Planta Med 2021; 87(09): 701-708
DOI: 10.1055/a-1334-4480
Biological and Pharmacological Activity
Original Papers

Inhibitory Effects of Secondary Metabolites from the Lichen Stereocaulon evolutum on Protein Tyrosine Phosphatase 1B

Thi Huyen Vu
1   University of Rennes, CNRS, ISCR – UMR 6226, Rennes, France
,
Olivier Delalande
2   University of Rennes, CNRS, IGDR – UMR 6290, Rennes, France
,
Claudia Lalli
1   University of Rennes, CNRS, ISCR – UMR 6226, Rennes, France
,
Stefanie Reider
3   Institute of Pharmacy/Pharmacognosy, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
,
Solenn Ferron
1   University of Rennes, CNRS, ISCR – UMR 6226, Rennes, France
,
Joel Boustie
1   University of Rennes, CNRS, ISCR – UMR 6226, Rennes, France
,
3   Institute of Pharmacy/Pharmacognosy, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
,
Françoise Lohézic-Le Dévéhat
1   University of Rennes, CNRS, ISCR – UMR 6226, Rennes, France
› Author Affiliations

Abstract

Protein tyrosine phosphatase 1B plays a significant role in type 2 diabetes mellitus and other diseases and is therefore considered a new drug target. Within this study, an acetone extract from the lichen Stereocaulon evolutum was identified to possess strong protein tyrosine phosphatase 1B inhibition in a cell-free assay (IC50 of 11.8 µg/mL). Fractionation of this bioactive extract led to the isolation of seven known molecules belonging to the depsidones and the related diphenylethers and one new natural product, i.e., 3-butyl-3,7-dihydroxy-5-methoxy-1(3H)-isobenzofurane. The isolated compounds were evaluated for their inhibition of protein tyrosine phosphatase 1B. Two depsidones, lobaric acid and norlobaric acid, and the diphenylether anhydrosakisacaulon A potently inhibited protein tyrosine phosphatase 1B with IC50 values of 12.9, 15.1, and 16.1 µM, respectively, which is in the range of the protein tyrosine phosphatase 1B inhibitory activity of the positive control ursolic acid (IC50 of 14.4 µM). Molecular simulations performed on the eight compounds showed that i) a contact between the molecule and the four main regions of the protein is required for inhibitory activity, ii) the relative rigidity of the depsidones lobaric acid and norlobaric acid and the reactivity related to hydrogen bond donors or acceptors, which interact with protein tyrosine phosphatase 1B key amino acids, are involved in the bioactivity on protein tyrosine phosphatase 1B, iii) the cycle opening observed for diphenylethers decreased the inhibition, except for anhydrosakisacaulon A where its double bond on C-8 offsets this loss of activity, iv) the function present at C-8 is a determinant for the inhibitory effect on protein tyrosine phosphatase 1B, and v) the more hydrogen bonds with Arg221 there are, the more anchorage is favored.

Supporting Information



Publication History

Received: 12 June 2020

Accepted after revision: 01 December 2020

Article published online:
22 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35: 1227-1246
  • 2 Barford D, Flint AJ, Tonks NK. Crystal structure of human protein tyrosine phosphatase 1B. Science 1994; 263: 1397-1404
  • 3 Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev 2012; 32: 459-517
  • 4 Yip SC, Saha S, Chernoff J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010; 35: 442-449
  • 5 Catalano S, Barone I, Marsico S, Bruno R, Ando S. Phosphorylation processes controlling aromatase activity in breast cancer: an update. Mini Rev Med Chem 2016; 16: 691-698
  • 6 Thompson D, Morrice N, Grant L, Le Sommer S, Lees EK, Mody N, Wilson HM, Delibegovic M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR(-/-) mouse model of atherosclerosis. Clin Sci 2017; 131: 2489-2501
  • 7 Gonzalez-Rodriguez A, Valdecantos MP, Rada P, Addante A, Barahona I, Rey E, Pardo V, Ruiz L, Laiglesia LM, Moreno-Aliaga MJ, Garcia-Monzon C, Sanchez A, Valverde AM. Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Mol Metab 2018; 7: 132-146
  • 8 Sun M, Izumi H, Shinoda Y, Fukunaga K. Neuroprotective effects of protein tyrosine phosphatase 1B inhibitor on cerebral ischemia/reperfusion in mice. Brain Res 2018; 1694: 1-12
  • 9 Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents – a brief review. Bioorg Chem 2017; 70: 267-283
  • 10 Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: a review. Eur J Med Chem 2018; 152: 436-488
  • 11 Rios JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81: 975-994
  • 12 Shrestha G, St Clair LL. Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 2013; 12: 229-244
  • 13 Seo C, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H. Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum . Bioorg Med Chem Lett 2009; 19: 2801-2803
  • 14 Seo C, Yim HJ, Lee HK, Hyuncheol O. PTP1B inhibitory secondary metabolites from the antarctic lichen Lecidella carpathica . Mycology 2011; 2: 18-23
  • 15 Vu TH. Etude des acides gras du genre Stereocaulon et étude phytochimique du lichen S. evolutum Graewe [Ph.D. Thesis]. Rennes: Université de Rennes; 2014
  • 16 Carpentier C, Queiroz EF, Marcourt L, Wolfender JL, Azelmat J, Grenier D, Boudreau S, Voyer N. Dibenzofurans and pseudodepsidones from the lichen Stereocaulon paschale collected in northern Quebec. J Nat Prod 2017; 80: 210-214
  • 17 Ingolfsdottir K, Gissurarson SR, Muller-Jakic B, Breu W, Wagner H. Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in vitro . Phytomedicine 1996; 2: 243-246
  • 18 Millot M, Tomasi S, Articus K, Rouaud I, Bernard A, Boustie J. Metabolites from the lichen Ochrolechia parella growing under two different heliotropic conditions. J Nat Prod 2007; 70: 316-318
  • 19 Ismed F, Lohezic-Le Devehat F, Delalande O, Sinbandhit S, Bakhtiar A, Boustie J. Lobarin from the Sumatran lichen, Stereocaulon halei . Fitoterapia 2012; 83: 1693-1698
  • 20 Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulon sasakii . Bioorg Med Chem Lett 2009; 19: 3679-3681
  • 21 Gonzalez AG, Rodriguez EM, Bermejo J. Depsidone chemical transformations in an extract of the lichen Stereocaulon azoreum . An Quim 1995; 91: 461-466
  • 22 Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci U S A 1997; 94: 13420-13425
  • 23 Wang LJ, Jiang B, Wu N, Wang SY, Shi DY. Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Adv 2015; 5: 48822-48834
  • 24 Efremov RG, Chugunov AO, Pyrkov TV, Priestle JP, Arseniev AS, Jacoby E. Molecular lipophilicity in protein modeling and drug design. Curr Med Chem 2007; 14: 393-415
  • 25 Suhre K, Sanejouand YH. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 2004; 32: W610-W614
  • 26 Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 2004; 57: 678-683
  • 27 Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4: 435-447