Zeitschrift für Phytotherapie 2021; 42(01): 9-23
DOI: 10.1055/a-1338-2107
Forschung

Parasiten beim Tier – ein Thema für die Phytotherapie?

Cäcilia Brendieck-Worm
1   AK-Phyto der Gesellschaft für Ganzheitliche Tiermedizin
,
Yvonne Thoonsen
1   AK-Phyto der Gesellschaft für Ganzheitliche Tiermedizin
,
Sabine Vollstedt
1   AK-Phyto der Gesellschaft für Ganzheitliche Tiermedizin
› Author Affiliations

Zusammenfassung

Weltweit wachsen aufgrund betriebswirtschaftlicher Zwänge die Tierbestände. Arbeitsabläufe werden rationalisiert, Futterproduktion und Fütterungsmanagement technisiert und industrialisiert. Die unter diesen Lebensbedingungen gehaltenen Tiere sind nicht nur großem psychosozialen Stress ausgesetzt, sondern auch einem hohen Infektionsdruck durch Viren, Bakterien und Parasiten. Antibiotika und Antiparasitika gelten folglich in großen Tierbeständen als unverzichtbar. Sie sind es jedoch auch in Kleinbeständen mit schlechten Haltungsbedingungen.

Die sich bei Bakterien und Parasiten ausbreitenden Resistenzen gegen Antibiotika bzw. Antiparasitika sind systemimmanent und sowohl für die derzeitige landwirtschaftliche Tierproduktion als auch für den Menschen weltweit bedrohlich. Die Notwendigkeit strategischer Änderungen bei Diagnose und Therapie von bakteriellen und parasitären Infektionen ist offensichtlich. Solche Änderungen werden jedoch noch selten umgesetzt und verfehlen zudem ihr Ziel, wenn nicht Haltung und Fütterung auf die Gesunderhaltung der Tiere ausgerichtet werden. Leider beobachtet man diese Missstände nicht nur in Nutztierhaltungen, die der Rentabilität unterworfen sind, sondern auch in der Hobbytierhaltung, v. a. bei Pferden und sogar bei Haus- und Heimtieren. Es fehlt allgemein an Wissen und Verständnis für die Grundbedürfnisse der Tiere und deren Bedeutung für ihre Gesundheit.

Nachhaltige Besserung der Lebensumstände und der Gesundheit der Tiere bringen salutogenetische Ansätze. Wird insbesondere die Darm- und Stoffwechselgesundheit der Tiere optimiert, reduziert sich der Bedarf an Antibiotika und Antiparasitika. Es gilt sowohl die evolutionsbiologische Bedeutung sekundärer Pflanzenstoffe für die jeweilige Tierart zu beachten, als auch die Rolle von Bakterien und Parasiten und ihre Interaktionen in diesem System. Am Beispiel von Hund und Pferd wird dies im Folgenden versucht.

Abstract

Parasites in animals: A topic for phytotherapy?

Globally, livestock populations are increasing due to the need to maximize profit. This has led to the streamlining of workflows as well as the mechanization and industrialization of feed production and feeding management. Animals kept under these living conditions are not only exposed to great psychosocial stress, but also to high infection pressure from viruses, bacteria and parasites. Antibiotics and antiparasitics are therefore considered indispensable in large-scale livestock keeping. However, they are also used in small-scale livestock keeping characterized by poor farming conditions. The increase in the resistance of bacteria and parasites to antibiotics and antiparasitics is systemic and threatens the health condition of both livestock and human beings. The necessity for strategic changes in the diagnosis and treatment of bacterial and parasitic infections is thus paramount. Nonetheless, such changes are still rarely implemented and also fail to achieve their objective if the conditions of keeping and feeding of livestock are not directed towards their health. Unfortunately, these irregularities are observed not only in livestock farming, where profitability is pursued, but also in hobby animal husbandry, especially in horses and even in other domestic animals and pets. There is general lack of knowledge and understanding of the basic needs of the animals and the importance for their health. Sustainable improvement of the living conditions and the health of animals brings to the fore the necessity of salutogenetic approaches. In particular, the optimization of the intestinal and metabolic health of the animals reduces the need for antibiotics and antiparasitics. In the same vein, it is important to consider the evolutionary-biological importance of phytochemicals for the respective species, as well as the role of bacteria and parasites and the interactions in this system. This article uses the examples of a dog and a horse to highlight these aspects.



Publication History

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Löscher W, Richter A, Potschka H. Hrsg. Pharmakotherapie bei Haus- und Nutztieren. 9. Aufl. Stuttgart: Enke Verlag in MVS Medizinverlage Stuttgart; 2014
  • 2 Neubert A, McDaniel C. Wie man den Wurm los wird – Pferdeentwurmung inklusive Risiken und Nebenwirkungen. DTBL 2020; 68 (01) : 25-28
  • 3 Kouchkovsky DA, Ghosh S, Rothlin C. Negative regulation of type 2 immunity. Trends Immunol 2017; 38: 154-167 :
  • 4 Kaplan RM, Vidyashankar AN. An inconvenient truth global worming and anthelmintic resistance. Vet Parasitol 2012; 186: 70-78
  • 5 Van den Brom R, Moll L, Kappert C. et al. Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol 2015; 209: 278-280
  • 6 Schieder A-K. Parasitenmanagement beim Pferd – was ändert sich? Pferdespiegel. 2019 22. 126-136
  • 7 Knubben-Schweizer G, Pfister K. Anthelmintic resistance in ruminants development, diagnostics, and procedures. Tierarztl Prax 2017; 45: 244-251
  • 8 Walshe N, Duggan V, Cabrera-Rubio R. et al. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int J Parasitol 2019; 49: 489-500
  • 9 Stancampiano L, Usai F, Marigo A. et al. Are small strongyles (Cyathostominae) involved in horse colic occurrence? Vet Parasitol. 2017 247. 33-36
  • 10 Brendieck-Worm C, Melzig MF. Phytotherapie in der Tiermedizin. Stuttgart, New York: Thieme; 2018
  • 11 Engel C. Wild Health – Gesundheit aus der Wildnis. Bernau: Animal Learn Verlag; 2002
  • 12 Provenza F. Nourishment – what animals can teach us about rediscovering our nutritional wisdom. White River Junction, Vermont: Chelsea Green Publishing; 2018
  • 13 Huffman M. Animal self-medication and ethno-medicine exploration and exploitation of the medicinal properties of plants. Proc Nutr Soc 2003; 62: 371-381
  • 14 Peachey LE, Castro C, Molena RA. et al. Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9 : 11121
  • 15 Robert Koch-Institut. Die Echinokokkose – Eine Übersicht und neue Erkenntnisse in der Diagnostik, Therapie und Parasitenbiologie. Epidemiologisches Bulletin Nr. 15 vom 13. April 2017. https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2017/Ausgaben/15_17.pdf; jsessionid = 494B31701E0CBC2786B3B83A49064C58.internet072?__blob = publicationFile
  • 16 Drake J, Wiseman S. Increasing incidence of Dirofilaria immitis in dogs in USA with focus on the southwest region 2013 – 2016. Parasit Vectors 2018; 11 (01) : 39
  • 17 McTier TL, Six RH, Pullins A. et al. Preventive efficacy of oral moxidectin at various dosages regimens against macrocyclic lactone-resistant heartworm (Dirofilaria immitis) strains in dogs. Parasit Vectors 2019; 12 (01) : 444
  • 18 Jimenez Castro PD, Howell SB, Schaefer JJ. et al. Multiple drug resistance in the canine hookworm Ancylostoma caninum: an emerging threat?. Parasit Vectors 2019; 12 (01) : 576
  • 19 Mayr AK. Neosporum canis – eine Abortursache beim Rind [Dissertation]. München: LMU; 2004
  • 20 Fröhner E. Lehrbuch der Arzneimittellehre für Thierärzte. 4. Aufl. Stuttgart: Enke; 1896
  • 21 Manolaraki F, Sotiraki S, Stefanakis A. et al. Anthelmintic activity of some Mediterranean browse plants against parasitic nematodes. Parasitology 2010; 137: 685-696
  • 22 Heckendorn F, Maurer V, Zinstag J. et al. Effect of sainfoin (Onobrychis viciifolia) silage and hay on established populations of Haemonchus contortus and Cooperia curticei in lambs. Vet Parasitol 2007; 142: 293-300
  • 23 Saeed MEM, Krishna S, Greten HJ. et al. Antischistosomal activity of Artemisinin derivates in vitro and in patients. Pharmacol Res 2016; 110: 216-226
  • 24 Wynn SG, Marsden S. Leitfaden Naturheilverfahren in der Kleintierpraxis. München: Urban & Fischer/Elsevier; 2005
  • 25 Axelsson E, Ratnakumar A, Arendt ML. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013; 495: 360-364
  • 26 Haji Mohammadi KH, Heidarpour M, Borji H. In vivo therapeutic efficacy of the Allium sativum ME in experimentally Echinococcus granulosus infected mice. Cop Immunol Microbiol Infect Dis 2018; 60: 23-27
  • 27 Cortés A, García-Ferrús M, Sotillo J. et al. Effects of dietary intake of garlic on intestinal trematodes. Parasitol Res 2017; 116: 2119-2129
  • 28 Kanojiva D, Shanker D, Sudan V. et al. Assessment of in vitro and in vivo anthelminthic potential of extracts of Allium sativum bulb against naturally occurring ovine gastrointestinal nematodiosis. Vet Q 2015; 35: 200-206
  • 29 Palacio-Landin J. Mendoza de Gives P, Salinas-Sanches DO et al. In vitro and in vivo nematocidal activity of Allium sativum and Tagetes erecta extracts against Haemonchus contortus . Turkiye Parazitol Derg 2015; 39: 260-264
  • 30 Peachey LE, Pinchbeck GL, Matthews JB. et al. An evidence-based approach to the evaluation of ethnoveterinary medicines against strongyle nematodes of equids. Vet Parasitol 2015; 210: 40-52
  • 31 Nosal P, Kowalska D, Bielanski P. et al. Herbal formulations as feed additives in the course of rabbit subclinical coccidiosis. Ann Parasitol 2014; 60: 65-69
  • 32 Seddiek ShA, El-Shorbagy MM, Khater HF. et al. The antitrichomonal efficacy of garlic and metronidazole against Trichomonas gallinae infecting domestic pigeons. Parasitol Res 2014; 113: 1319-1329
  • 33 Rahaju SD, Sundari S. The efficacy of anthelmintic of carrot juice (Daucus carota) against Ascaridia galli . Mutiara Medika Edisi Khusus 2007; 7: 40-44
  • 34 Urban J, Kokoska L, Langrova I. et al. In vitro anthelmintic effects of medicinal plants used in Czech Republic. Pharmaceutical Biol 2008; 46: 808-813
  • 35 Nadig A. Phytotherapeutische Behandlung der Leishmaniose. Tierärztl Umschau 2016; 12: 479-482
  • 36 Shi Ni Loo C, Siu Kei Lam N, Yu D. et al. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2017; 117: 192-217
  • 37 Lam NS, Long X, Su X. et al. Artemisinin and its derivates in treating helminthic infections beyond schistosomiasis. Pharmacol Res 2018; 133: 77-100
  • 38 Naß J, Efferth T. The activity of Artemisia spp. and their constituents against Trypanosomiasis. Phytomedicine 2018; 47: 184-191
  • 39 Iqbal A, Tariq KA, Wazir VS. Antiparasitic efficacy of Artemisia absinthium, toltrazuril and amprolium against intestinal coccidiosis in goats. J Parasit Dis 2013; 37: 88-93
  • 40 Desrues O, Pena-Espinosa M, Hansen T. et al. Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia onophora in calves. Parasit Vectors 2016; 9 (01) : 329
  • 41 Werne S, Heckendorn F. Esparsette – Möglichkeiten und Grenzen bei der Verwendung zur Parasitenkontrolle. Forum 2016; 5
  • 42 Legendre H, Hoste H, Gidenne T. Nutritive value and anthelmintic effect of sainfoin pellets fed to experimental infected growing rabbits. Animal 2017; 11: 1464-1471
  • 43 Collas C, Salle G, Dumont B. et al. Are sainfoin or protein supplements alternatives to control small strongyle infection in horses? Animal. 2018; 12: 359-365
  • 44 Kheirandish F, Delfan B, Mahmoudvans H. et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother 2016; 82: 208-215
  • 45 Sawangjaroen N, Sawangjaroen K, Poonpanang P. Effects of Piper longum fruit, Piper sarmentosum root and Quercus infectoria nut gall on caecal amoebiasis in mice. J Ethnopharmacol 2004; 91: 357-360
  • 46 Karolyi D, Beck R, Kis G. et al. Effect of Acorn (Quercus robur) intake on faecal egg count in outdoor reared black Slavonian pig. Acta Agriculturae Slovenica 2004; 1: 173-178
  • 47 Katsoulos PD, Karatzia MA, Dovas CI. et al. Evaluation of the in-field efficacy of oregano essential oil administration on the control of neonatal diarrhea syndromes in calves. Res Vet Sci 2017; 115: 478-483
  • 48 Dudko P, Junkuszew A, Bojar W. et al. Effect of dietary supplementation with preparation comprising the blend of essential oil from Origanum vulgare (Lamiaceae) and Citrus spp. (Citraceae) on coccidia invasion and lamb growth. Ital J Animal Sci 2018; 17: 57-65
  • 49 Ferreira LE, Benincasa BI, Fachin AL. Thymus vulgaris L. essential oil and its main component Thymol: Anthelmintic effects against Haemonchus contortus . from sheep. Vet Parasitol 2016; 228: 70-76
  • 50 Eraky MA, El-Fakahany AF, El-Sayed NM. et al. Effects of Thymus vulgaris extract on chronic toxoplasmosis in a mouse model. Parasitol Res 2016; 115: 2863-2871
  • 51 Iqbal Z, Lateef M, Jabbar A. et al. In vivo anthelmintic activity of Azadirachta indica A. Juss seeds against gastrointestinal nematodes of sheep. Vet Parasitol 2010; 168: 342-345
  • 52 Chouhan G, Islamuddin M, Want MY. et al. Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunmodulatory potential and therapeutic cure in vivo. Parasit Vectors 2016; 8 : 183
  • 53 Agarwal R, Kharya MD, Shrivastava R. Antimicrobial & anthelmintic activities of the essential oil of Nigella sativa Linn. Indian J Exp. Biol 1979; 17: 1264-1265
  • 54 Akhtar MS, Riffat S. Field trial of Saussurea lappa roots against nematodes and Nigella sativa seeds against cestodes in children. J Pak Med Assoc 1991; 41: 185-187
  • 55 Al-Megrin WA. Efficacy of black seeds oil (Nigella sativa) against Hymenolepis nana in infected mice. EJMP 2016; 13 (04) : 1-7. DOI: doi:10.9734/EJMP/2016/24773.
  • 56 Baghdadi HB, Al-Mathal EM. Anti-coccidial activity of Nigella sativa L. J Food Agric Environ 2011; 9: 10-17
  • 57 Mahmoud MR, El-Abhar HS, Saleh S. The effect of Nigella sativa oil against the liver damage induced by Schistosoma mansoni infection in mice. J Ethnopharmacol 2002; 79: 1-11
  • 58 Okeola VO, Adaramoye OA, Nneji CM. et al. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis . Parasitol Res 2011; 108: 1507-1512
  • 59 Ullah R, Rehman A, Zafeer MF. et al. Anthelmintic potential of thymoquinone and curcumin on Fasciola gigantica . PLoS One 2017; 12 (02) : e0171267. DOI: doi:10.1371/journal.pone.0171267.
  • 60 Dyab AK, Yones DA, Ibraheim ZZ, Hassan TM. Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo. Parasitol Res 2016; 115: 2637-2645
  • 61 Bazh E, El-Bahy N. In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli . Parasitol Res 2013; 112: 3679-3686
  • 62 Alrubaie A. Effects of alcoholic extracts of Curcuma longa on Ascaridia infestation affecting chicken. Indian J Exp Biol 2015; 53: 452-456
  • 63 Datta A, Sukul NC. Antifilarial effect of Zingiber officinalis on Dirofilaria immitis . J Helminthology 1987; 61: 268-270
  • 64 Merawin LT, Arifah AK, Sani RA. et al. Screening of microfilarcidal effects of plant extracts against Dirofilaria immitis . Res Vet Sci 2010; 88: 142-147
  • 65 Iqbal Z, Lateef M, Akhtar M. In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol 2006; 106: 285-287
  • 66 Lin RJ, Chen CY, Lu CM. et al. Anthelminthic constituents from ginger (Zingiber officinale) against Hymenolopsis nana . Acta Tropica 2014; 140: 50-60