Planta Med 2021; 87(06): 489-497
DOI: 10.1055/a-1429-3396
Natural Product Chemistry and Analytical Studies
Original Papers

Rhytidhyesters A – D, 4 New Chlorinated Cyclopentene Derivatives from the Endophytic Fungus Rhytidhysteron sp. BZM-9

Sha Zhang
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Wenxuan Wang
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Jianbin Tan
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Fenghua Kang
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Dekun Chen
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Kangping Xu
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
,
Zhenxing Zou
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
› Author Affiliations

Abstract

Four new chlorinated cyclopentene derivatives, rhytidhyesters A – D (1 – 4), were isolated from Rhytidhysteron sp. BZM-9, an endophytic fungus from Leptospermum brachyandrum. The planar structures of compounds 1 – 4 were mainly elucidated by 1D, 2D NMR, and HRESIMS data. Their absolute configurations were established by X-ray crystallographic analysis, quantum chemical 13C NMR, and electronic circular dichroism calculations. Compounds 1 and 2 are a pair of epimers. Moreover, all the isolated compounds were evaluated for cytotoxic activities against 3 human colon cancer cell lines (SW620, HT29, SW480) and antimicrobial activity against Staphylococcus aureus. All compounds exhibited weak to moderate antiproliferative activities with IC50 values ranging from 15.4 to 37.7 µM but were inactive against S. aureus.

Supporting Information



Publication History

Received: 22 August 2020

Accepted after revision: 07 March 2021

Article published online:
23 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S. Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 2015; 99: 2955-2965
  • 2 Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 2002; 106: 996-1004
  • 3 Gunatilaka AAL. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 2006; 69: 509-526
  • 4 Chandra S. Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 2012; 95: 47-59
  • 5 Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 2012; 11: 487-505
  • 6 Dawson M. Australian Leptospermum in cultivation: species and cultivars. N Z Garden J 2012; 15: 14-22
  • 7 Brophy JJ, Goldsack RJ, Bean AR, Forster PI, Clarkson JR, Lepschi BJ. Leaf essential oils of the genus Leptospermum (Myrtaceae) in Eastern Australia. Part 1. Leptospermum brachyandrum and Leptospermum pallidum groups. Flavour Fragr J 1998; 13: 19-25
  • 8 Brophy JJ, Goldsack RJ, Lassak EV. Leaf essential oils of some Leptospermum (Myrtaceae) species from Southern and Western Australia. J Essent Oil Res 1999; 11: 1-5
  • 9 Brophy JJ, Goldsack RJ, Bean AR, Forster PI, Lepschi BJ. Leaf essential oils of the genus Leptospermum (Myrtaceae) in eastern Australia, Part 4. Leptospermum deanei and allies. Flavour Fragr J 1999; 14: 92-97
  • 10 Windsor SAM, Brooks P. Essential oils from Leptospermums of the Sunshine Coast and Northern Rivers regions. Chem Cent J 2012; 6: 1-7
  • 11 Liu W, Wang W, Zhang JF, Dai SP. Study on adaptability and ornamental characteristics of six species of exotic landscape plant. J Guangdong Landsc Archit 2014; 36: 63-66
  • 12 Zou ZX, Tan GS, Huang Q, Sun HH, Huo LQ, Zhong WQ, Zhao LY, Liu HX, Tan HB. Brachyanins A–C, pinene-derived meroterpenoids and phloroglucinol derivative from Leptospermum brachyandrum . Fitoterapia 2018; 130: 184-189
  • 13 Pudhom K, Teerawatananond T. Rhytidenones A–F, spirobisnaphthalenes from Rhytidhysteron sp. AS21B, an endophytic fungus. J Nat Prod 2014; 77: 1962-1966
  • 14 Pudhom K, Teerawatananond T, Chookpaiboon S. Spirobisnaphthalenes from the mangrove-derived fungus Rhytidhysteron sp. AS21B. Mar Drugs 2014; 12: 1271-1280
  • 15 Chokpaiboon S, Choodej S, Boonyuen N, Teerawatananond T, Pudhom K. Highly oxygenated chromones from mangrove-derived endophytic fungus Rhytidhysteron rufulum . Phytochemistry 2016; 122: 172-177
  • 16 Siridechakorn I, Yue Z, Mittraphab Y, Lei X, Pudhom K. Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg Med Chem 2017; 25: 2878-2882
  • 17 Giles D, Turner WB. Chlorine-containing metabolites of Periconia macrospinosa . J Chem Soc (C) 1969; 16: 2187-2189
  • 18 Li J, Liu JK, Wang WX. GIAO 13C NMR calculation with sorted training sets improves accuracy and reliability for structural assignation. J Org Chem 2020; 85: 11350-11358
  • 19 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009; 42: 339-341
  • 20 Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv 2015; 71: 3-8
  • 21 Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C 2015; 71: 3-8
  • 22 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983; 65: 55-63
  • 23 Li CR, Zhai QQ, Wang XK, Hu XX, Li GQ, Zhang WX, Pang J, Lu X, Yuan H, Gordeev MF, Chen LT, Yang XY, You XF. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob Agents Chemother 2014; 58: 2418-2421
  • 24 OʼBoyle NM, Vandermeersch T, Flynn CJ, Maguire AR, Hutchison GR. Confab-Systematic generation of diverse low-energy conformers. J Cheminf 2011; 3: 1-9
  • 25 Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013; 25: 243-249
  • 26 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision B.01. GaussView 5.0. E. U. A. Wallingford, CT: Gaussian Inc.; 2016