Subscribe to RSS
DOI: 10.1055/a-1395-0735
Frischer Wind für Integrine
A New Paradigm for Integrins
Zusammenfassung
Selektive PET- oder SPECT- Radiopharmaka sind inzwischen nicht nur für αvβ3, sondern auch weitere der 24 verschiedenen Integrine verfügbar, zum Beispiel α5β1, αvβ6, αvβ8 und α6. Da diese unter anderem auch von verschiedenen Karzinomen und im Zuge von Fibrose exprimiert werden, ist die Vorstellung, dass Integrine nur als Zielstrukturen für die Bildgebung von Angiogenese in Betracht kommen, endgültig überholt. Die derzeit besten Aussichten auf eine breite klinische Anwendung, sowohl diagnostisch als auch therapeutisch, haben derzeit αvβ6-Integrin-Radiopharmaka, da αvβ6 von vielen malignen Krebsarten (v. a. Pankreas-, Plattenepithel-, Basalzell-, Lungen- und Colonkarzinom) überexprimiert wird.
Abstract
Today, selective PET- and SPECT radiopharmaceuticals are not only available for αvβ3, but also for others of the 24 known integrin subtypes, including α5β1, αvβ6, αvβ8 und α6. These integrins are widely expressed by different carcinomas and in the course of fibrosis. Hence, integrin imaging offers a range of clinically relevant applications beyond imaging of angiogenesis. αvβ6 integrin radiopharmaceuticals, both diagnostic and therapeutic, have emerged as highly promising candidates for a clinical career, since αvβ6 is expressed by many malignant cancers, such as pancreatic, basal cell, squamous cell, lung, and colon carcinoma.
Publication History
Article published online:
10 June 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Eo JS, Jeong JM. Angiogenesis Imaging Using Ga-68-RGD PET/CT: Therapeutic Implications. Semin Nucl Med 2016; 46: 419-427
- 2 Pierschbacher MD, Ruoslahti E. Cell Attachment Activity of Fibronectin can be Duplicated by Small Synthetic Fragments of the Molecule. Nature 1984; 309: 30-33
- 3 Aumailley M, Gurrath M, Müller G. et al. Arg-Gly-Asp contrained Within Cyclic Pentapeptides–Strong And Selective Inhibitors Of Cell-Adhesion To Vitronectin And Laminin Fragment-P1. FEBS Lett 1991; 291: 50-54
- 4 Dechantsreiter MA, Planker E, Matha B. et al. N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J Med Chem 1999; 42: 3033-3040
- 5 Brooks PC, Clark RAF, Cheresh DA. Requirement Of Vascular Integrin αvβ3 For Angiogenesis. Science 1994; 264: 569-571
- 6 Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008; 8: 604-617
- 7 Haubner R, Weber WA, Beer AJ. et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. Plos Med 2005; 2: 244-252
- 8 Bader BL, Rayburn H, Crowley D. et al. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 1998; 95: 507-519
- 9 Reynolds LE, Wyder L, Lively JC. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat Med 2002; 8: 27-34
- 10 Chen H, Niu G, Wu H. et al. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3. Theranostics 2016; 6: 78-92
- 11 Notni J, Steiger K, Hoffmann F. et al. Complementary, Selective PET Imaging of Integrin Subtypes α5β1 and αvβ3 Using 68Ga-Aquibeprin and 68Ga-Avebetrin. J Nucl Med 2015; 57: 460-466
- 12 Notni J, Braren R, Beer AJ. et al. First clinical experience with [68Ga]TRAP(RGD)3 for PET imaging of αvβ3 expression in cancer patients. Eur J Nucl Med Mol Imaging 2013; 40: S131
- 13 Kapp TG, Rechenmacher F, Neubauer S. et al. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Sci Rep 2017; 7: 39805
- 14 Nieberler M, Reuning U, Reichart F. et al. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers 2017; 9: 116
- 15 Hausner SH, Bold RJ, Cheuy LY. et al. Preclinical Development and First-in-Human Imaging of the Integrin αvβ6 with [18F]αvβ6-Binding Peptide in Metastatic Carcinoma. Clin Cancer Res 2019; 25: 1206-1215
- 16 Flechsig P, Lindner T, Loktev A. et al. PET/CT Imaging of NSCLC with a αvβ6 Integrin-Targeting Peptide. Mol Imaging Biol 2019; 21: 973-983
- 17 Roesch S, Lindner T, Sauter M. et al. Comparison of the RGD Motif–Containing αvβ6 Integrin–Binding Peptides SFLAP3 and SFITGv6 for Diagnostic Application in HNSCC. J Nucl Med 2018; 59: 1679-1685
- 18 Kimura RH, Wang L, Shen B. et al. Evaluation of integrin αvβ6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun 2019; 10: 4673
- 19 Quigley NG, Tomassi S, Di Leva FS. et al. Click-Chemistry (CuAAC) Trimerization of an αvβ6 Integrin Targeting Ga-68-Peptide: Enhanced Contrast for in-Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. ChemBioChem 2020; 21: 2836-2843
- 20 Notni J, Reich D, Maltsev OV. et al. In Vivo PET Imaging of the Cancer Integrin αvβ6 Using 68Ga-Labeled Cyclic RGD Nonapeptides. J Nucl Med 2017; 58: 671-677
- 21 McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020;
- 22 Takasaka N, Seed RI, Cormier A. et al. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 2018; 3: e122591
- 23 Quigley NG, Steiger K, Richter F. et al. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Res 2020; 10: 133
- 24 Reichart F, Maltsev OV, Kapp TG. et al. Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. J Med Chem 2019; 62: 2024-2037
- 25 Zhao H, Gao H, Zhai L. et al. 99mTc-HisoDGR as a Potential SPECT Probe for Orthotopic Glioma Detection via Targeting of Integrin α5β1. Bioconjugate Chem 2016; 27: 1259-1266
- 26 Kapp TG, Di Leva FS, Notni J. et al. N-Methylation of isoDGR Peptides: Discovery of a Selective α5β1-Integrin Ligand as a Potent Tumor Imaging Agent. J Med Chem 2018; 61: 2490-2499
- 27 Heckmann D, Meyer A, Marinelli L. et al. Probing integrin selectivity: rational design of highly active and selective ligands for the α5β1 and αvβ3 integrin receptor. Angew Chem Int Ed Engl 2007; 46: 3571-3574
- 28 Notni J, Gassert FT, Steiger K. et al. In vivo imaging of early stages of rheumatoid arthritis by α5β1-integrin-targeted positron emission tomography. EJNMMI Res 2019; 9: 87
- 29 Huang CW, Hsieh WC, Hsu ST. et al. The Use of PET Imaging for Prognostic Integrin α2β1 Phenotyping to Detect Non-Small Cell Lung Cancer and Monitor Drug Resistance Responses. Theranostics 2017; 7: 4013-4028
- 30 Li HL, Yuan LJ, Long Y. et al. Synthesis and Preclinical Evaluation of a Ga-68-Radiolabeled Peptide Targeting Very Late Antigen-3 for PET Imaging of Pancreatic Cancer. Mol Pharmaceut 2020; 17: 3000-3008
- 31 Feng GK, Ye JC, Zhang WG. et al. Integrin α6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. J Control Release 2019; 310: 11-21
- 32 Luo Q, Yang GJ, Gao HN. et al. An Integrin α6-Targeted Radiotracer with Improved Receptor Binding Affinity and Tumor Uptake. Bioconjugate Chem 2020; 31: 1510-1521
- 33 Gao S, Jia B, Feng GK. et al. First-in-human pilot study of an integrin α6-targeted radiotracer for SPECT imaging of breast cancer. Signal Transduct Tar 2020; 5: 147
- 34 Hoffmann SHL, Reck DI, Maurer A. et al. Visualization and quantification of in vivo homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics 2019; 9: 5869-5885
- 35 Liu GB, Hu Y, Xiao J. et al. Tc-99m-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation. Sci Rep 2016;
- 36 Hausner SH, DiCara D, Marik J. et al. Use of a peptide derived from foot-and-mouth disease virus for the Noninvasive Imaging of human cancer: Generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin αvβ6 expression with positron emission tomography. Cancer Research 2007; 67: 7833-7840
- 37 Maher TM, Simpson JK, Porter JC. et al. A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor. Respirat Res 2020; 21: 75