Planta Med 2022; 88(07): 518-526
DOI: 10.1055/a-1527-9602
Natural Product Chemistry and Analytical Studies
Original Papers

New Phenolic Glycosides and Lignans from the Roots of Lilium dauricum

Xiao Xia
1   School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, Peopleʼs Republic of China
,
Jiao Zhang
2   Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, Peopleʼs Republic of China
,
Xiao-Jiang Wang
1   School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, Peopleʼs Republic of China
,
Yan Lu
1   School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, Peopleʼs Republic of China
,
Dao-Feng Chen
1   School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, Peopleʼs Republic of China
› Author Affiliations
Supported by: National Key R&D Program of China 2019YFC1711000
Supported by: the Development Project of Shanghai Peak Disciplines-Integrative Medicine 20180101

Abstract

Three new phenolic glycosides, carvacrol-2-O-β-D-apiofuranosyl-(1 → 6)-β-D-glucopyranoside (1), 1-methyl-3-isopropylphenol-4-O-β-D-apiofuranosyl-(1 → 6)-β-D-glucopyranoside (2), p-methoxythymol-5-O-β-D-apiofuranosyl-(1 → 6)-β-D-glucopyranoside (3), and a pair of new 8-O-4′ neolignan enantiomers (5a/5b), together with 26 known compounds (4, 6 – 30) were isolated from the roots of Lilium dauricum. The structures of the new compounds were elucidated based on extensive spectroscopic and chemical methods, and the absolute configurations of 5a and 5b were established by electronic circular dichroism analysis. Nine compounds (1, 3, 4, 8, 9, 17, 25, 29, and 30) exhibited potent α-glucosidase inhibitory activity with IC50 values ranging from 73.4 µM to 988.2 µM. Besides, compound 19 displayed strong anticomplementary activity (CH50: 71.6 µM).

Supporting Information



Publication History

Received: 07 December 2020

Accepted after revision: 20 May 2021

Article published online:
06 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Liang S, Minoru NT. Flora of China. Beijing: Science Press & Missouri Botanical Garden Press; 2000
  • 2 Chinese Pharmacopoeia Commission. Pharmacopoeia of the Peopleʼs Republic of China. Beijing: Peopleʼs Medical Publishing House; 2020
  • 3 Hong XX, Luo JG, Guo C, Kong LY. New steroidal saponins from the bulbs of Lilium brownii var. viridulum . Carbohyd Res 2012; 361: 19-26
  • 4 Zhou ZL, Feng ZC, Fu CY, Zhang HL, Xia JM. Steroidal and phenolic glycosides from the bulbs of Lilium pumilum DC and their potential Na+/K+ ATPase inhibitory activity. Molecules 2012; 17: 10494-10502
  • 5 Matsuo Y, Takaku R, Mimaki Y. Novel steroidal glycosides from the bulbs of Lilium pumilum . Molecules 2015; 20: 16255-16265
  • 6 Mimaki Y, Sashida Y. Steroidal saponins and alkaloids from the bulbs of Lilium brownii var. colchesteri . Chem Pharm Bull 1990; 38: 3055-3059
  • 7 Luo JG, Li L, Kong LY. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem 2012; 131: 1056-1062
  • 8 Hong XX, Luo JG, Kong LY. Two new chlorophenyl glycosides from the bulbs of Lilium brownii var. viridulum . J Asian Nat Prod Res 2012; 14: 769-775
  • 9 Jin L, Zhang YL, Yan LM, Guo YL, Niu LX. Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China. Molecules 2012; 17: 9361-9378
  • 10 Hou XY, Chen FK. Isolation and structural identification of chemical constituents from Lilium brownii F.E. Brown var. viridulum Baker. Acta Pharm Sin 1998; 33: 923-926
  • 11 Chen ZG, Zhang DN, Zhu Q, Yang QH, Han YB. Purification, preliminary characterization and in vitro immunomodulatory activity of tiger lily polysaccharide. Carbohyd Polym 2014; 106: 217-222
  • 12 Wang X, Wu GQ. A new steroidal glycoside and potential anticancer cytotoxic activity of compounds isolated from the bulbs of Lilium callosum . J Chem Res 2014; 38: 577-579
  • 13 Ma T, Wang Z, Zhang YM, Luo JG, Kong LY. Bioassay-guided isolation of anti-inflammatory components from the bulbs of Lilium brownii var. viridulum and identifying the underlying mechanism through acting on the NF-κB/MAPKs Pathway. Molecules 2017; 22: 506
  • 14 Rong XX. Tea medicine for lung disease. Shandong Food Technology 2002; 16-17
  • 15 Kwon OK, Lee MY, Yuk JE, Oh SR, Chin YW, Lee HK, Ahn KS. Anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium on LPS-stimulated Raw264.7 cells. J Ethnopharmacol 2010; 130: 28-34
  • 16 Park MH, Kim M. Antioxidant activity and cytotoxicity for human cancer cells of extracts from Lilium davidii root. J East Asian Soc Diet Life 2018; 6: 444-452
  • 17 Hui HP, Jin H, Li XZ, Yang XY, Cui HY, Xin AY, Zhao RM, Qin B. Purification, characterization and antioxidant activities of a polysaccharide from the roots of Lilium davidii var. unicolor Cotton . Int J Biol Macromol 2019; 135: 1208-1216
  • 18 Hui HP, Xin AY, Cui HY, Jin H, Yang XY, Liu HY, Qin B. Anti-aging effects on Caenorhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor Cotton . Int J Biol Macromol 2020; 155: 846-852
  • 19 Takeda Y, Oorso Y, Masuda T, Honda G, Otsuka H, Sezik E, Yesilada E. Iroidoid and eugenol glycosides from Nepeta cadmea . Phytochemistry 1998; 49: 787-791
  • 20 Matsushita H, Miyase T, Ueno A. Lignan and terpene glycosides from Epzmedium sagittatum . Phytochemistry 1991; 30: 2025-2027
  • 21 Schottner M, Reiner J, Tayman FSK. (+)-Neo-olivil from roots of Urtica dioica . Phytochemistry 1997; 46: 1107-1109
  • 22 Banerji A, Ray R. Aurantiamides: a new class of modified dipeptides from Piper aurantiacum . Phytochemistry 1981; 20: 2217-2220
  • 23 Li Y, Li XF, Kim SK. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 2004; 3: 375-376
  • 24 Brandner A. Synthesis of 2,4-dioxohexahydro-1,3-diazepines. Synthesis (Mass) 1982; 11: 973-974
  • 25 Bertoli A, Fanfoni L, Felluga F, Pitacco G, Valentin E. Chemoenzymatic synthesis of optically active α-methylene-γ-carboxy-γ-lactams and γ-lactones. Tetrahedron: Asymmetry 2009; 20: 2305-2310
  • 26 Chen L, Guo QF, Ma JW, Kang WY. Chemical constituents of Bacillus coagulans LL1103. Chem Nat Compd+ 2018; 54: 419-420
  • 27 Ruth S, Manfred SZ, Alois H. A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas . Phytochemistry 1999; 50: 337-338
  • 28 Fenz R, Galensa R. Identification of 1-o-trans-p-coumaroylglycerol as an indicator of maize in beer. Z Lebensm Unters Forsch 1989; 188: 314-316
  • 29 Amade P, Mallea M, Bouaicha N. Isolation, structural identification and biological activity of two metabolites produced by Penicillium osonii bainier and sartory. J Antibiot 1994; 2: 201-207
  • 30 Wu MD, Cheng MJ, Wang WY, Huang HC, Yuan GF, Chen JJ, Chen IS, Wang BC. Antioxidant activities of extracts and metabolites isolated from the fungus Antrodia cinnamomea . Nat Prod Res 2011; 25: 1488-1496
  • 31 Sakushima A, Coşkun M, Maoka T. Hydroxybenzoic acids from Boreava orientalis . Phytochemistry 1995; 40: 257-261
  • 32 Su HS, Whan CC, Hyeok CY, Oh JS. Coixlachryside A: a new lignan glycoside from the roots of Coix lachryma-jobi L. var. ma-yuen Stapf. Phytochem Lett 2016; 17: 152-157
  • 33 Wang RF, Yang XW, Ma CM, Liu HY, Shang MY, Zhang QY, Cai SQ, Park JH. Trollioside, a new compound from the flowers of Trollius chinensis . J Asian Nat Prod Res 2004; 6: 139-144
  • 34 Matsuno K, Ushiki J, Seishi T, Ichimura M, Giese NA, Yu J, Takahashi S, Oda S, Nomoto Y. Potent and selective inhibitors of platelet-derived growth factor receptor phosphorylation. 3. replacement of quinazoline moiety and improvement of metabolic polymorphism of 4-[4-(N-substituted (thio)carbamoyl)-1-piperazinyl]-6, 7-dimethoxyquinazoline derivatives. J Med Chem 2003; 46: 4910-4925
  • 35 Rivera-Chávez J, Figueroa M, González MDC, Glenn AE, Mata R. α-Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora . J Nat Prod 2015; 78: 730-735
  • 36 Tanaka A, Shimizu K, Kondo R. Antibacterial compounds from shoot skins of moso bamboo (Phyllostachys pubescens). J Wood Sci 2013; 59: 155-159
  • 37 Mimaki Y, Sashida Y, Shimomura H. Lipid and steroidal constituents of Lilium auratum var. Platyphyllum and L. tenuifolium . Phytochemistry 1989; 28: 3453-3458
  • 38 Yamada K, Murata T, Kobayashi K, Miyase T, Yoshizaki F. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata . Phytochemistry 2010; 71: 1884-1891
  • 39 Kitagawa I, Sakagami M, Hashiuchi F, Jun Liang Z, Yoshikawa M, Ren J. Apioglycyrrhizin and araboglycyrrhizin, two new sweet oleanene-type triterpene oligoglycosides from the root of Glycyrrhiza inflata . Chem Pharm Bull 1989; 37: 551-553
  • 40 Martin R, Demerseman P. Lewis acids catalysed fries rearrangement of isopropylcresol esters. Chemical Monthly 1990; 227-236
  • 41 Lu YY, Xue YB, Liu JJ, Yao GM, Li DY, Sun B, Zhang JW, Liu YF, Qi CX, Xiang M, Luo ZW, Du G, Zhang YH. (±)-Acortatarinowins A–F, norlignan, neolignan, and lignan enantiomers from Acorus tatarinowii . J Nat Prod 2015; 78: 2205-2214
  • 42 Herrera Braga AC, Zacchino S, Badano H, Sierra MG, Rúveda EA. 13C NMR spectral and conformational analysis of 8-O-4′ neolignans. Phytochemistry 1984; 23: 2025-2028
  • 43 Lee J, Seo EK, Jang DS, Ha TJ, Kim JP, Nam JW, Bae G, Lee YM, Yang MS, Kim JS. Two new stereoisomers of neolignan and lignan from the flower buds of Magnolia fargesii . Chem Pharm Bull 2009; 57: 298-301
  • 44 Nakano Y, Morita S, Kawamoto A, Suda T, Chida K, Nakamura H. Elevated complement C3a in plasma from patients with severe acute asthma. J Alergy Clin Immunol 2003; 112: 525-530
  • 45 Khan MA, Assiri AM, Broering DC. Complement mediators: key regulators of airway tissue remodeling in asthma. J Transl Med 2015; 13: 272-280
  • 46 Shimomura T, Sashida Y, Mimaki Y, Yasue K, Maeda K. New phenylpropanoid glycerol glucosides from the bulbs of Lilium Species. Chem Pharm Bull 1988; 36: 4841-4848
  • 47 Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull 2007; 55: 899-901
  • 48 Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A. In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 2011; 49: 125-131
  • 49 Song WH, Cheng ZH, Chen DF. Anticomplement monoterpenoid glucosides from the root bark of Paeonia suffruticosa . J Nat Prod 2013; 77: 42-48