Horm Metab Res 2021; 53(02): 124-131
DOI: 10.1055/a-1322-2943
Endocrine Research

Role of the Mevalonate Pathway in Adrenocortical Tumorigenesis

Helena Panteliou Lima-Valassi
1   Laboratório de Hormônios e Genética Molecular LIM/42, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Antonio Marcondes Lerario
2   Unidade de Endocrinologia do Desenvolvimento & Unidade de Suprarrenal, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Luciana Ribeiro Montenegro
1   Laboratório de Hormônios e Genética Molecular LIM/42, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Maria Candida Barisson Villares Fragoso
2   Unidade de Endocrinologia do Desenvolvimento & Unidade de Suprarrenal, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
3   Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Madson Queiroz Almeida
2   Unidade de Endocrinologia do Desenvolvimento & Unidade de Suprarrenal, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
3   Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Berenice Bilharinho Mendonca
1   Laboratório de Hormônios e Genética Molecular LIM/42, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
2   Unidade de Endocrinologia do Desenvolvimento & Unidade de Suprarrenal, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
,
Chin Jia Lin
4   Laboratório de Patologia Molecular LIM/22, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
› Author Affiliations

Abstract

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme of the mevalonate pathway, which generates cholesterol and non-sterol compounds such as isoprenoid, which are involved in key steps of tumorigenesis such as cell growth and proliferation. Our aim was to evaluate the role of the mevalonate pathway in adrenocortical tumors (ACTs). Expression pattern of HMGCR, FDFT1, LDLR, SCARB1, StAR, TSPO, CYP11A1, CYP11B1, CYP17A1, CYP21A1, and HSD3B1 genes, involved in the mevalonate pathway and steroidogenesis, was quantified by real-time RT-PCR in 46 ACT [14 adenomas (ACA) and 11 carcinomas (ACC) from adults and 13 ACA and 8 ACC from pediatric patients]. Effects of the mevalonate pathway inhibition on NCI-H295A cell viability was assessed by colorimetric assay. HMGCR was overexpressed in most adult ACT. The expression of TSPO, STAR, CYP11B1, CYP21A1, and HSD3B1 in adult ACC was significantly lower than in ACA (p<0.05). Regarding pediatric ACT, the expression of genes involved in steroidogenesis was not different between ACA and ACC. Inhibition of isoprenoid production significantly decreased the viability of NCI-H295A cells (p<0.05). However, cholesterol synthesis blockage did not show the same effect on cell viability. Low expression of TSPO , StAR, CYP11B1, CYP21A1, and HSD3B1 characterized a signature of adult ACCs. Our data suggest that HMGCR overexpression in adult ACC might lead to intracellular isoprenoid accumulation and cell proliferation. Therefore, the mevalonate pathway is a potential target for ACC treatment.



Publication History

Received: 18 November 2019

Accepted: 20 November 2020

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Allolio B, Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab 2006; 91: 2027-2037
  • 2 Else T, Kim AC, Sabolch A. et al. Adrenocortical carcinoma. Endocr Rev 2014; 35: 282-326
  • 3 Libé R, Borget I, Ronchi CL. et al. Prognostic factors in stage III-IV adrenocortical carcinomas (ACC): An European Network for the Study of Adrenal Tumor (ENSAT) study. Ann Oncol 2015; 26: 2119-2125
  • 4 Latronico A, Reincke M, Mendonca B. et al. No evidence for oncogenic mutations in the adrenocorticotropon receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab 1995; 80: 875-877
  • 5 Almeida MQ, Latronico AC. The molecular pathogenesis of childhood adrenocortical tumors. Horm Metab Res 2007; 39: 461-466
  • 6 Faria AM, Almeida MQ. Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults. Mol Cell Endocrinol 2012; 351: 52-57
  • 7 Gicquel C, Bertagna X, Gaston V. et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 2001; 61: 6762-6767
  • 8 Barbosa AS, Giacaglia LR, Martin RM. et al. Assessment of the role of transcript for GATA-4 as a marker of unfavorable outcome in human adrenocortical neoplasms. BMC Endocr Disord 2004; 4: 3
  • 9 Kjellman M, Enberg U, Höög A. et al. Gelatinase A and membrane-type 1 matrix metalloproteinase mRNA: Expressed in adrenocortical cancers but not in adenomas. World J Surg 1999; 23: 237-242
  • 10 Kjellman M, Kallioniemi OP, Karhu R. et al. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 1996; 56: 4219-4223
  • 11 Gicquel C, Baudin E, Lebouc Y. et al. Adrenocortical carcinoma. Ann Oncol 1997; 8: 423-427
  • 12 Ribeiro RC, Sandrini F, Figueiredo B. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 2001; 98: 9330-9335
  • 13 Latronico AC, Pinto EM, Domenice S. et al. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 2001; 86: 4970-4973
  • 14 Broitman SA, Cerda S, Wilkinson J. Cholesterol metabolism and colon cancer. Prog Food Nutr Sci 1993; 17: 1-40
  • 15 Silvius JR. Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 2003; 1610: 174-183
  • 16 Pechlivanis M, Kuhlmann J. Hydrophobic modifications of Ras proteins by isoprenoid groups and fatty acids--More than just membrane anchoring. Biochim Biophys Acta 2006; 1764: 1914-1931
  • 17 McTaggart SJ. Isoprenylated proteins. Cell Mol Life Sci 2006; 63: 255-267
  • 18 Stowasser M, Ahmed AH, Cowley D. et al. Comparison of seated with recumbent saline suppression testing for the diagnosis of primary aldosteronism. J Clin Endocrinol Metab 2018; 103: 4113-4124
  • 19 Yachnin S, Mannickarottu V. Increased 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis in freshly isolated hairy cell leukemia cells. Blood 1984; 63: 690-693
  • 20 Vitols S, Norgren S, Juliusson G. et al. Multilevel regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in normal and leukemic cells. Blood 1994; 84: 2689-2698
  • 21 Bennis F, Favre G, Le Gaillard F. et al. Importance of mevalonate-derived products in the control of HMG-CoA reductase activity and growth of human lung adenocarcinoma cell line A549. Int J Cancer 1993; 55
  • 22 Wieneke JA, Thompson LD, Heffess CS. Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. Am J Surg Pathol 2003; 27: 867 –Importance of mevalonate-derived products in the control of HMG-CoA reductase activity and growth of human lung adenocarcinoma cell line A881
  • 23 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159
  • 24 Rodriguez H, Hum DW, Staels B. et al. Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. J Clin Endocrinol Metab 1997; 82: 365-371
  • 25 de Fraipont F, El Atifi M, Cherradi N. et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 2005; 90: 1819-1829
  • 26 Huang B, Wang S, Ning Y. et al. Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 1999; 87: 349-353
  • 27 Tosi MR, Tugnoli V. Cholesteryl esters in malignancy. Clin Chim Acta 2005; 359: 27-45
  • 28 Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32: 81-151
  • 29 Bidet M, Bellanne-Chantelot C, Galand-Portier MB. et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2010; 95: 1182-1190