Z Gastroenterol 2022; 60(01): 36-44
DOI: 10.1055/a-1714-9330
Übersicht

Liver specific, systemic and genetic contributors to alcohol-related liver disease progression

Leberspezifische, systemische und genetische Faktoren, die zum Fortschreiten der alkoholbedingten Lebererkrankung beitragen
Bernd Schnabl
1   Department of Medicine, University of California San Diego, La Jolla, United States (Ringgold ID: RIN8784)
2   Department of Medicine, VA San Diego Healthcare System, San Diego, United States (Ringgold ID: RIN19979)
,
Gavin E. Arteel
3   Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, United States (Ringgold ID: RIN6614)
4   Pittsburgh Liver Research Center, Pittsburgh, United States (Ringgold ID: RIN540630)
,
Felix Stickel
5   Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
,
Jan Hengstler
6   Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany (Ringgold ID: RIN14311)
,
Nachiket Vartak
6   Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany (Ringgold ID: RIN14311)
,
Ahmed Ghallab
6   Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany (Ringgold ID: RIN14311)
7   Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt (Ringgold ID: RIN68898)
,
Steven Dooley
8   Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (Ringgold ID: RIN9144)
,
Yujia Li
8   Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (Ringgold ID: RIN9144)
,
Robert F. Schwabe
9   Department of Medicine, Columbia University, New York, United States (Ringgold ID: RIN5798)
› Author Affiliations
Supported by: Biomedical Laboratory Research and Development, VA Office of Research and Development BX004594
Supported by: Bundesministerium für Bildung und Forschung PTJ-031L0043,PTJ-031L0257A
Supported by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung SNF no. 310030_169196
Supported by: National Institutes of Health P30 DK120515,P30 DK120531,P50 AA011999,R01 AA020703,R01 AA021978,R01 AA24726,R01 CA262424,U01 AA026939
Supported by: Deutsche Forschungsgemeinschaft DO 373/20-1

Abstract

Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.

Zusammenfassung

Die alkoholbedingte Lebererkrankung (ALD) betrifft jedes Jahr weltweit Millionen von Patienten, und ihre Zahl nimmt zu. Die Krankheitsstadien reichen von Steatose über Steatohepatitis und Fibrose bis hin zu Zirrhose, schwerer alkoholbedingter Hepatitis und Leberkrebs. ALD wird in der Regel erst in einem fortgeschrittenen Stadium diagnostiziert, in dem es keine wirksamen Therapien gibt. Ein wichtiges Forschungsziel ist die Verbesserung der Diagnose, der Prognose und auch der Behandlung von ALD im Frühstadium. Dies erfordert jedoch eine Priorisierung dieser Krankheit für finanzielle Investitionen in die Grundlagen- und klinische Forschung, um die Mechanismen genauer zu untersuchen und Biomarker und therapeutische Ziele für die Früherkennung und -behandlung zu ermitteln. Themen von Interesse sind die Kommunikation der Leber mit anderen Organen des Körpers, insbesondere das Darmmikrobiom, die individuelle genetische Konstitution, systemische und angeborene Entzündungen in der Leber einschließlich bakterieller Infektionen, sowie das Schicksal und die Anzahl der hepatischen Sternzellen und die Zusammensetzung der extrazellulären Matrix in der Leber. Darüber hinaus wirken mechanische Kräfte und schädigende Belastungen auf das hochentwickelte Gefäßsystem der Leber, einschließlich des besonders ausgestatteten sinusoidalen Endothels und der Gallenwege, zusammen, um den hepatozytären Import und Export von Nähr- und Giftstoffen zu vermitteln und sich durch morphologische und funktionelle Veränderungen an die chronische Lebererkrankung anzupassen. Alle vorgenannten Parameter tragen zu den Folgen des Alkoholkonsums und dem Risiko der Entwicklung fortgeschrittener Krankheitsstadien einschließlich Zirrhose, schwerer alkoholischer Hepatitis und Leberkrebs bei. In der vorliegenden Sammlung fassen wir den aktuellen Wissensstand zu diesen alkoholbedingten Parametern der Lebererkrankung zusammen, wobei wir den Aspekt der Entzündung ausklammern, der in dem begleitenden Übersichtsartikel von Lotersztajn und Kollegen dargestellt wird.



Publication History

Received: 16 November 2021

Accepted: 06 December 2021

Article published online:
18 January 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Administration SAaMHS. 2015 National Survey on Drug Use and Health. 2015;
  • 2 Hydes T, Gilmore W, Sheron N. et al. Treating alcohol-related liver disease from a public health perspective. J Hepatol 2019; 70: 223-236
  • 3 Beier JI, Arteel GE, McClain CJ. Advances in alcoholic liver disease. Curr Gastroenterol Rep 2011; 13: 56-64
  • 4 Seitz HK, Bataller R, Cortez-Pinto H. et al. Alcoholic liver disease. Nature reviews Disease primers 2018; 4: 16
  • 5 Bataller R, Arteel GE, Moreno C. et al. Alcohol-related liver disease: Time for action. J Hepatol 2019; 70: 221-222
  • 6 Poole LG, Arteel GE. Transitional Remodeling of the Hepatic Extracellular Matrix in Alcohol-Induced Liver Injury. Biomed Res Int 2016; 2016: 3162670
  • 7 Arteel GE, Naba A. The liver matrisome – looking beyond collagens. JHEP reports : innovation in hepatology 2020; 2: 100115
  • 8 Hynes RO, Naba A. Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 2012; 4: a004903
  • 9 Naba A, Clauser KR, Hoersch S. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & cellular proteomics : MCP 2012; 11: M111 014647
  • 10 Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Developmental biology 2010; 341: 126-140
  • 11 Dolin CE, Arteel GE. The Matrisome, Inflammation, and Liver Disease. Semin Liver Dis 2020; 40: 180-188
  • 12 Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346: 941-945
  • 13 Enos WF, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc 1953; 152: 1090-1093
  • 14 Yagel O, Shadafny N, Eliaz R. et al. Long-Term Prognosis in Young Patients with Acute Coronary Syndrome Treated with Percutaneous Coronary Intervention. Vasc Health Risk Manag 2021; 17: 153-159
  • 15 Karmali KN, Lloyd-Jones DM. Adding a life-course perspective to cardiovascular-risk communication. Nat Rev Cardiol 2013; 10: 111-115
  • 16 Friedman SL. Stellate cell activation in alcoholic fibrosis--an overview. Alcohol Clin Exp Res 1999; 23: 904-910
  • 17 Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol 2007; 6: 7
  • 18 Campana L, Iredale JP. Regression of Liver Fibrosis. Semin Liver Dis 2017; 37: 1-10
  • 19 Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2018; 68–69: 452-462
  • 20 Massey VL, Dolin CE, Poole LG. et al. The hepatic “matrisome” responds dynamically to injury: Characterization of transitional changes to the extracellular matrix in mice. Hepatology 2017; 65: 969-982
  • 21 Wells RG, Schwabe RF. Origin and function of myofibroblasts in the liver. Semin Liver Dis 2015; 35: 97-106
  • 22 Mederacke I, Hsu CC, Troeger JS. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature communications 2013; 4: 2823
  • 23 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575: 512-518
  • 24 Akinyemiju T, Abera S, Ahmed M. et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol 2017; 3: 1683-1691
  • 25 Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annual review of pathology 2017; 12: 153-186
  • 26 Filliol A, Schwabe RF. Contributions of Fibroblasts, Extracellular Matrix, Stiffness, and Mechanosensing to Hepatocarcinogenesis. Semin Liver Dis 2019; 39: 315-333
  • 27 Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep 2021; 3: 100220
  • 28 Llopis M, Cassard AM, Wrzosek L. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65: 830-839
  • 29 Duan Y, Llorente C, Lang S. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019; 575: 505-511
  • 30 Lang S, Fairfied B, Gao B. et al. Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes 2020; 12: 1785251
  • 31 Grander C, Adolph TE, Wieser V. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67: 891-901
  • 32 Lang S, Demir M, Duan Y. et al. Cytolysin-positive Enterococcus faecalis is not increased in patients with non-alcoholic steatohepatitis. Liver international : official journal of the International Association for the Study of the Liver 2020; 40: 860-865
  • 33 Rowan-Nash AD, Korry BJ, Mylonakis E. et al. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83
  • 34 Chu H, Duan Y, Lang S. et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol 2020; 72: 391-400
  • 35 Yang AM, Inamine T, Hochrath K. et al. Intestinal fungi contribute to development of alcoholic liver disease. The Journal of clinical investigation 2017; 127: 2829-2841
  • 36 Lang S, Duan Y, Liu J. et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 2020; 71: 522-538
  • 37 Hartmann P, Lang S, Zeng S. et al. Dynamic changes of the fungal microbiome in alcohol use disorder. Front Physiol 2021; 12: 699253
  • 38 Moyes DL, Wilson D, Richardson JP. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532: 64-68
  • 39 Gao B, Zhang X, Schnabl B. Fungi-Bacteria Correlation in Alcoholic Hepatitis Patients. Toxins (Basel) 2021; 13
  • 40 Vartak N, Damle-Vartak A, Richter B. et al. Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology 2016; 63: 951-964
  • 41 Kaneko K, Kamimoto K, Miyajima A. et al. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology 2015; 61: 2056-2066
  • 42 Sato K, Marzioni M, Meng F. et al. Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 2019; 69: 420-430
  • 43 Jors S, Jeliazkova P, Ringelhan M. et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest 2015; 125: 2445-2457
  • 44 Roskams TA, Theise ND, Balabaud C. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39: 1739-1745
  • 45 Ghallab A, Hofmann U, Sezgin S. et al. Bile Microinfarcts in Cholestasis Are Initiated by Rupture of the Apical Hepatocyte Membrane and Cause Shunting of Bile to Sinusoidal Blood. Hepatology 2019; 69: 666-683
  • 46 Ghallab A, Myllys M, Friebel A. et al. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10
  • 47 Alvaro D, Mancino MG, Glaser S. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007; 132: 415-431
  • 48 Azad AI, Krishnan A, Troop L. et al. Targeted Apoptosis of Ductular Reactive Cells Reduces Hepatic Fibrosis in a Mouse Model of Cholestasis. Hepatology 2020; 72: 1013-1028
  • 49 Isse K, Harada K, Nakanuma Y. IL-8 expression by biliary epithelial cells is associated with neutrophilic infiltration and reactive bile ductules. Liver Int 2007; 27: 672-680
  • 50 Paradis M, Mindt BC, Duerr CU. et al. A TNF-alpha-CCL20-CCR6 axis regulates Nod1-induced B cell responses. J Immunol 2014; 192: 2787-2799
  • 51 Sachinidis A, Albrecht W, Nell P. et al. Road Map for Development of Stem Cell-Based Alternative Test Methods. Trends Mol Med 2019; 25: 470-481
  • 52 Schneider KM, Candels LS, Hov JR. et al. Gut microbiota depletion exacerbates cholestatic liver injury via loss of FXR signalling. Nat Metab 2021; 3: 1228-1241
  • 53 Jansen PL, Ghallab A, Vartak N. et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017; 65: 722-738
  • 54 Rokusz A, Veres D, Szucs A. et al. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models. PLoS One 2017; 12: e0176518
  • 55 Clouston AD, Powell EE, Walsh MJ. et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 2005; 41: 809-818
  • 56 Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 2014; 146: 349-356
  • 57 Richardson MM, Jonsson JR, Powell EE. et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133: 80-90
  • 58 Vartak N, Drasdo D, Geisler F. et al. On the Mechanisms of Biliary Flux. Hepatology 2021;
  • 59 Vartak N, Guenther G, Joly F. et al. Intravital Dynamic and Correlative Imaging of Mouse Livers Reveals Diffusion-Dominated Canalicular and Flow-Augmented Ductular Bile Flux. Hepatology 2021; 73: 1531-1550
  • 60 Kamimoto K, Nakano Y, Kaneko K. et al. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun Biol 2020; 3: 289
  • 61 Ghallab A, Myllys M, Holland CH. et al. Influence of Liver Fibrosis on Lobular Zonation. Cells 2019; 8
  • 62 Hrubec Z, Omenn GS. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol Clin Exp Res 1981; 5: 207-215
  • 63 Douds AC, Cox MA, Iqbal TH. et al. Ethnic differences in cirrhosis of the liver in a British city: alcoholic cirrhosis in South Asian men. Alcohol Alcohol 2003; 38: 148-150
  • 64 Levy R, Catana AM, Durbin-Johnson B. et al. Ethnic differences in presentation and severity of alcoholic liver disease. Alcohol Clin Exp Res 2015; 39: 566-574
  • 65 Roerecke M, Vafaei A, Hasan OSM. et al. Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2019; 114: 1574-1586
  • 66 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461-1465
  • 67 Stickel F, Moreno C, Hampe J. et al. The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 2017; 66: 195-211
  • 68 Buch S, Stickel F, Trepo E. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47: 1443-1448
  • 69 Abul-Husn NS, Cheng X, Li AH. et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N Engl J Med 2018; 378: 1096-1106
  • 70 Stickel F, Lutz P, Buch S. et al. Genetic Variation in HSD17B13 Reduces the Risk of Developing Cirrhosis and Hepatocellular Carcinoma in Alcohol Misusers. Hepatology 2020; 72: 88-102
  • 71 Innes H, Buch S, Hutchinson S. et al. Genome-Wide Association Study for Alcohol-Related Cirrhosis Identifies Risk Loci in MARC1 and HNRNPUL1. Gastroenterology 2020; 159: 1276-1289 e1277
  • 72 Schwantes-An TH, Darlay R, Mathurin P. et al. Genome-wide Association Study and Meta-analysis on Alcohol-Associated Liver Cirrhosis Identifies Genetic Risk Factors. Hepatology 2021; 73: 1920-1931
  • 73 Buch S, Sharma A, Ryan E. et al. Variants in PCSK7, PNPLA3 and TM6SF2 are risk factors for the development of cirrhosis in hereditary haemochromatosis. Aliment Pharmacol Ther 2021; 53: 830-843
  • 74 Petta S, Vanni E, Bugianesi E. et al. PNPLA3 rs738409 I748M is associated with steatohepatitis in 434 non-obese subjects with hepatitis C. Aliment Pharmacol Ther 2015; 41: 939-948
  • 75 Holmen OL, Zhang H, Fan Y. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 2014; 46: 345-351
  • 76 Innes H, Buch S, Barnes E. et al. The rs738409 G Allele in PNPLA3 Is Associated With a Reduced Risk of COVID-19 Mortality and Hospitalization. Gastroenterology 2021; 160: 2599-2601 e2592
  • 77 Gellert-Kristensen H, Richardson TG, Davey Smith G. et al. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology 2020; 72: 845-856
  • 78 Stickel F, Buch S, Nischalke HD. et al. Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis. Am J Gastroenterol 2018; 113: 1475-1483
  • 79 Tang S, Zhang J, Mei TT. et al. Association of TM6SF2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: a meta-analysis. BMC Cancer 2019; 19: 1128
  • 80 Trepo E, Nahon P, Bontempi G. et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology 2014; 59: 2170-2177
  • 81 Bianco C, Casirati E, Malvestiti F. et al. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3: 100284
  • 82 Basantani MK, Sitnick MT, Cai L. et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res 2011; 52: 318-329
  • 83 Chen W, Chang B, Li L. et al. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 2010; 52: 1134-1142
  • 84 Ma Y, Brown PM, Lin DD. et al. 17-Beta Hydroxysteroid Dehydrogenase 13 Deficiency Does Not Protect Mice From Obesogenic Diet Injury. Hepatology 2021; 73: 1701-1716