Int J Sports Med 2022; 43(13): 1129-1136
DOI: 10.1055/a-1885-4053
Training & Testing

Effects of Moderate Altitude Training Combined with Moderate or High-altitude Residence

1   Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
,
Jernej Kapus
1   Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
,
Boro Štrumbelj
1   Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
,
1   Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
2   Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
,
Janez Vodičar
3   Institute of Sport, Faculty of Sport, University of Ljubljana, Slovenia
› Author Affiliations
Preview

Abstract

We aimed to identify potential physiological and performance differences of trained cross-country skiers (V˙o2max=60±4 ml ∙ kg–1 ∙ min–1) following two, 3-week long altitude modalities: 1) training at moderate altitudes (600–1700 m) and living at 1500 m (LMTM;N=8); and 2) training at moderate altitudes (600–1700 m) and living at 1500 m with additional nocturnal normobaric hypoxic exposures (FiO2 =0.17;LHTM; N=8). All participants conducted the same training throughout the altitude training phase and underwent maximal roller ski trials and submaximal cyclo-ergometery before, during and one week after the training camps. No exercise performance or hematological differences were observed between the two modalities. The average roller ski velocities were increased one week after the training camps following both LMTM (p=0.03) and LHTM (p=0.04) with no difference between the two (p=0.68). During the submaximal test, LMTM increased the Tissue Oxygenation Index (11.5±6.5 to 1.0±8.5%; p=0.04), decreased the total hemoglobin concentration (15.1±6.5 to 1.7±12.9 a.u.;p=0.02), and increased blood pH (7.36±0.03 to 7.39±0.03;p=0.03). On the other hand, LHTM augmented minute ventilation (76±14 to 88±10 l·min−1;p=0.04) and systemic blood oxygen saturation by 2±1%; (p=0.02) with no such differences observed following the LMTM. Collectively, despite minor physiological differences observed between the two tested altitude training modalities both induced comparable exercise performance modulation.



Publication History

Received: 15 June 2022

Accepted: 15 June 2022

Article published online:
04 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany