok WS. Org. Lett. 2009; 11: 5070
    • 32b Smellie AS, Fromm AI, Fabbiani F, Oswald ID. H, White FJ, Paton RM. Tetrahedron 2010; 66: 7155
    • 32c Smellie IA. S, Moggach SA, Paton RM. Tetrahedron Lett. 2011; 52: 95
    • 33a Mishra RC, Tewari N, Verma SS, Tripathi RP, Kumar M, Shukla PK. J. Carbohydr. Chem. 2004; 23: 353
    • 33b Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly J.-P, Kizilis G, Tiraidis C, Alexacou K.-M, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG. Bioorg. Med. Chem. 2009; 17: 7368
    • 34a Milller I, Jäger V. Tetrahedron Lett. 1982; 23: 4777
    • 34b Jager V, Schohe R. Tetrahedron 1984; 40: 2199
    • 34c Jager V, Milller I. Tetrahedron Lett. 1985; 41: 3519
    • 34d Jäger V, Schohe R, Paulus EF. Tetrahedron Lett. 1983; 24: 5501
    • 34e Colinas PA, Jager V, Lieberknechta A, Bravo RD. Tetrahedron Lett. 2003; 44: 1071
    • 34f Jäger V, Schroter D. Synthesis 1990; 556
    • 35a Zimmermann PJ, Lee JY, Hlobilova I, Endermann R, Häbich D, Jäger V. Eur. J. Org. Chem. 2005; 3450
    • 35b Lee JY, Schiffer G, Jäger V. Org. Lett. 2005; 7: 2317
  • 36 Sengupta T, Gayen KS, Pandit P, Maiti DK. Chem. Eur. J. 2012; 18: 1905
  • 37 Gallos JK, Koumbis AE. Curr. Org. Chem. 2003; 7: 585
    • 38a Kim D, Lee J, Shim PJ, Lim JI, Jo H, Kim S. J. Org. Chem. 2002; 67: 764
    • 38b Paek S.-M, Seo S.-Y, Kim S.-H, Jung J.-W, Lee Y.-S, Jung J.-K, Suh Y.-G. Org. Lett. 2005; 7: 3159
    • 38c Nair V, Suja TD. Tetrahedron 2007; 63: 12247
    • 38d Browder CC. Curr. Org. Synth. 2011; 8: 628
  • 39 Representative procedure for preparation of 3b: Oxime 1 (1 mmol) and alkene 2 (2.5 mmol) were dissolved in CH2Cl2 (10 mL), and MnVI-NPs (13 mg, 5 mol%) and NaIO4 (214 mg, 1 mmol) were added. The mixture was then stirred for 3.5–5.0 h at 25 °C, with the progress of the reaction being monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure at room temperature. The reaction mixture was filtered and washed with a mixture of ethyl acetate and cold water. The filtrate was transferred to a separatory funnel and extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with water (3 × 30 mL) and brine (1 × 30 mL) and then dried over anhydrous Na2SO4. After filtration, the solvent was removed under reduced pressure at room temperature. The residue was purified by column chromatography over silica gel (60–120 mesh) with ethyl acetate–petroleum ether as the eluent to furnish pure Δ2-isoxazoline 3b.3-(3,4-Dichlorophenyl)-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester (3b): Rf = 0.6 (1:4 ethyl acetate–petroleum ether); yield: 76% (218 mg, 0.76 mmol); yellow solid; mp 70 °C. 1H NMR (300 MHz, CDCl3): δ = 1.26 (3 H, t, J = 7.2 Hz), 3.49–3.55 (2 H, m), 4.21 (2 H, q, J = 7.2 Hz), 5.09–5.16 (1 H, m), 7.39–7.68 (2 H, m), 7.78 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 14.1, 38.4, 62.2, 78.6, 125.9, 126.1, 128.7, 130.9, 133.2, 134.7, 154.3, 169.7. FT-IR (KBr): 1030, 1397, 1734, 3140 cm–1. HRMS: m/z calcd for C12H12Cl2NO3 [M+ + H]: 288.0194; found: 288.0190.

Zoom Image
Scheme 1 Generation of nitrile oxides and their regioselective cyclization to Δ2-isoxazolines 3
Zoom Image
Figure 1 Synthesized Δ2-isoxazolines 3
Zoom Image
Figure 2 Preparation of sugar-based chiral isoxazolines 5/6
Zoom Image
Scheme 2 Intramolecular nitrile oxide cycloaddition toward isoxazolines 7 and isoxazoles 8
Zoom Image
Figure 3 Synthesized isoxazolines 7 and isoxazoles 8