Planta Med 2022; 88(09/10): 774-782
DOI: 10.1055/a-1769-8480
Biological and Pharmacological Activity
Original Papers

Targeted Isolation of Two New Anti-inflammatory and UV-A Protective Dipyrroloquinones from the Sponge-associated Fungus Aspergillus tamarii MCCF102[ # ]

Lekshmi Niveditha
1   National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
,
Peng Fu
2   School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
,
Tiago F. Leao
3   Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
,
Te Li
4   Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
,
Tingting Wang
4   Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
,
Remington X. Poulin
5   Department of Chemistry and Biochemistry, Center for Marine Science, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, USA
,
Lorena R. Gaspar
6   School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
,
4   Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
5   Department of Chemistry and Biochemistry, Center for Marine Science, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, USA
,
Sajeevan Thavarool Puthiyedathu
1   National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, India
› Author Affiliations
Supported by: Higher Education Discipline Innovation Project D16013
Supported by: Department of Biotechnology, Ministry of Science and Technology, India BT/PR26905/AAQ/3/883/2017
Supported by: Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Development Fund
Supported by: National Natural Science Foundation of China 41906093
Supported by: National Natural Science Foundation of China 82050410451
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo 2021/06619-9

Abstract

In following up on observed in vitro anti-inflammatory activity of the organic extract of the marine sponge-derived fungus Aspergillus tamarii MCCF102, two new dipyrrolobenzoquinones, terreusinone B and C (1 and 2), were discovered along with the known analogue, terreusinone (3). The structures of 13 were determined by spectroscopic and spectrometric analyses, along with chemical inter-conversion. In vitro testing on lipopolysaccharide (LPS) stimulated RAW 264.7 murine macrophage cells revealed that 13 exhibit anti-inflammatory activity by inhibiting nitric oxide production in a dose-dependent manner (IC50 < 1 µM) without any cytotoxicity observed at the same concentrations. Due to this and the UV-A absorptive properties imparted by the highly conjugated structures of these molecules, the potential for using 13 or related analogues as natural sunscreen components is suggested. Gene sequencing and informatics biosynthetic gene cluster comparisons were insufficient to confidently elucidate the biosynthetic origins of these compounds, possibly suggesting the occurrence of a gene cluster not detected in the initial sequencing or a non-canonical pathway that should be further investigated.

# Dedicated to Professor Dr. A. Douglas Kinghorn on the occasion of his 75th birthday.


Supporting Information



Publication History

Received: 19 November 2021

Accepted after revision: 08 February 2022

Accepted Manuscript online:
11 February 2022

Article published online:
30 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine pharmacology in 2016–2017: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; Affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2021; 19: 49 DOI: 10.3390/md19020049.
  • 2 Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, Ding L. Marine sponge-associated fungi as potential novel bioactive natural product sources for drug discovery: A review. Mini Rev Med Chem 2020; 20: 1966-2010 DOI: 10.2174/1389557520666200826123248.
  • 3 López-Hortas L, Flórez-Fernández N, Torres MD, Ferreira-Anta T, Casas MP, Balboa EM, Falqué E, Domínguez H. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Mar Drugs 2021; 19: 552 DOI: 10.3390/md19100552.
  • 4 Gao Q, Garcia-Pichel F. Microbial ultraviolet sunscreens. Nat Rev Microbiol 2011; 9: 791-802 DOI: 10.1038/nrmicro2649.
  • 5 Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020; 25: 1537 DOI: 10.3390/molecules25071537.
  • 6 Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S. Fernblock (Polypodium leucotomos extract): Molecular mechanisms and pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a review. Int J Mol Sci 2016; 17: 1026 DOI: 10.3390/ijms17071026.
  • 7 Kageyama H, Waditee-Sirisattha R. Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. Mar Drugs 2019; 17: 222 DOI: 10.3390/md17040222.
  • 8 Rangel KC, Villela LZ, de Pereira KC, Colepicolo P, Debonsi HM, Gaspar LR. Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Res 2020; 50: 101984 DOI: 10.1016/j.algal.2020.101984.
  • 9 Li T, Wang N, Zhang T, Zhang B, Sajeevan TP, Joseph V, Armstrong L, He S, Yan X, Naman CB. A systematic review of recently reported marine derived natural product kinase inhibitors. Mar Drugs 2019; 17: 493 DOI: 10.3390/md17090493.
  • 10 Yang X, Kang MC, Li Y, Kim EA, Kang SM, Jeon YJ. Asperflavin, an anti-inflammatory compound produced by a marine-derived fungus, Eurotium amstelodami . Molecules 2017; 22: 1823 DOI: 10.3390/molecules22111823.
  • 11 Kim DC, Lee HS, Ko W, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H. Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 2014; 19: 18073-18089 DOI: 10.3390/molecules191118073.
  • 12 Shin HJ, Pil GB, Heo SJ, Lee HS, Lee JS, Lee YJ, Lee J, Won HS. Anti-inflammatory activity of tanzawaic acid derivatives from a marine-derived fungus Penicillium steckii 108YD142. Mar Drugs 2016; 14: 14 DOI: 10.3390/md14010014.
  • 13 Lekshmi N, Umar MD, Dhaneesha M, Joseph R, Ravinesh R, Sajeevan TP. Endophytic fungi isolated from the marine sponges as a source of potential bioactive compounds. J Aquat Biol Fish 2020; 8: 58-66
  • 14 Saravanan A, Jayasree R, Kumar PS, Varjani S, Hemavathy RV, Jeevanantham S, Yaashikaa PR. Production of pigment using Aspergillus tamarii: New potentials for synthesizing natural metabolites. Environ Technol Innov 2020; 19: 100967 DOI: 10.1016/j.eti.2020.100967.
  • 15 Lee KM, Lee GS, Shim H, Kim SH, Nam SH, Kang T. Inhibitory effect of the culture broth extract of Aspergillus tamarii on nitric oxide production and its antioxidative activity. Int J Ind Entomol 2012; 25: 153-157 DOI: 10.7852/ijie.2012.25.2.153.
  • 16 Dorner JW. Production of cyclopiazonic acid by Aspergillus tamarii Kita. Appl Environ Microbiol 1983; 46: 1435-1437 DOI: 10.1128/aem.46.6.1435-1437.1983.
  • 17 Zhang HC, Ma YM, Liu R, Zhou F. Endophytic fungus Aspergillus tamarii from Ficus carica L., a new source of indolyl diketopiperazines. Biochem Syst Ecol 2012; 45: 31-33 DOI: 10.1016/j.bse.2012.07.020.
  • 18 El-Metwally MM, Elbealy ER, Beltagy DM, Shaaban M, El-kott A. Suppressive efficiency of kojic acid from Aspergillus tamarii MM11 against HepG-2 cell line derived from human. Trop J Pharm Res 2020; 19: 1661-1668 DOI: 10.4314/tjpr.v19i8.14.
  • 19 Mohamed S, Li M, Flint S, Palmer J, Fletcher GC. Effect of water activity and temperature on the germination and growth of Aspergillus tamarii isolated from “Maldive fish”. Int J Food Microbiol 2012; 160: 119-123 DOI: 10.1016/j.ijfoodmicro.2012.09.022.
  • 20 Lee SM, Li XF, Jiang H, Cheng JG, Seong S, Choi HD, Son BW. Terreusinone, a novel UV-A protecting dipyrroloquinone from the marine algicolous fungus Aspergillus terreus . Tetrahedron Lett 2003; 44: 7707-7710 DOI: 10.1016/j.tetlet.2003.08.101.
  • 21 Li XF, Lee SM, Choi HD, Kang JS, Son BW. Microbial transformation of terreusinone, an ultraviolet-A (UV-A) protecting dipyrroloquinone, by Streptomyces sp. Chem Pharm Bull 2003; 51: 1458-1459 DOI: 10.1248/cpb.51.1458.
  • 22 Wei PY, Liu LX, Liu T, Chen C, Luo DQ, Shi BZ. Three new pigment protein tyrosine phosphatases inhibitors from the insect parasite fungus Cordyceps gracilioides: Terreusinone A, pinophilin C and cryptosporioptide A. Molecules 2015; 20: 5825-5834 DOI: 10.3390/molecules20045825.
  • 23 Utkina NK, Makarchenko AE, Denisenko VA, Dmitrenok PS. Zyzzyanone A, a novel pyrrolo[3,2-f]indole alkaloid from the Australian marine sponge Zyzzya fuliginosa . Tetrahedron Lett 2004; 45: 7491-7494 DOI: 10.1016/j.tetlet.2004.08.057.
  • 24 Utkina NK, Makarchenko AE, Denisenko VA. Zyzzyanones B–D, dipyrroloquinones from the marine sponge Zyzzya fuliginosa . J Nat Prod 2005; 68: 1424-1427 DOI: 10.1021/np050154y.
  • 25 Chassaing S, Delfourne E. 13C NMR discrimination of regioisomeric bispyrroloquinone/bispyrroloiminoquinone ring systems. Magn Reson Chem 2010; 48: 9-12 DOI: 10.1002/mrc.2529.
  • 26 Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, P CAB. Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, OʼNeill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016; 34: 828-837 DOI: 10.1038/nbt.3597.
  • 27 Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias LF, Wandy J, Chen C, Wang M, Rogers S, Medema MH, Dorrestein PC, van der Hooft JJJ. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 2019; 9: 144 DOI: 10.3390/metabo9070144.
  • 28 Wang C, Sperry J. Total synthesis of the photoprotecting dipyrrolobenzoquinone (+)-terreusinone. Org Lett 2011; 13: 6444-6447 DOI: 10.1021/ol2027398.
  • 29 Wang C, Sperry J. A bidirectional synthesis of (+)-terreusinone. Synlett 2012; 23: 1824-1828 DOI: 10.1055/s-0031-1290693.
  • 30 Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007; 3: 211-221 DOI: 10.1007/s11306-007-0082-2.
  • 31 Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-142
  • 32 MacMicking J, Xie Q, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323-350 DOI: 10.1146/annurev.immunol.15.1.323.
  • 33 Medema MH, Takano E, Breitling R. Detecting sequence homology at the gene cluster level with multigeneblast. Mol Biol Evol 2013; 30: 1218-1223 DOI: 10.1093/molbev/mst025.
  • 34 Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47: W81-W87 DOI: 10.1093/nar/gkz310.
  • 35 Tuchinda C, Lim HW, Osterwalder U, Rougier A. Novel emerging sunscreen technologies. Dermatol Clin 2006; 24: 105-117 DOI: 10.1016/j.det.2005.09.003.
  • 36 Son BW. Novel compound having UV-A absorbing activity which is isolated from the Aspergillus sp. Korean Patent 10-0539486, 2005
  • 37 Son BW. Preparation method of ultraviolet-A (UV-A) protecting terreusinol from the biotransformation of terreusinone by the marine-derived Streptomyces sp. Korean Patent 10-0539487, 2005
  • 38 Lekshmi N, Ravinesh R, Sajeevan TP. Bioprospecting of Marine Sponge Associated Fungi for Antioxidant and Neuroprotective Activity in Raw 264.7 Cells. In: Oommen VO, Laladhas KP, Bharucha E, eds. Biodiversity and Livelihood: Lessons from Community Research in India. Sharjah, UAE: Bentham Science; 2020: 177-185
  • 39 Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias LF, Dorrestein PC, Pevzner PA. Dereplication of microbial metabolites through database search of mass spectra. Nat Commun 2018; 9: 4035 DOI: 10.1038/s41467-018-06082-8.
  • 40 da Silva RR, Wang M, Nothias LF, van der Hooft JJJ, Caraballo-Rodríguez AM, Fox E, Balunas MJ, Klassen JL, Lopes NP, Dorrestein PC. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol 2018; 14: e1006089 DOI: 10.1371/journal.pcbi.1006089.
  • 41 Hevel JM, Marletta MA. Nitric-oxide synthase assays. Methods Enzymol 1994; 233: 250-258 DOI: 10.1016/S0076-6879(94)33028-X.
  • 42 Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 584-588