Planta Med 2021; 87(06): 432-479
DOI: 10.1055/a-1293-5768
Biological and Pharmacological Activity
Reviews

A Review of the Phytochemistry, Traditional Uses and Biological Activities of the Essential Oils of Genus Teucrium

Rossella Gagliano Candela
1   Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
,
2   Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
3   Centro Interdipartimentale di Ricerca “Riutilizzo bio-based degli scarti da matrici agroalimentari” (RIVIVE), Università di Palermo, Palermo, Italy
,
Maurizio Bruno
1   Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
3   Centro Interdipartimentale di Ricerca “Riutilizzo bio-based degli scarti da matrici agroalimentari” (RIVIVE), Università di Palermo, Palermo, Italy
,
1   Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
› Author Affiliations
Supported by: Ministero dell'Istruzione, dell'Università e della Ricerca Project N. 2017A95NCJ
 

Abstract

The genus Teucrium is a large and polymorphic genus of the Lamiaceae family distributed in mild climate zones, particularly in the Mediterranean basin and Central Asia. Studies of nonvolatile constituents of Teucrium species showed that they are a rich source of neo-clerodane diterpenoids, considered as chemotaxonomic markers of the genus. In addition to the nonvolatile metabolites, there has been a large interest in the essential oils of this genus. In this review, a complete survey of the chemical composition and biological properties of the essential oils isolated from Teucrium taxa is provided. In traditional medicine, since ancient times, species of this genus have been widely implemented for their biological properties, including antimicrobial, anti-inflammatory, antispasmodic, insecticidal, anti-malaria, etc. Therefore, a complete review of all of the traditional uses of Teucrium taxa are also reported.


#

Introduction

The genus Teucrium L. is a large and polymorphic genus of the Lamiaceae family, represented mostly by perennial, bushy, or herbaceous plants, living commonly in sunny habitats [1]. The Plant List [2], which has been used to validate the scientific names of the species, includes more than one thousand scientific plant names of species rank for the genus Teucrium. Of these, 415 are accepted names, including species, subspecies, varieties, forms, and hybrids, and they have been divided into ten sections [Teucropsis Benth., Teucrium Benth., Chamaedrys (Mill.) Schreb., Polium (Mill.) Schreb., Isotriodon Boiss., Pycnobotrys Benth., Scorodonia (Hill) Schreb., Stachyobotrys Benth., Scordium (Mill.) Benth., and Spinularia Boiss], identifiable through the calyx shape, the inflorescence structure, and pollen morphology [1], [3], [4], although different authors modified this number from eight up to fifteen and created several subsections [5], [6].

The species of the genus Teucrium grow in mild climate zones, particularly in the Mediterranean basin and Central Asia. As the species can be found in southern, southwestern, and southeastern parts of Europe, the continent is regarded as the main center of differentiation of the genus. A significant number of species have also been observed in Southwestern Asia, Northwestern Africa, southern North America, and southwestern South America. As for Australia, the species of the genus Teucrium are distributed in both southern parts of the continent and certain nearby islands [7], [8].

Studies of nonvolatile constituents of Teucrium species showed that they are a rich source of neo-clerodane diterpenoids, considered as chemotaxonomic markers of the genus. Up to now, 279 neo-clerodanes have been identified and their occurrence has been widely reviewed [9], [10], [11], [12], [13], [14]. Other metabolites isolated from species of this genus include abietane diterpenes, sesquiterpenes, triterpenes, steroids, flavonoids, iridoids, and aromatic compounds [14].

In this review, a complete survey of the chemical composition and biological properties of the EOs isolated from Teucrium taxa is provided. Moreover, the traditional uses of Teucrium taxa are also reported. The available information on these genera was collected from scientific databases and covers 1972 up to 2019. The following electronic databases were used: PubMed, SciFinder, Science Direct, Scopus, Web of Science, and Google Scholar. The search terms used for this review included Teucrium, all of the botanical names of the species, both accepted names or synonyms, EOs, volatile components, traditional uses, activity, pharmacology, and toxicity. No limitations were set for languages. [Table 1] reports the taxa of Teucrium investigated so far, their synonyms, the accepted botanical names, and their section.

Table 1Teucrium taxa studied for their EOs and their synonymous (accepted botanical name in bold).

Taxa

Synonyms

Sect. [4], [5], [6], [15], [16], [17], [18], [19], [20], [21]

T. abutiloides LʼHer

Teucriopsis

T. africanum Thumb.

Teucrium

T. algarbiensis (Cout.) Cout.

Polium

T. alopercus Noë

Polium

T. alyssifolium Stapf

Teucrium

T. antiatlanticum (Maire) Sauvage & Vindt

Polium

T. antitauricum Ekim

Isotriodon

T. apollinis Maire & Weiller

Polium

T. arduini L.

Stachybotrys

T. asiaticum L.

Scorodonia

T. atratum Pomel

Not determined

T. betonicum LʼHer

Teucriopsis

T. botrys L.

Spinularia

T. brevifolium Schreb.

Teucrium

T. canadensis L.

Scorodonia

T. carolipaui Vicioso ex Pau

Polium

T. cavernarum P. H. Davis

Isotriodon

T. chamaedrys L.

Chamaedrys

T. chamaedrys ssp. chamaedrys

T. chamaedrys L.

Chamaedrys

T. chamaedrys ssp. lydium O. Schwarz

Chamaedrys

T. chamaedrys ssp. syspirense (K.Koch) Rech f.

Chamaedrys

T. chamaedrys ssp. trapezunticum Rech f.

Chamaedrys

T. creticum L.

Teucrium

T. cyprium ssp. cyprium Boiss.

T. cyprium Boiss

Polium

T. divaricatum ssp. canescens (Celak.) Holmboe

Chamaedrys

T. divaricatum ssp. divaricatum

T. divaricatum Sieber ex Heldr.

Chamaedrys

T. divaricatum ssp. villosum (Celak.) Rech.f.

T. divaricatum Sieber ex Heldr.

Chamaedrys

T. flavum L.

Chamaedrys

T. flavum ssp. flavum

T. flavum L.

Chamaedrys

T. flavum ssp. glaucum (Jord. & Fourr.) Ronniger

Chamaedrys

T. flavum ssp. hellenicum Rech.f.

Chamaedrys

T. fruticans L.

Teucrium

T. gnaphalodes LʼHer

Polium

T. haenseleri Boiiss.

Polium

T. hetrophyllum LʼHer

Teucriopsis

T. hyrcanicum L.

Stachybotrys

T. kotschyanum Poech

Scorodonia

T. lamiifolium ssp. lamiifolium dʼUrv Mem

Stachybotrys

T. lamiifolium ssp. stachyophyllum (P. H.Davis) Hedge & Ekim

T. stachyophyllum P. H.Davis

Stachybotrys

T. lepicephalum Pau

Polium

T. leucocladum Boiss.

Polium

T. libanitis Schreb.

Polium

T. lusitanicum Schreb.

Polium

T. lusitanicum ssp. aureiformis (Rouy) Valdes Berm.

Polium

T. maghrebinum Greuter & Burdet

Spinularia

T. marum L.

Chamaedrys

T. marum ssp. drosocalyx Mus, Rossellò & Mayol

T. marum L.

Chamaedrys

T. marum ssp. marum

T. marum L.

Chamaedrys

T. marum ssp. occidentale Mus, Rossellò & Mayol

T. balearicum (Coss. ex Pau) Castrov. & Bayon

Chamaedrys

T. mascatense Boiss.

Polium

T. massiliense L.

Scorodonia

T. melissoides Boiss. & Hausskn.

Scordium

T. micrpopodiodes Rouy

Polium

T. montanum L.

Polium

T. montanum ssp. jailae (Juz.) Soó

Polium

T. montbretii ssp. heliotropifolium (Barbey) P. H. Davis

Isotriodon

T. multicaule Montbret. & Aucher ex Benth.

Teucrium

T. orientale ssp. glabrescens (Hausskn. ex Bornm) Rech.f.

Teucrium

T. orientale ssp. orientale

T. orientale L.

Teucrium

T. orientale var. puberulens (T.Ekim)

Teucrium

T. orientale ssp. taylori (Boiss.) Rech.f.

Teucrium

T. oxylepis ssp. oxylepis

T. oxylepis Font Quer

Stachybotrys

T. oxylepis ssp. marianum Ruiz Torre & Ruiz Cast.

T. oxylepis Font Quer

Stachybotrys

T. paederotoides Boiss.

Isotriodon

T. parviflorum Schreb.

Teucrium

T. persicum Boiss.

Isotriodon

T. pestalozzae Boiss.

Teucrium

T. polium L.

Polium

T. polium ssp. album (Poir.) Breistr.

T. capitatum L.

Polium

T. polium ssp. aurasiacum (Maire) Greuter & Burdet

Polium

T. polium ssp. aureum (Schreb.) Arcang.

T. aureum Schreb.

Polium

T. polium ssp. capitatum (L.) Arcang.

T. capitatum L.

Polium

T. polium ssp. gabesianum Le Houer

T. luteum ssp. gabesianum (S.Puech) Greuter

Polium

T. polium ssp. geyrii Maire

T. helichrysoides (Diels) Greuter & Burdet

Polium

T. polium ssp. pilosum Decne

T. decaisnei C.Presl

Polium

T. polium ssp. valentinum (Schreber) Borja

Polium

T. pruinosum Boiss.

Teucrium

T. pseudochamaepitys L.

Teucrium

T. pseudoscorodonia ssp. baeticum

T. pseudoscorodonia Desf.

Scorodonia

T. puechiae Greuter & Burdet

T. dunense Sennen

Polium

T. quadrifarium Buch.-Ham

Pycnobotrys

T. ramosissimum Desf.

Polium

T. royleanum Wall. ex Benth.

Scorodonia

T. salviastrum Schreb.

Scorodonia

T. sandrasicum O. Schwarz

Teucrium

T. sauvegi Le Houer

Polium

T. scordium L.

Scordium

T. scordium ssp. scordiodes (Schreb.) Arcang.

Scordium

T. scorodonia L.

Scorodonia

T. scorodonia ssp. baeticum

T. pseudoscorodonia Desf.

Scorodonia

T. scorodonia ssp. scorodonia

T. scorodonia L.

Scorodonia

T. siculum (Raf.) Guss.

Scorodonia

T. stocksianum Boiss.

Polium

T. stocksianum ssp. gabrielae (Bornm.) Rech.f.

Polium

T. stocksianum ssp. stocksianum

T. stocksianum Boiss.

Polium

T. trifidum Retz.

Teucrium

T. turredanum Losa & Rivas Goday

Polium

T. yemense Deflers

Polium

T. zanoni Pamp.

Polium


#

Traditional Uses

Teucrium species have been used as medicinal herbs for more than 2000 years, and many of them are also currently in use in folk medicine. A summary of their traditional uses is presented in [Table 2]. The first record of the medicinal properties of these species dates back to Greek mythology from ten centuries BC. The name Teucrium is derived from Teucer, a son of Telamon, king of Salamis, who was the first to use these plants for curative purposes [157].

Table 2 Ethnopharmacological uses of all Teucrium taxa.

Species

Vernacular names

Area

Use

Ref

T. alopecurus

Hʼchichit ben salem

Tunisia

anti-inflammatory properties, flavoring

[22], [23]

T. africanum

Akkedispoot, ubu-Hlungu ambeibossie, bitterbossie, paddaklou

South Africa

tonic, against snakebites and anthrax, hemorrhoids, sore throat, stomach disorders, eye inflammations, colds, and fever

[24]

T. antiatlanticum

Morocco

to treat burns and fevers

[25]

T. apollinis

Jada

Libya

antidiabetic, antihypertensive, and for extruding kidney stones

[26]

T. arduini

Arduinijeva iva

Bosnia and Herzegovina

stomach ailments

[27], [28]

T. betonicum

Abrotona, erva branca, herva branca

Portugal, Madeira

stomachic, tonic

[29]

T. bidentatum Hemsl.

China, Guizhou

treatment of dysentery and leukoderma

[30]

T. buxifolium Schreb.

Spain

rheumatism, inflammation

[31]

T. canadensis

Canada

diaphoretic, diuretic, emmenagogue, antiseptic

[32]

T. chamaedrys

astringent, antirheumatic, digestive, fever, anti-inflammatory, diuretic, treatment of wounds, dyspepsia, anorexia, nasal catarrh, chronic bronchitis, gout, rheumatoid arthritis, fever, uterine infections, to reduce body weight

[33], [34], [35]

Balkans

inflammations of the skin, open wounds, joint pain, liver diseases, digestive, diuretic

[36]

Dubačac

Bosnia and Herzegovina

diarrhea

[27]

England

treating rheumatism and gout

[37]

ﺠﻌﺪﻩ ﺍﻠﺼﺒﻴﺎﻦ

Israel, Golan

stomach, intestine pain and inflammation, lack of appetite, jaundice, eye inflammation, inflammation of teeth and gums

[38]

Iran

diuretic, antiseptic, antipyretic and antihelmintic

[39]

Palestine

treatment of digestive disorders

[40]

Podubnica

Serbia

treatment of digestive and pulmonary disorders, coughs, asthma, abscesses, conjunctivitis

[41], [42], [43]

Camedrio, Encinillo

Spain

tonic, stomachic, febrifuge, vesicant, emmenagogu

[44]

Kisa mahmut, Sancti otu

Turkey

hemorrhoids

[45]

Uzun mahmut

Turkey, Balikesir

abdominal pain, kidney stones

[46]

Kısacıkmahmut

Turkey, Central

stomachache

[47]

T. chamaedrys ssp. lydium

Mayasil otu

Turkey, Ayvacik

hemorrhoids

[48]

Mayasil otu

Turkey, Bayramiç

hemorrhoids, eczema

[49]

T. chamaedrys ssp. chamaedris

Bodurca mahmut, Kinin otu

Turkey, Acipayam

hemorrhoids, hearth diseases, malaria

[50]

Kisamahmut otu

Turkey, Bilecik

ulcer in mouth, kidney infection

[51]

Kisamahmut otu

Turkey, Kirklareli

diuretic, kidney stones, diarrhea, abdominal pain

[52]

Kisacik mahmut, Sancti otu, Bodurmahmut

Turkey, Ulukışla

hemorrhoids

[45], [53]

T. creticum

Palestine

antidiabetic

[54]

T. cubense Jacq.

Agrimonia, verbena

Mexico, Yucatan

diabetes mellitus, bowel diseases, skin infections, anti-inflammatory

[55], [56], [57]

T. cyprium ssp. cypryum

Cyprus

against fever and jaundice, astringent, antipruritic

[58]

T. divaricatum ssp. canescens

Cyprus

stomachic, fever, colds, cicatrisant

[58]

T. divaricatum ssp. divaricatum

Cyprus

cicatrisant

[59]

Mürcüotu, buhurcuoğlu otu, böceotu

Turkey, Marmaris

cough, tonic for eyes, sickness, stomachache, urinary diseases, gallbladder disease, kidney stones

[60]

T. divaricatum ssp. villosun

Lebanon

stomachic, fever, colds, cicatrizant

[61]

T. flavum

Chamaidrya, Moskhokhortaro, Dontokhorti

Greece

antidiabetic, astringent, to heal skin eruptions and wounds

[62]

Querciola maggiore/Crammediu.

Italy, Sardinia

antipyretic, cicatrizant, antiseptic

[63], [64]

T. flavum ssp. glaucum

Cramediu ʼe istropios

Italy, Sardinia

cicatrizant

[65]

T. fruticans

Italy, Tuscany

depurative and diuretic

[66]

Erba ricottara

Italy, Sicily

hemorrhoids

[67]

T. kotschyanum

Cyprus

antipyretic, antidiabetic

[58]

T. kraussi Codd.

ubuHlungu, isiHlungu, umnunuwenkkhangala

South Africa

tonic, against snakebites and anthrax

[24]

T. maghrebinum

kayatat el gerah

Algeria

burns, fevers, antimicrobial

[68]

Morocco

to treat burns and fevers

[25]

T. marum

diuretic, nervine, stimulant, stomachic, tonic, nervous complaints, astringent, hemorrhoids, worms in children

[69], [70]

Gattaria/Erba de gattus

Italy, Sardinia

antibacterial, anti-inflammatory and antipyretic, cicatrizant

[64], [65]

T. mascatense

jaʼdah

Oman

fever remedy, blood menstruation, stomachache, colic, diabetes

[71], [72]

T. massiliense

Cramediu eru

Italy, Sardinia

febrifuge, anti-malaric

[65]

T. micropodiodes

Cyprus

sedative, antispasmodic, gastric ulcer, gastrointestinal inflammation, diuretic, carminative, antidiarrheal, antipyretic, stimulant, stomachic, anthelmintic, emmenagogue, antidiabetic, against rhumatism, antipruritic, antiseptic

[58]

T. montanum

Iva trava

Bosnia and Herzegovina

liver and stomach diseases

[27]

Marmahooz

Iran

headache

[73]

Dubačac mal

Serbia

diuretic, stomachic, analgesic, antispasmodic, antibacterial, antifungal, anti-inflammatory, antioxidant activity

[41], [74]

Trava iva

Serbia, south

abdominal disorders, headaches, tonic, improving appetite, antipyretic, antituberculosis, immune system strengthening

[43], [75]

T. oliverianum (Ging. ex Benth.) R.Br.

Qassapa

Saudi Arabia

for diabetes

[76]

T. orientale

Jaʼada

Lebanon

wound skin and injuries, fever

[77]

Maryam nokhodi, Chaye alafi

Iran

antipyretic, hot flashes in women

[78], [79]

T. parvifolium

Dağ kekeği

Turkey

hemorrhoids

[45]

T. persicum

Marv-e-talkh, Arak

Iran

abdominal pain, headaches

[80]

T. polium

Bar majasili

Albania

digestive

[81]

Kheyata

Algeria

hypoglycemic, hypolipidemic, anti-inflammatory, antibacterial, antioxidant

[82]

Jaada

Algeria

anti-inflammatory, antidiarrhea, antibacterial, facilitates digestion, disinfectants, antidiabetes, anti-eczema, tonic, for skin diseases

[83]

Armenia

stomach diseases, gynecological diseases, analgesic, anti-inflammatory, antibacterial

[84]

Iva mediteranska

Bosnia and Herzegovina

stomach diseases

[27], [28]

ﺠﻌﺪﻩ ﺍﻠﺼﺒﻴﺎﻦ

Israel, Golan

kidney and liver diseases, diabetes, stomach and intestine pain and inflammation

[38]

Ab Lileh, Olileh

Iran, Boyer Ahmad

menstruation disorders, toothache, body and joint pain, abortion, gynecological infections, carminative

[85]

Maryam nokhodi

Iran

antimicrobial

[78]

Jaʼdeh

Iran

for learning and memory

[86]

Iran

antimalarial

[87]

Iran, Fars

antidiabetic, anti-inflammatory, antinociceptive, antibacterial, antihypertensive, antihyperlipidaemic

[88]

Kalpoureh, Alpe, Chez Koochi

Iran

diabetes

[89]

Kalpoureh

Iran

menstruation

[90]

Kalpooreh

Iran

antimicrobial, antidiabetic, anti-inflammatory, antispasmodic, analgesic, antioxidant

[91]

Kalpureh

Iran

antidiarrheal, hypnotic, antiparasitic, antifungal, antitussive, diabetes mellitus, rheumatoid arthritis, paranasal sinusitis, bloating, menorrheal, discharge, wound disinfection, gingivitis, tonsillitis, acne, itching, dyspepsia, amenorrhea

[92], [93]

Kalpurak

Iran Saravan

antipyretic, insect, snake and scorpion bites, wound healing, stomachache, abdominal pain, flatulency, emesis, stomach acidification, hypertension, sedative, toothache, diabetes, hyperlipidemia

[94]

Iran

diuretic, hypoglycemic, antifungal, antispasmodic, antirheumatic, anti-inflammatory, antibacterial

[95]

Israel

kidney stones, liver diseases, stomach and intestine inflammation

[96]

Polio/Tumbu feminedda

Italy, Sardinia

myalgias, vulnerary, stomach pain, colds, menopause disorders, sedative for toothache, against insect bites, skin diseases

[63], [64]

Jeada, Jadeh

Jordan

anti-inflammatory, antispasmodic, antiflatulent, antidiabetic, for kidney stones and cancer

[97], [98], [99]

Jordan

diuretic, diaphoretic, tonic, antispasmodic and cholagogic, antipyretic, antibacterial, anti-inflammatory, antirheumatic, hypoglycemic, antioxidant, antinociceptive

[100]

Jeada

Jordan, Badia

stomach and colic spasm, inflammation, anorexia, and jaundice

[101]

Gaada

Lybia, Cyrenaica

diabetes, gastritis, thyroiditis, anemia, common cold, hypertension, renal stones

[102]

Jaada

Morocco

digestive disorders, liver problems, inflammation, hypertension, fever, diabetes, rheumatism, parasitic diseases

[103], [104], [105]

الصبيان

Palestine

veterinary: diarrhea, colic, bleeding, scabies, flatulence

[106]

Jaʼda

Palestine

antispasmodic, antidiarrheal effects

[107]

Jaʼda

Palestine

intestinal and cardiac disorders

[108]

Palestine

abdominal pain, indigestion, diabetes, liver diseases, hypertension, anti-inflammatory

[109], [110], [111]

Takmezout, Djaida

Sahara

chills, fever

[112]

Jaada, Jaaʼd

Saudi Arabia

febrifuge, vermifuge, stomach, intestinal troubles, colds, fevers

[113], [114]

Polio de flor blanca, Polium blanc

Spain

tonic, antiicteric, antihelmintic

[44]

Gurisa, Jaadeh, جعدة

Syria, Aleppo

diabetes, cancer, antispasmodic, stomach hyperacidity

[115]

Kısamahmut

Turkey

diabetes, kidney stones

[46]

Several vernacular names

Turkey

hemorrhoids

[45]

Kokar yavşan, Peryavşanotu, Sırçanotu, Yavşan

Turkey, Central

colds, antipyretic, rheumatic pain, stomachache

[47]

Kisa Mahmut Otu

Turkey, Ayvacik

antipyretic, cough, tonic

[48]

Cay kekigi, Kekikmisi

Turkey, Acipayam

diabetes, abdominal pain

[50]

Merwend (Kurdish)

Turkey, Batman

abdominal pain, digestive, colds, diabetes, stomachache, antitussive

[116]

Mayasil otu

Turkey, Bayramiç

hemorrhoids, eczema

[49]

Aci yavşan

Turkey, Bilecik

stomach diseases, wounds, carminative

[51]

Periyavşan

Turkey, Kahramanmaraş

lung inflammations, stomach ulcers, diabetes disease, fever lowering

[117]

Kefen otu

Turkey, Karaisalı

menstruation, common cold

[118]

Kckik

Turkey, Kirkalareli

flu, colds, abdominal pain

[52]

Urper

Turkey, Maden

diabetes, stomachache, antipyretic, colds, liver disorders, inflammation, stomachic, wounds

[119], [120]

Cığde

Turkey, Midyat

stomachache

[121]

Kısamahmut

Turkey, Silopi

stomach diseases, wounds

[122]

Meyremxort

Turkey, Solhan

antihypertensive, colds and flu, diabetes, diarrhea, headache, stomachache

[123]

Jaadah, Al-Jaʼadehʼ, Khayataʼ, Gattaba

Tunisia

anti-inflammatory, antioxidant, antimicrobial, antinociceptive, antipyretic, anti-gastric ulcer, hepatoprotective, hypolipidemic, hypoglycemic, cicatrizant

[124]

T. polium ssp. capitatum

Greece

refreshing, spice, diabetes, intestinal troubles

[125]

Jaʼada

Lebanon

diabetes, insomnia, neurological disorders, abdominal cramps

[77]

جعدة

Palestine

veterinary: diarrhea, colic, bleeding, scabies, flatulence

[106], [126]

Cat Thyme, Jedeh Subian

Palestine

diuretic, antipyretic, diaphoretic, antispasmodic, tonic, anti-inflammatory, antihypertensive, anorexic, analgesic, antibacterial, antidiabetic effects

[54], [127]

T. polium ssp. geyrii

Takmazzut

Algeria

wound healing, as tea and a spice, analgesic

[128], [129]

T. pruinosum

Jaʼada

Lebanon

gastrointestinal disorders, wounds, fever, colds

[77]

T. quadrifarium

China

colds, inflammation

[130]

T. ramosissimum

Tunisia

intestinal inflammation, gastric ulcer, as a cicatrizing agent

[131]

Hachichet belgacem ben salem

Tunisia

digestive disorders

[132]

T. royleanum

India, Lahaul: Udaipur

allelopathic, antibacterial, antifungal, antispasmodic, astringent, antipyretic, anti-allergic

[133]

Katheri

Pakistan, Kutlla Valley

eye diseases, nervous debility

[134]

T. sandrasicum

Turkey

diuretic, diaphoretic, tonic, antipyretic, antidiabetic, antispasmodic, cholagogic

[135]

T. sauvegi

Tunisia

wound healing, antidiabetic, anti-inflammatory, and to treat ulcers, colic, and food poisoning

[136]

T. scordium

gastrointestinal ailments, wound healing, anthelmintic, antifungal, antiseptic, diaphoretic, tonic, antidote for poisons, anti-inflammatory, antitubercular

[69]

Iva mediteranska

Bosnia and Herzegovina

diarrhea

[27]

Vodena iva

Bosnia and Herzegovina

gastrointestinal ailments

[28]

Water germander

Britain, Cambridgeshire

to suppress menstruation, vermicide

[137]

Maryamnokhodi Batlaghi

Iran

tonic, antitussive, for treatment of lung tuberculosis, jaundice, hemorrhoids for healing of wounds

[138]

Israel

chronic skin disease, dyspepsia, hemorrhoid

[96]

Spain

diaphoretic, anti-venomous, antihelmintic

[44]

T. scorodonia

astringent, carminative, diaphoretic, diuretic, emmenagogue, tonic and vulnerary, skin and blood diseases, fevers, colds

[69]

Canada, British Columbia

ethnoveterinary: mastitis

[139]

Italy

astringent, anti-scurvy, antiseptic and eupeptic properties

[140]

Wood sage

England, Isle of Man

amoebic dysentery

[137]

Wood sage

Britain, various parts

tea, rheumatism, headache, jaundice

[137]

Wood sage

Ireland

rheumatism, gripe, indigestion, palpitations, colds and coughs, tuberculosis

[137]

hierba lobera/hoja de lobo

Spain, Cantabria

infected wounds

[141]

T. stocksianum

jaʼdah

Oman, UEA

against fever, stomachache

[71], [142]

UEA

gastric ulcers and abdominal discomfort

[143]

Iran, Hormozgan

against fever, stomachache, and intestinal problems

[144]

Spariki

Pakistan, Dir lower

hypertension

[145]

Ger Boota

Pakistan, Chonthra Karak

typoid fever, jaundice

[146]

Masstura

Pakistan, Darra Adam Khel

diabetes, cooling agent

[147]

Speer botay

Pakistan, Malakand

diabetes, gastrointestinal ailments, inflammatory conditions, burning feet syndrome, jaundice, cough, diarrhea, pyrexia, sore thoat, expectorant

[148], [149], [150], [151]

T. trifidum

Aambeibossie, Akkedispoot, Kaaitjiedrieblaar, Koorsbossie, etc.

South Africa

indigestion, hemorrhoids, fever and influenza, against snakebites and anthrax, healing of wounds

[24]

T. viscidum Blume

Shan-Huo-Xiang

China

hemoptysis, hematemesis, pulmonary abscesses, traumatic injuries, bites of rabies-stricken dogs or venomous snakes

[152]

Taiwan

dysmenorrhea

[153]

Pawn tshis nyeg

Thailand

promoting fetal stabilization, treating coughs, fever, stomachache, dysmenorrhea

[153]

T. yemense

Rechal Fatima, Istaqutas

Saudi Arabia, Yemen

diabetes, kidney problems, rheumatism, anthelmintic, insect repellent

[154], [155], [156]

T. zanoni

Jada

Libya

antidiabetic, antihypertensive, and for extruding kidney stones

[26]

By far the most utilized species of this genus in the ethnomedicine of many countries is Teucrium polium (felty germander). It is a wild growing, flowering species; it is a perennial, aromatic plant, 20 – 50 cm high, with green-grayish leaves, and white to light pink flowers that occurs from June to August and is found abundantly in Southwestern Asia, Europe (Mediterranean region), and North Africa [158].

T. polium is largely used in traditional Iranian medicine. Its tea is utilized to treat many diseases such as abdominal pain, indigestion, common cold, urogenital diseases, and rheumatism. The aqueous extract of the dried aerial parts of T. polium is used by many type-2 diabetic patients, particularly in Southern Iran, as an antidiabetic drug. Furthermore, antimutagenic, cytotoxic, antinociceptive, antioxidant, antimicrobial, antihypertensive, antihyperlipidemic, anti-inflammatory, antispasmodic, and analgesic properties of this plant have been reported [159].

T. polium is also largely utilized in North Africa. In traditional Moroccan medicine, where it is locally called “Jaada”, aerial parts from the plant are used by the Moroccan population for the treatment of various human diseases, including digestive disorders, liver problems, inflammation, hypertension, fever, diabetes, rheumatism, and parasitic diseases [103], whereas in Algeria (local name “Kheyata” or “Jaada”), the species was traditionally used in folk medicine due to its hypoglycemic, hypolipidemic, anti-inflammatory, antibacterial, and antioxidant properties [82]. It is also known in Tunisia as “Jaadah” and some biological and therapeutic effects have been reported such as anti-inflammatory, antioxidant, antimicrobial, antinociceptive, antipyretic, anti-gastric ulcer, hepatoprotective, hypolipidemic, and hypoglycemic [124].

Traditionally, the local Palestinian population has used hot water leaf extracts of T. polium for centuries as a treatment for intestinal and cardiac disorders and the infusion of its leaves is drunk after each meal for its antispasmodic and antidiarrheal effects. The treatment is usually prescribed by the local Arab traditional practitioner alongside other forms of treatments. Furthermore, it has been reported that T. polium is a traditional medicinal plant used by the Bedouins in the south of the country [107], [108]. It is also known in traditional ethnoveterinary Palestinian medicine with the name الصبيان, and used orally in sheep, cows, and goats to treat diarrhea, colic, scabies, and flatulence. The crushed leaves are applied to the skin as a poultice to treat scabies [106]. In Israel and the Golan Heights, a standard decoction is prepared from 50 g of leaves of T. polium and taken orally, 100 cc, three times/day to treat kidney and liver diseases, diabetes, stomach and intestine pain, and inflammation [38]. In Saudi Arabian folk medicine, germander (T. polium) is known under the vernacular name of “Jaada” or “Jaaʼd”. Arial parts from the plant and infusion of tender leaves are used by the local population of Bedouins for treatment of febrifuge, vermifuge, stomach, and intestinal troubles. The plant is also used in a steam bath for colds and fevers [113], [114]. Also, in Jordan, where it is known with similar names (Jeada, Jadeh), T. polium has been used for treatment of several diseases such as inflammation, pain, diabetes, kidney stones, cancer, fever, rheumatism, etc. [97], [98], [99], [100].

T. polium has also been largely employed in Turkish traditional medicine. In the area of Bayramiç (West Turkey), the infusion of the aerial part of T. polium, known as Mayasıl otu, is used against hemorrhoids and eczema [49], while people in Silopi (Turkey) use it as a spice in meals. It is drunk for diseases of the stomach, and it is used as a drug by applying the hard parts of it on the wounds after it is boiled [122]. Many other ethnopharmacological uses in Turkey are reviewed in [Table 2].

Traditionally, in the Mediterranean countries, T. polium has been used for various types of pathological conditions, in fact, its utilization as a digestive aid in Albania [81], for gastrointestinal disorders in Bosnia and Herzegovina [27], [28], as tonic, anti-icteric, and antihelmintic in Spain [44], and for myalgias, stomach pains, cold, menopause disorders, toothache pains, insect bites, and skin diseases in Sardinia (Italy) [63], [64] has been reported. The phytochemistry and medicinal properties of T. polium have been reviewed by Bahramikia and Yazdanparast [159] and its complete ethnopharmacological uses are resumed in [Table 2].

Another species largely employed in the folk medicine of several countries is Teucrium chamaedrys, a Mediterranean and Middle European species present throughout all of Europe except for northern Europe. It is also present in North Africa and West Asia. It is a semi-perennial plant growing mostly on rocky calcareous soil, but it can also be found in meadows, pastures, steppes, and sand. It is used for the preparation of teas, tinctures, wines, etc., due to its beneficial therapeutic effects on the digestive and immune systems, skin, and anemia. The species is an ingredient of several liquors, vermouth, and rakjas [160].

The blossoms of T. chamaedrys have long been used in folk medicine in the Middle East and Mediterranean region as treatment for dyspepsia, obesity, diabetes, and abdominal colic.

In traditional medicine of Balkan countries, its properties include treatment of inflammations of the skin, open wounds, joint pain, liver diseases, diarrhea, pulmonary disorders, coughs, asthma, abscesses, conjunctivitis, and as a digestive and diuretic agent [27], [36], [41], [42].

In Turkey, T. chamaedrys and its subspecies lydium are mainly utilized against hemorrhoids, although it has also been reported to treat mouth ulcers, kidney infection, hearth disease, malaria, and stomachache ([Table 2]). It has also been used in traditional English medicine as part of the Portland Powder for treating rheumatism and gout [37]. Several applications of T. chameadrys have been reported: a decoction of the leaves and seeds is applied to inflamed eyes; a decoction prepared from leaves and stems is taken orally, three times/day to treat stomach and intestine pain and inflammation, lack of appetite, and jaundice [38].

Despite its wide use, in the early 1990 s, it was found that herbal preparations, in the form of tea or capsules, could cause significant liver injury, probably due to the presence of some neo-clerodane diterpenoids such as teucrin A. The injury is characterized by a hepatocellular pattern associated with marked jaundice in the absence of immunoallergic or autoimmune features. The latency before onset of injury is short and usually occurs within 30 days from consuming the preparation. Although fatal cases and liver transplants have been reported, the injury generally resolves after cessation of consumption of the causing agent [161].

Many other species have been used in the folk medicine of various countries, and they are grouped below according to their geographical areas.

Europe

Teucrium scorodonia, common name woodland germander or wood sage, is a perennial herb, native to Western Europe and Tunisia. It is cultivated in many places as an ornamental plant in gardens, and naturalized in several regions (New Zealand, Azores, and North America). The plant resembles hops in taste and flavor. An infusion of the leaves and flowers is used as a hops substitute for flavoring beer in some areas. It is said to clear the beer more quickly than hops but imparts too much color to the brew. The herb is astringent, carminative, diaphoretic, diuretic, emmenagogue, tonic, and vulnerary. It is often used in domestic herbal practice in the treatment of skin afflictions, diseases of the blood, fevers, colds, etc. [69]. In Italian folk medicine, T. scorodonia L. is known for its astringent, anti-scurvy, antiseptic, and eupeptic properties [140], whereas in Britain, Ireland, and the Isle of Man, it has been used against amebic dysentery, rheumatism, gripe, indigestion, palpitations, colds and coughs, and tuberculosis [137]. T. scorodonia is used in border regions of Cantabria (Spain), where it is known as “hierba lobera/hoja de lobo” to wash infected wounds caused by wolf or dog bites [141]. Furthermore, its tincture has been applied in the treatment of mastitis in ruminants [139].

Teucrium scordium L. (garlic germander) is a perennial plant that grows in South and Southeast Europe, the Middle East, and North Africa. In traditional medicine, the flowering branches are used for tea and tonic-based medicinal preparation for the treatment of some gastrointestinal ailments, wound healing, and as a spice plant [69]. The herb is anthelmintic, antifungal, antiseptic, and tonic, making it an excellent remedy for all inflammatory diseases [69]. It was reported to be used in Spain as an antidote for poisons and also as an antiseptic and anthelmintic, though it is scarcely used nowadays [44]. In Bosnia and Herzegovina, the infusion of the aerial parts has been utilized for treatment of gastrointestinal ailments and diarrhea [27], [28], whereas in Israel it has been utilized for chronic skin disease, dyspepsia, and hemorrhoids [96]. The plant Maryamnokhodi Batlaghi has similar uses in Iran, where it has also been used in the treatment of tuberculosis [138]. In Britain, it has been in use by women “very frequently” in a decoction to suppress menstruation or as a vermicide [137].

Teucrium marum is an aromatic herb, diuretic, nervine, stimulant, stomachic, and tonic. The plant is supposed to possess very active powers and has been recommended in the treatment of many diseases, being considered useful in treating cases of nervousness [69]. It is used in the treatment of gallbladder and stomach problems [70]. The root bark is considerably astringent and has been used to controlling hemorrhages. It is said to be effective against small threadworms in children [69]. In Sardinia (Italy), where it is called “Gattaria/Erba de gattus”, it is known for its antibacterial, anti-inflammatory, antipyretic, and cicatrizing properties [64].

Similar febrifuge and anti-malaric activities have been reported in Sardinia for Teucrium massiliense (Cramediu eru) [65]. Teucrium flavum ssp. glaucum (Cramediu ʼe istropios) [65] and T. flavum (Querciola maggiore/Crammediu) [64] are also largely utilized in Sardinia for their cicatrizing properties. The last species is also known in Greece (vernacular names: Chamaidrya, Moskhokhortaro, Dontokhortiis) as an antidiabetic, astringent, and to heal skin eruptions and wounds [62]. Another plant used locally in Italy is Teucrium fruticans, which, in Tuscany, is known for the depurative and diuretic effects of its infusion [66], whereas in Sicily, where it is known as “Erba ricottara”, the direct application of the leaves is used in the treatment of hemorrhoids [67].

In the isle of Madeira, Portugal, Teucrium betonicum, locally known as “abrotona, erva branca, herva branca” is used as stomachic and tonic [29].

Teucrium arduini is an Ilyric-Balcanic endemic species distributed in Mediterranean and sub-Mediterranean areas in Croatia, Bosnia and Herzegovina, Montenegro, Serbia, and northern Albania. The aerial parts of this species (“Arduinijeva iva”) are used in Bosnia and Herzegovina in the form of tea to help heal stomach discomforts [27], [28].

Teucrium montanum, commonly known as mountain germander (dubačac mali in Serbian), is a perennial plant, distributed in Europe and the Middle East. It is a South European mountain species and grows on limestone rocks, pastures, and pine forests in the mountain regions. This plant species has long been consumed both as an herbal medicine and as a nourishing food. It is widely used in Serbia as a diuretic, stomachic, analgesic, and also as an antispasmodic, antibacterial, antifungal, anti-inflammatory, and antioxidant activity agent [74]. In the eastern part of the same country, where it is known as “Trava-iva”, the infusion of the whole plant has been utilized for immune system strengthening [75], disorders of the abdominal organs, headaches, as tonic, for improving appetite, and antipyretic (“bitter tea”-blend: mixed with other herbs). Externally, it has been used for treatment of tuberculosis [bath soak: add to yellow camomile (Anthemis tinctoria) or by inhalation of the smoke] [43]. In Bosnia and Herzegovina, the infusion of the aerial parts has been reported for treating liver and stomach diseases [27]. Its use has also been reported in Iran to treat headaches [73].


#

North Africa

Several species of Teucrium growing in North Africa have been used in the traditional medicine of this area. Teucrium ramosissimum grows widely in the arid Mediterranean climate and in calcareous substrates. Since ancient times, its aerial parts have been used in Tunisian traditional medicine, where it is known as “Hachichet belgacem ben salem” for the treatment of intestinal inflammation, as a remedy for gastric ulcer, and in external use as a cicatrizing agent [131], [132]. Teucrium alopecurus (Hʼchichit ben salem) is an endemic species limited to South Tunisia widely used in its traditional medicine and known to possess anti-inflammatory properties, and its aerial parts have been used for many years as an infusion alone or in combination with other species [22]. In the folk medicine of this region, many people apply the powder of this species on the external inflamed area to reduce swelling and pain [23]. Additionally, Teucrium sauvagei, endemic to the same area of Tunisia, has been utilized in the following ways: the leaves have been applied for wound healing, antidiabetic and anti-inflammatory remedies, treating ulcers, colic, and against food poisoning [136]. Teucrium maghrebinum, in Algeria called “kayatat el gerah”, is used in traditional medicine of this country and Morocco to treat burns, fevers, and microbial infections [68]. A similar usage has been reported in Morocco for Teucrium antiatlanticum [25]. Teucrium apollinis and Teucrium zanoni, both known in Lybia as “Jada”, have been used for its antidiabetic and antihypertensive effects, and for extruding kidney stones [26]. T. polium ssp. geyrii (Takmazzut) in Algeria is reported for wound healing, as a tea and spice, and as an analgesic [128], [129].


#

Middle East

T. polium subsp. capitatum (syn. T. capitatum) is a perennial, pubescent, aromatic plant, 20 – 50 cm high, with green-greyish leaves and white flowers, which appears from June to August. It grows wild in Southern Europe, Central and Southwest Asia, and North Africa. The plant is mixed with boiled water and sugar to form a refreshing beverage. The leaves are used in cooking as a spice [125]. In Lebanon, the infusion of its aerial parts (Jaʼada) are utilized for diabetes, insomnia, neurological disorders, and abdominal cramps [77]. The plant is also used in Palestine, where it is known as “Cat Thyme, Jedeh Subian and جعدة”, for its diuretic, antipyretic, diaphoretic, antispasmodic, tonic, anti-inflammatory, antihypertensive, anorexic, analgesic, antibacterial, antidiabetic effects [54], [127], and, in veterinary medicine, to treat diarrhea, colic, bleeding, scabies, and flatulence [106], [126].

Several other taxa are utilized in the folk medicine of the eastern part of the Mediterranean Sea. In Lebanon, Teucrium pruinosum (Jaʼada) is used for gastrointestinal disorders, wounds, fever, and cold [77], Teucrium divaricatum ssp. villosum is used for fever and colds, and as a cicatrizant and stomachic [61], and Teucrium orientale is used for wounded skin and fever [77]. This last one is also used as an antipyretic and for womenʼs hot flashes in Iran, where it is known as “Maryam nokhodi” and “Chaye alafi” [78], [79]. In Palestine, Teucrium creticum is well known for its antidiabetic properties [54].

The ethnopharmacological activities of Teucrium taxa growing in Cyprus has been reviewed by Arnold [162]. Teucrium micropodioides has been by far the one most used: the infusion of the flowering parts as a sedative and against tuberculosis; the infusion of the whole plant as an antispasmodic (gastric ulcer, gastrointestinal inflammation), diuretic (kidney stones and cystitis), carminative, and emmenagogue (sterility in the female); the infusion of the leaves as an antipyretic (cold), stimulant, stomachic, anthelmintic, and antidiabetic; the application of compresses from pounded fresh leaves in external use against rheumatism as well as an antipruritic and antiseptic (against skin eruption and boils) [58]. In the traditional medicine of this island, the whole plant of Teucrium cyprium ssp. cyprium is used in the form of an infusion against fever and jaundice. The topical application of the juice of the fresh plant has a healing, astringent, and antipruritic effect [58]. Teucrium kotschyanum is used in traditional medicine as an antipyretic and antidiabetic [58]. With regard to T. divaricatum ssp. canescens, the infusion of the flowering plant is mainly used as a stomachic. In cases of fever and the common cold, the steam is inhaled. Externally, the infusion of the plant is used as a cicatrizant [58]. T. divaricatum ssp. divaricatum has been reported in Cyprus as a cicatrizant [59], whereas the same species (Mürcüotu, buhurcuoğlu otu, böceotu) has been largely employed in Turkey for coughs, sickness, stomachache, urinary diseases, gallbladder disease, kidney stones, and as a tonic for eyes [60]. Two other Turkish species are noteworthy of mention. The aerial parts of Teucrium sandrasicum are widely used in the daily diet. The plant is also valued as a traditional medicine and is used for diuretic, diaphoretic, tonic, antipyretic, antidiabetic, antispasmodic, and cholagogic purposes [135]. The decoction of the aerial parts of Teucrium parviflorum, on the other hand, has been utilized in traditional treatment against hemorrhoids in Turkey [45].


#

Arabia-Pakistan-Iran-India

Teucrium yemense (Defl.), locally known as Reehal Fatima, is a perennial herb commonly grown in Djibouti, Ethiopia, Saudi Arabia, Sudan, and Yemen. In Yemeni folk medicine, the entire crushed plant is put into an with water, and the liquid is consumed orally to treat diabetes, kidney problems, and rheumatism and as an anthelmintic. Its use as an insect repellent has also been reported [154], [155], [156].

Teucrium mascatense Boiss. is an aromatic perennial plant that grows 25 cm high and is frequently seen on rocky hills and mountain slopes in northern Oman. It shares the common Arabic name jaʼdah with the related species Teucrium stocksianum Boiss., a plant more common throughout the Middle East, whose properties have been reported above. T. mascatense is also used as a fever remedy and to reduce blood flow during menstruation. Omani people have been aware of this herb for several ages, and it has become popular and famous since a long time. The leaves are boiled in water for a long time, then the solution is cooled and consumed as a drink for stomachaches and colic. Dried leaves are burned, and the smoke is placed under bed covers for treating fevers. The leaves of T. mascatense are also boiled in water with the leaves of Rhazya stricta, Fagonia indica, myrrh, sea salt, and black salt (potassium chloride); the warm “tea” is taken for abdominal colic, fever, and diabetes. Drinking the water in which the leaves have been boiled is believed to reduce blood flow during menstruation [71], [72].

T. stocksianum Boiss. (Lamiaceae) is a perennial, woody, aromatic herb that is native to the mountainous regions of the United Arab Emirates (UAE), northern Oman, Pakistan, and Iran, and is also present in North Africa and the East Mediterranean zone. It is a popular treatment for stomachache, kidney problems, renal colic, colds, and diabetes, as well as an anti-fever remedy in the herbal medicine of the UAE and Sultanate of Oman and Iran [142], [144]. In Pakistan, where it is locally known as “Speer botay”, the leaves and young shoots are commonly used for the preparation of traditional medicines to treat several ailments, including gastrointestinal ailments and inflammatory conditions. In addition to the gastroprotective effect, a decoction of T. stocksianum has been used for the treatment of diabetes, burning feet syndrome, as a blood purifier, and for the treatment of hypertension, epilepsy, and sore throats. The people of Malakand Division, Pakistan, have good knowledge about this plant for its medicinal use. Ethnobotanically, the juice of T. stocksianum is given for the treatment of jaundice and as a blood purifier, as well as a cooling agent. The decoction of the plant is also prescribed to treat chronic fever. Leaves are soaked in water overnight and the juice is consumed before breakfast to treat diarrhea and abdominal pain. Young leaves are boiled in water and the obtained juice is used for curing coughs [149]. In the Darra Adam Khel region of Pakistan, where it is known as Masstura, leaves and stems are kept in water for some time or boiled before taken as water and used as a cooling agent and against diabetes [147]. The native Khattak tribes of the Chonthra, district Karak, Pakistan, know this plant as Ger Boota. They use the decoction of the whole plant for curing undiagnosed fever. The plant is soaked overnight in water and the decoction is taken orally before breakfast for typhoid and jaundice [146]. The decoction of the whole plant (Spariki) has also been reported for the treatment of hypertension by the local people of the district Dir lower, Pakistan, although its abuse can cause body weakness [145].

In the same country, in the area of Kutlla Valley, the infusion of Teucrium royleanum (Katheri) is utilized for eye diseases and nervous debility [134]. The leaves and stems of T. royleanum are also used in India (Lahaul: Udaipur), where it is known for its allelopathic, antibacterial, antifungal, antispasmodic, astringent, antipyretic, and anti-allergic properties [133]. Teucrium persicum (Marv-e-talkh, Arak) is traditionally used in Iran for abdominal pain and headaches [80].


#

South Africa

The ethnopharmacological uses of three species of Teucrium growing in South Africa (Teucrium africanum, Teucrium kraussii, and Teucrium trifidum) have been exhaustively reviewed [24]. The Xhosa, Mfengu, Gcaleka, Mpondo, and Thembu ethnic groups drink an infusion of the leaf of T. africanum for snakebites and as a tonic. It is also used to sterilize anthrax-infected meat by boiling it with the plant. In the Willowmore district, a strong decoction is drunk for the treatment of hemorrhoids and is often applied locally for the same condition. The decoction is frequently taken as a diaphoretic in feverishness. Africans in the Butterworth district either chew the leaf or swallow a decoction of the leaf for the relief of a sore throat. Its use as a remedy for stomach disorders and in eye inflammations has also been reported.

T. trifidum is a popular remedy among the older Dutch folks. Brandy, in which the plant has been soaked, is taken as a stomachic in indigestion and tonic and a tea-like infusion is drunk for the relief of hemorrhoids. Both Europeans and Africans take a decoction for fever and influenza. The Xhosa use an infusion as a snakebite remedy, for sore throats, and to sterilize anthrax-infected meat by boiling it with the plant. Both the Xhosa and Gcaleka regard the plant as a tonic. Hewat states that it is a carminative. An infusion of the leaf is used by Europeans as a diabetes remedy and is said to be slightly purgative. Externally, a preparation of the plant is applied locally for whitlow and bee stings and to aid the healing of wounds [24].


#
#

Essential Oils

The chemical composition of EOs obtained from 99 Teucrium taxa has been investigated. The major compounds (> 3%) occurring in the chemical composition of the EOs are reported in [Table 3].

Table 3 Main compounds (> 3%) of the EOs from Teucium taxa.

Taxa

Origin

Parts

Method

Main compounds

Ref.

ap = aerial parts; fl = flowers; lv = leaves; fr = fruits; st = stems; br = bact; ca = calyx; co = corolla; rt = roots; BB = before bloom; FB = full bloom; AFB = after full bloom; CO2 = Supercritical extraction; DCM = dichloromethane maceration; DT = direct thermal desorption method; Et2O/pent = diethyl ether/pentane maceration; HD = hydrodistillation; Hex = Mmaceration in hexane; HS = headspace; MD = microdistillation; MHD = Mmicrowave-assisted hydrodistillation; MU = microwave ultrasonic; SDE = Ssimultaneous distillation-extraction; SFME = rapid solvent-free microwave extraction; SPME = headspace solid-phase micro-extraction; * percentage not reported in the original paper

Section Chamaedrys

T. chamaedrys

Corsica, Corti

ap

HD

β-caryophyllene (29.0), germacrene D (19.4), α-humulene (6.8), δ-cadinene (5.4), (E)-β-farnesene (4.4), caryophyllene oxide (3.2)

[163]

Corsica

ap

HD

(E)-α-caryophyllene (33.9), germacrene D (18.5), α-humulene (7.5), (E)-β-farnesene (5.1), δ-cadinene (4.6), caryophyllene oxide (3.1)

[164]

Croatia

ap

HD

β-caryophyllene (47.6), germacrene D (29.0), β-copaene (5.7), caryophyllene oxide (4.5)

[165]

Iran, Mazandaran

ap

HD

germacrene-D (16.5), (Z)-β-farnesene (12.2), β-caryophyllene (10.5), α-pinene (9.1), δ-cadinene (7.4), β-pinene (4.8), β-bourbonene (3.8), α-trans-bergamotene (3.5)

[166]

Iran

ap

HD

α-muurolene (15.3), β-caryophyllene (15.0), α-pinene (7.9), (Z)-β-farnesene (7.6), β-pinene (5.9), limonene (5.1), germacrene A (3.9), α-cadinene (3.8), α-copaene (3.0)

[167]

Kossovo

ap

HD

germacrene D (24.1), hexadecanoic acid (12.7), eicosane (10.9), δ-cadinene (7.0), sclareolide (5.5), hexacosane (4.5), linoleic acid (4.0), β-caryophyllene (3.9), (E,E)-farnesyl acetate (3.3)

[168]

Sardinia

ap

HD

β-caryophyllene (27.4), germacrene D (13.5), caryophyllene oxide (12.3), (E)-β-farnesene (6.5), α-pinene (4.4), β-pinene (3.4), β-bourbonene (3.0)

[163]

Serbia-Montenegro

ap

HD

β-caryophyllene (26.9), germacrene D (22.8), α-humulene (6.7), caryophyllene oxide (5.5), α-pinene (5.3), 3-octanol (3.7), δ-cadinene (3.1)

[169]

Turkey, Denizli

lv

DT

β-pinene (13.1), germacrene D (9.5), α-pinene (8.9), α-farnesene (8.0), α-gurjunene (7.8), γ-elemene (7.4), γ-cadinene (6.4), heptacosane (4.8)

[170]

Turkey, Baskil

ap

HD

germacrene D (32.1), β-caryophyllene (14.2), δ-cadinene (13.1), bicyclogermacrene (6.7), β-farnesene (4.3), neophytadiene (4.1)

[171]

T. chamaedrys ssp. chamaedrys

Turkey, Kelkit

ap

HD

germacrene D (16.7), α-pinene (15.8), β-caryophyllene (11.8), β-pinene (8.9), β-myrcene (4.1), β-bourbonene (3.1)

[172]

T. chamaedrys ssp. lydium

Turkey, Çamli

ap

HD

β-caryophyllene (19.7), α-pinene (12.5), germacrene D (9.3), β-pinene (6.6), caryophyllene oxide (6.1), β-bourbonene (3.6)

[172]

T. chamaedrys ssp. syspirense

Turkey

ap

MD

caryophyllene oxide (27.7), α-pinene (11.4), caryophyllenol II (5.3), caryophyllenol I (4.0), β-pinene (3.9), humulene epoixide-II (3.7), oct-1-en-3-ol (3.1)

[173]

Iran

ap

HD

β-caryophyllene (18.2), germacrene D (10.8), carvacrol (9.5), α-humulene (6.4), caryophyllene oxide (4.8), linalool (3.7), α-trans-bergamotene (3.3), β-bourbonene (3.2), δ-cadinene (3.1), (E,E)-α-farnesene (3.0)

[174]

T. chamaedrys ssp. trapezunticum

Turkey

ap

MD

β-caryophyllene (18.2), nonacosane (11.8), germacrene D (10.8), caryophyllene oxide (7.4), α-pinene (7.0), dodecanoic acid (4.5), oct-1-en-3-ol (3.6), pentacosane (3.0), β-bourbonene (3.2), β-pinene (3.1)

[173]

T. divaricatum ssp. canescens

Cyprus, Kambos

st

HD

allo-aromadendrene (17.7), α-copaene (8.2), α-cadinene (8.1), trans-β-bergamotene (6.5), α-cedrene (5.7), trans-β-farnesene (5.4)

[58]

Cyprus, Katodrys

lv

HD

β-cubebene (26.7), β-caryophyllene (17.6), α-pinene (12.1), β-pinene (6.2), limonene (4.2), α- humulene (4.0), γ-elemene (4.0), β-bourbonene (3.0)

[58]

Cyprus, Katodrys

st

HD

isopulegol (17.4), α-terpineol (17.0), myrtenal (7.2), β-bourbonene (6.0), β-guaiene (5.6), α-pinene (4.2), α-himachelene (3.5)

[58]

Cyprus, Stavrouni

lv

HD

β-cubebene (23.7), α-pinene (18.1), β-caryophyllene (14.0), β-pinene (10.7), limonene (6.7), α-humulene (5.6), γ-elemene (3.9)

[58]

Cyprus, Stavrouni

st

HD

β-cubebene (26.1), β-caryophyllene (17.0), α-humulene (7.9), α-pinene (7.7), β-pinene (5.7), γ-elemene (4.5), limonene (4.0), caryophyllene oxide (4.0)

[58]

T. divaricatum ssp. divaricatum

Greece

ap

HD

δ-cadinene (20.5 – 19.0), γ-cadinene (13.4 – 8.5), bisabolene (12.2 – 5.9), β-caryophyllene (12.5 – 10.4), limonene (8.5 – 1,2), α-humulene (5.7 – 2.9), α-pinene (4.9 – 1.3), allo-aromadendrene (3.7 – 0.5), spathulenol (3.3 – 1.1), β-pinene (3.1 – 0.6)

[175]

T. divaricatum ssp. villosum

Lebanon

ap

HD

β-caryophyllene (30.1), caryophyllene oxide (6.1), hexahydrofarnesyl acetone (4.6), linalool (3.4), hexadecanoic acid (3.1)

[61]

T. flavum

Croatia, Dalmatia

ap

HD

α-pinene (17.3), β-caryophyllene (15.8), β-pinene (11.2), allo-aromadendrene (9.2), limonene + 1,8-cineole (6.2), α-cubebene (4.3), γ-terpinene (3.5), δ-cadinene (3.2)

[176]

Croatia, Split

ap

HD

β-caryophyllene (23.1), germacrene D (15.3), α-pinene (10.5), β-pinene (8.4), limonene (7.9), n-amyl-isovalerate (3.7)

[165]

Greece, Mt Pileum

ap

HD

caryophyllene (12.2), 4-vinyl guanaco (9.7), caryophyllene oxide (7.9), α-humulene (6.0), linalool (3.4), β-bourbonene (3.1)

[177]

Iran

lv

HD

β-caryophyllene (30.6), germacrene D (21.3), α-humulene (8.4), τ-cadinol (6.9), δ-cadinene (4.9), trans-α-bergamotene (4.8), spathulenol (4.5), caryophyllene oxide (3.8), β-bisabolene (3.1)

[178]

Montenegro

ap

HD

β-bisabolene (35.0), α-pinene (17.5), β-pinene (11.5), limonene (6.4), β-caryophyllene (5.4), α-humulene (3.6)

[168]

Sicily

lv

MHD

β-bisabolene (47.0 – 31.5), germacrene D (14.0 – 9.6), β-caryophyllene (4.6 – 3.1), δ-cadinene (4.1 – 2.3), viridiflorol (5.0 – 2.5), phytol (4.0 – 3.3)

[179]

Sicily

fl

MHD

β-bisabolene (48.2), germacrene D (7.7), β-caryophyllene (4.7), δ-cadinene (4.3)

[179]

Sicily

fr

MHD

β-bisabolene (48.7), germacrene D (4.3), β-caryophyllene (3.2)

[179]

T. flavum ssp. flavum

Italy, Marche

ap

SPEM

(Z,E)-α-farnesene (33.9 – 27.3), (E)-β-farnesene (13.3 – 12.3), germacrene D (13.2 – 3.1)

[180]

Italy, Marche

ap, dry

HD

(Z,E)-α-farnesene (11.5), linalool (7.6), β-bisabolene (7.5), (E)-β-farnesene (7.3), 11-αH-Himachal-4-en-1-β-ol (6.2), β-caryophyllene (5.7), germacrene D (5.5), α-pinene (5.3), β-pinene (4.5), limonene (3.5)

[181]

Italy, Marche

ap, fresh

HD

(Z,E)-α-farnesene (14.9), 11-αH-himachal-4-en-1-β-ol (10.1), germacrene D (6.6), (E)-β-farnesene (5.7), β-caryophyllene (5.1), β-bisabolene (5.0)

[181]

Italy, Marche

ap, dry

SPEM

(Z,E)-α-farnesene (33.9), (E)-β-farnesene (12.3), α-zingiberene (6.0), β-caryophyllene (5.1), germacrene D (3.1)

[181]

Italy, Marche

ap, fresh

SPEM

(Z,E)-α-farnesene (27.3), (E)-β-farnesene (13.3), germacrene D (13.2), β-caryophyllene (8.4), zingiberene (6.5)

[181]

Italy, Liguria

ap

HD

α-pinene (19.0), germacrene D (11.9), β-pinene (10.6), limonene (9.0), α-bulnesene (8.9), (Z,E)-farnesolo (4.7), (E)-β-farnesene (3.3)

[182]

Italy, Tuscany

ap

HD

α-pinene (22.6), β-pinene (15.8), limonene (13.2), germacrene D (6.9), (E,E)-α-farnesene (4.8)

[182]

Greece, Zakynthos

ap

HD

caryophyllene (13.5), caryophyllene oxide (8.5), 4-vinyl guaiacol (6.0), α-humulene (5.0), hexahydrofarnesyl acetone (3.4), α-copaene (3.3)

[183]

Corsica

ap

HD

α-pinene (21.9), limonene (20.0), β-pinene (18.1), (Z)-α-ocimene (15.5)

[164]

Corsica

ap

HD

limonene (22.3 – 21.9), α-pinene (21.5 – 19.8), β-pinene (18.1 – 16.4), (Z)-β-ocimene (17.0 – 14.5)

[184]

Tunisia

ap

HD

β-caryophyllene (32.5), α-humulene (17.8), germacrene D (6.0), caryophyllene oxide (4.9), (Z)-γ-bisabolene (4.0)

[185]

T. flavum ssp. glaucum

Corsica

ap

HD

limonene (27.4), α-pinene (12.2), β-pinene (10.3), (Z)-α-ocimene (6.0), (E)- phytol (4.5)

[164]

Corsica

ap

HD

limonene (31.8 – 21.1), α-pinene (17.6 – 8.5), β-pinene (12.4 – 9.7), (Z)-β-ocimene (8.1 – 2.4), (E)-phytol (5.5 – 2.4), (E)-β-farnesene (4.4 – 1.3)

[184]

T. flavum ssp. hellenicum

Greece

lv

HD

germacrene D (21.9), β-caryophyllene (18.1), spathulenol (17.9), (E)-β-farnesene (7.3), β-bisabolene (7.1), β-cubebene (5.2), α-pinene (3.4), myrcene (3.7), β-pinene (3.1)

[65]

Greece

fl

HD

germacrene D (22.3), β-caryophyllene (22.2), α-humulene (11.8), β-bisabolene (7.6), α-pinene (6.8), β-pinene (5.2)

[65]

T. marum

Corsica

ap

HD

caryophyllene oxide (9.8), (E)-α-bergamotene (8.2), β-bisabolene (7.5), (E)-β-caryophyllene (5.3), β-sesquiphellandrene (3.7), estragole (3.5), octadecyl acetate (3.3), humulene epoxide II (3.2), (3Z,6E,10E)-α-springene (3.2), geranyl acetate (3.0)

[164], [186]

T. marum ssp. drosocalyx

Balearic Is, Minorca
Favaritx

ap

SDE

dolichodial (34.8), α-bergamotene (11.5), p-allyl-anisole (7.0), caryophyllene epoxide (5.6), β-bisabolene (5.1), β-caryophyllene (4.5), epidolichodial (3.0)

[187]

Balearic Is, Minorca
Canutells

ap

SDE

dolichodial (89.5), β-caryophyllene (3.2)

[187]

Balearic Is, Minorca
Biniancolla

ap

SDE

dolichodial (81.2), epidolichodial (7.8)

[187]

T. marum ssp. marum

Balearic Is, Minorca Favaritx

ap

SDE

dolichodial (48.3), β-caryophyllene (5.3), epidolichodial (3.5)

[187]

Balearic Is, Minorca
Barrac dʼAlgendar

ap

SDE

dolichodial (72.5 – 42.1), β-caryophyllene (7.7 – 5.2), caryophyllene oxide (7.0 – 2.6), epidolichodial (4.2 – 2.1)

[187]

Balearic Is, Minorca
Cala En Caldès

ap

SDE

dolichodial (35.8), caryophyllene epoxide (8.7), β-caryophyllene (7.8), α-bergamotene (8.4), β-bisabolene (7.1)

[187]

Balearic Is, Minorca
El Toro

ap

SDE

dolichodial (74.0), β-bisabolene (4.4), epidolichodial (3.7)

[187]

T. marum ssp. occidentale

Balearic Is, Mallorca Sierra de Alfabia

ap

SDE

β-caryophyllene (34.7 – 23.9), caryophyllene epoxide (30.6 – 20.7), δ-cadinene (10.2 – 1.6), α-humulene (8.3 – 5.8), β-bisabolene (10.0), α-bergamotene (5.9 – 0), humuladienone (5.5 – 4.3), α-bisabolol (4.1 – 1.5)

[187]

Balearic Is, Mallorca
Castel dʼalarò

ap

SDE

β-caryophyllene (23.1 – 21.2), caryophyllene epoxide (23.9 – 19.3), δ-cadinene (12.9 – 10.5), β-bisabolene (9.5 – 9.4), α-humulene (6.0 – 5.0), α-bisabolol (6.2 – 5.1), γ-cadinene (5.0 – 3.9), humuladienone (3.8 – 3.2).

[187]

Balearic Is, Mallorca
Penyal Fumat

ap

SDE

caryophyllene epoxide (20.8), β-caryophyllene (14.3), α-bisabolol (10.5), δ-cadinene (8.1), γ-cadinene (7.6), humuladienone (3.8), dolichodial (3.5), α-humulene (3.5)

[187]

Balearic Is, Mallorca
Esporles

ap

SDE

dolichodial (28.9), β-caryophyllene (19.9), β-bisabolene (11,9), caryophyllene epoxide (11.6). δ-cadinene (8.5), α-humulene (4.4)

[187]

T. marum ssp. marum

Sardinia

ap

HD

iso-caryophyllene (20.2), β-bisabolene (14.7), β-sesquiphellandrene (11.3), α-santalene (11.0), dolichodial (9.4), α-caryophyllene (7.2), 4-allyl anisole (3.8), caryophyllene oxide (3.2)

[188]

Section Isotriodon

T. antiatlanticum

Morocco

ap

HD

germacrene D (13.7), δ-cadinene (12.7), α-gurjunene (11.5), γ-muurolene (8.0), allo-aromadendrene (3.1)

[25]

T. cavernarum

Turkey

ap

HD

β-caryophyllene (32.9), germacrene D (20.7), caryophyllene oxide (14.1), bicyclogermacrene (6.3), α-humulene (3.9)

[189]

T. montbretii ssp. heliotropifolium

Greece, Karpathos

ap

HD

carvacrol (13.9), caryophyllene oxide (12.7), hexadecanoic acid (9.8), caryophyllene (7.8), caryophylladienol I (3.7), linalool (3.5), β-bourbonene (3.5)

[177]

Greece, Karpathos

ap

HD

carvacrol (13.5), hexadecanoic acid (10.7), caryophyllene oxide (8.8), caryophyllene (8.2), germacrene D (3.7), caryophyllenol II (3.2)

[190]

T. paederotoides

Turkey

ap

SD

germacrene D (20.8), pulegone (9.5), bicyclogermacrene (9.2), hexadecanoicacid (7.9), spathulenol (6.5), β-pinene (3.9), β-bourbonene (3.6)

[189]

T. persicum

Iran, Fars

ap

HD

caryophyllene oxide (10.6), α-pinene (9.4), geranyl linalool (7.8), γ-cadinene (7.4), elemol (6.9), α-cadinol (5.5), elemol acetate (3.6), β-caryophyllene (3.0), β-eudesmol (3.0)

[191]

Iran, Busheh

ap

HD

epi-α-cadinol (23.2), α-pinene (17.3), α-cadinol (9.7), β-pinene (5.8), δ-cadinene (5.4), limonene (4.6), mycrene (4.1), β-caryophyllene (4.1), γ-cadinene (3.8)

[192]

Iran, Lar Mountain

ap

HD

α-cadinene (9.7), 1,4-cadinadiene (9.2), α-terpinyl acetate (7.9), linalyl acetate (7.7), linalool (7.6), cadinol (6.2), 1,8-cineole (5.7), γ-terpineol (4.4)

[80]

Section Polium

T. algarbiensis

Portugal

ap

HD

limonene (11.8), β-pinene (10.2), germacrene D (7.6), sabinene (7.2), myrcene (5.7), τ-cadinol (5.0), α-cadinol (3.9), bicyclogermacrene (3.0), δ-cadinene (3.0)

[193]

T. alopercus

Tunisia, Matmata

ap

HD

δ-cadinene (13.4), nerolidyl acetate (12.3), α-humulene (12.3), α-guaiene (10.2), β-caryophyllene (8.2), γ-muurolene (4.5), (E)-nerolidol (4.5), bicyclogermacrene (4.1)

[194]

Tunisia, Gafsa

ap

HD

α-bisabol (16.2), (+)-epi-bicyclosequiphellandrene (15.4), α-cadinol (8.5), pentane, 3-methyl (6.1), bicyclo[3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl)- (5.1), β-phellandrene (3.8)

[22], [23]

T. antitauricum

Turkey

ap

HD

germacrene D (28.2), β-caryophyllene (27.6), caryophyllene oxide (7.5), bicyclogermacene (5.5), α-humulene (4.2), aromadendrene (3.6)

[195]

T. apollonis

Libya

ap

HD

β-caryophyllene (22.4), limonene (11.8), germacrene D (11.8), α-pinene (5.8), sesquilavandulol (4.0), β-citronellene (3.8), δ-cadinene (3.7)

[196]

T. carolipaui

Spain, Alicante

ap

HD

τ-cadinol (17.0 – 5.0), τ-muurolol (12.3 – 11.3), α-cadinol (12.3 – 8.1), β-eudesmol (10.1 – 6.2), δ-cadinene (7.6 – 3.9), γ-cadinene (4.5 – 0.3), α-copaene (4.3 – 1.2)

[197]

Spain, Almeira

ap

HD

δ-cadinene (14.3), 3-β-hydroxy-α-muurolene (9.4), α-cadinol (7.2), cadina-1,4-diene (4.3), caryophyllene oxide (4.5), 1-epi-cubenol (4.1), cubenol (3.5)

[198]

T. cyprium ssp. cyprium

Cyprus, Sun valley

lv

HD

sabinene (21.2), δ-cadinene (9.6), α-cadinene (8.4), β-guaiene (4.7), β-caryophyllene (4.6), α-pinene (3.3)

[58]

Cyprus, Chionistra

lv + fl

HD

sabinene (11.9), δ-cadinene (8.1), β-caryophyllene (7.1), α-pinene (5.5). γ-terpinene (4.6), p-cymene (3.7)

[58]

Cyprus, Chionistra

st

HD

δ-cadinene (11.4), α-cadinene (5.9), carvacrol (4.3), β-guaiene (4.0)

[58]

T. gnaphalodes

Spain

ap

HD

β-caryophyllene (12.1), sabinene (8.8), trans-pinocarveol (7.8), β-pinene (7.1), myrtenal (5.7), p-cymen-8-ol (4.5), ledol (4.1), dehydrosabinaketone (3.9), allo-aromadendrene (3.4), caryophyllene oxide (3.4), limonene (3.1)

[199]

T. haenseleri

Spain

fl

HD

β-pinene (30.3), α-pinene (20.0), (E)-pinocerveol (3.8), limonene (3.3), α-campholenal (3.1), β-mycene (3.0)

[200]

Spain

lv-fl stage

HD

β-pinene (24.0), α-pinene (17.5), (E)-pinocerveol (5.4), α-campholenal (4.7), δ-cadinene (4.7), (E)-verbenol (3.4), myrtenal (3.2)

[200]

Spain

lv-vg stage

HD

β-pinene (30.9), α-pinene (22.7), (E)-pinocerveol (5.4), (E)-verbenol (3.4), limonene (3.3), β-mycene (3.1), sabinene (3.0), δ-cadinene (3.0)

[200]

T. lepicephalum

Spain

ap

HD

sabinene (57.4 – 47.5), α-pinene (19.3 – 19.1), germacrene D (9.9 – 5.0), limonene (8.3 – 7.1), β-caryophyllene (4.6 – 1.7), germacrene B (3.7 – 0.9)

[197]

T. leucocladum

Egypt

ap

HD

patvhouli alcohol (31.2), β-pinene (12.7), α-pinene (11.0), α-cadinol (9.3), τ-cadinol (5.5), mycene (5.3), viridiflorol (5.4), epizonarene (4.5)

[201]

T. libanitis

Spain

ap

HD

α-pinene (21.2 – 9.9), τ-cadinol (11.8 – 1.1), δ-cadinene (9.7 – 5.3), sabinene (6.6 – 5.8), α-cadinol (6.0 – 0.9), germacrene D (4.3 – 1.4), α-cedrene (4.2 – 1.1), caryophyllene oxide (4.0 – 1.6)

[202]

T. lusitanicum

Portugal

ap

HD

elemol (12.0 – 2.6), β-pinene (11.9 – 2.5), limonene (11.5 – 1.2), sabinene (9.6 – 2.1), α-cadinol (9.1 – 4.2), α-pinene (8.5 – 0.8), myrcene (7.3 – 2.5), δ-cadinene (7.3 – 2.0), τ-cadinol (6.2 – 5.2), germacrene D (6.0 – 1.0), terpien-4-ol (5.5 – 1.9), β-selinene (4.0 – 1.0), β-caryophyllene (3.9 – 0.7)

[193]

T. lusitanicum ssp. aereiformis

Spain, Malaga

ap

HD

limonene (15.1), β-pinene (5.2%), α-copaene (4.5), terpinen-4-ol (3.5), α-cadinol (3.3)

[203]

T. mascatense

Oman, Jabal Al-Akdhar

lv

HD

linalool (27.8), linalyl acetate (12.6), β-eudesmol (10.1), limonene (5.7), α-bergamotene (5.0) cis-linalool oxide (furanoid) (4.6), trans-linalool oxide (furanoid) (4.1), α-terpineol (3.0)

[71]

Oman, Nizwa

lv

HD

limonene (17.0), linalool (12.3), α-pinene (10.1), β-eudesmol (10.1), linalyl acetate (4.3), trans-α-bergamotene (4.2), β-pinene (3.5)

[204]

T. micrpopodiodes

Cyprus, Akamas

lv

HD

β-pinene (17.6), α-pinene (6.6), β-bisabolene (6.4), limonene (4.3), β-caryophyllene (4.3), sabinene (4.1), α-cedrene (3.7), trans-pinocarveol (3.5), γ-elemene (3.5)

[58]

Cyprus, Akamas

st

HD

β-bisabolene (10.8), β-pinene (5.7), β-caryophyllene (5.0), trans-nerolidol (4.0), trans-pinocarveol (3.5)

[58]

Cyprus, Kambos

fl

HD

α-cedrene (21.0), β-caryophyllene (16.3), α-humulene (7.8), γ-elemene (3.6), caryophyllene oxide (3.6)

[58]

Cyprus, Kambos

st

HD

γ-elemene (6.0), β-bisabolene (5.5), trans-nerolidol (3.5), α-cedrene (3.3), α-himachalene (3.2), δ-cadinene (3.2), nerol (3.2), β-caryophyllene (3.0), trans-pinocarveol (3.0), caryophyllene oxide (3.0)

[58]

Cyprus, Kambos

fr + fl

HD

α-cedrene (8.8), β-pinene (6.3), γ-elemene (5.9), trans-pinocarveol (3.9), α-pinene (3.0)

[58]

Cyprus, Mosphiloti

lv + fl

HD

β-pinene (43.5), α-pinene (14.7), α-cedrene (5.9), limonene (5.8), trans-β-farnesene (4.8), myrtenal (3.7), pinocarvone (3.3), nerol (3.2), γ-elemene (3.0)

[58]

Cyprus, Mosphiloti

st

HD

sabinene (18.8), β-pinene (11.2), α-cedrene (9.6), α-pinene (6.6), α-terpinene (6.0), γ-elemene (5.2)

[58]

T. montanum

Croatia

ap

HD

germacrene D (17.2), β-pinene (12.9), β-caryophyllene (7.1), limonene (4.6), myrcene (4.2), linalool (3.6), β-bourbonene (3.4), hexacosane (3.4), pentacosane (3.3), tetracosane (3.1)

[165]

Turkey

ap

HD

sabinene (11.3), δ-cadinene (6.3), germacrene D (5.8), α-copaene (5.7), (E)-β-farnesene (5.5), τ-cadinol (5.4), α-pinene (5.2), linalool (3.2), β-pinene (3.1)

[205]

Serbia-Mont Mt. Orjen

ap

HD

germacrene D (15.0), α-pinene (12.4), β-eudesmol (l0.l), β-caryophyllene (6.9), β-pinene (4.8), δ-cadinene (4.5), γ-cadinene (4.1), cadinol (3.6), bicyclogermacrene (3.5)

[169]

Serbia, Jadovnik

ap

HD

δ-cadinene (17.2), β-selinene (8.2), α-calacorene (5.0), 1,6-dimethyl-4-(1-methylethyl)-naphthalene (4.9), caryophyllene (4.3), copaene (4.2), torreyol (3.9), 4-terpineol (3.9), cadina-1.4-diene (3.4), β-sesquiphellandrene (3.3), γ-curcumene (3.2), τ-cadinol (3.1)

[206], [207]

Serbia, Jabura

ap

HD

δ-cadinene (8.1), β-caryophyllene (5.1), τ-muurolol (4.2), α-pinene (4.0), dehydrosesquicineole (3.9), γ-cadinene (3.6), α-cadinol (3.5)

[208]

T. montanum ssp. jailae

Slovakia

ap

HD

germacrene D (12.8), β-caryophyllene (8.0), epi-α-cadinol (4.5), α-pinene (3.1), bicyclogermacrene (3.1), epi-cubenol (3.0), cubenol (3.0)

[209]

T. polium

Algeria, Bordj Bou Arreridj

ap

HD

germacrene D (13.8), β-eudesmol (8.7), bicyclogermacrene (4.9), β-caryophyllene (4.2), shyobunol (3.9), β-pinene (3.3), trans-calamenene (3.2), δ-cadinene (3.2)

[210]

Algeria, Bordj Bou Arreridj

fl

HD

germacrene D (12.5), shyobunol (5.6), δ-cadinene (4.7), bicyclogermacrene (4.6), β-eudesmol (4.5), α-cadinol (3.6)

[210]

Algeria, Bouira

ap

HD

germacrene D (25.0), β-pinene (11.3), bicyclogermacrene (10.4), spathulenol (5.8), limonene (4.0), τ-cadinol (3.5)

[211]

Algeria

ap

HD

β-pinene (16.6), germacrene D (14.8), α-pinene (7.2), spathulenol (6.4), limonene (5.6), bicyclogermacrene (5.5)

[212]

Algeria, Mt. Tessala

ap

HD

D-germacrene (18.9), (E)-β-ocimène (12.7), bicyclogermacrene (11.0), β-pinene (9.0), carvacrol (7.0), spathulenol (4.2), linalol (4.0), α-pinene (3.2)

[213]

Algeria, Tlemcen

ap

HD

germacrene D (25.8), bicyclogermacrene (13.0), β-pinene (11.7), carvacrol (8.9), spathulenol (6.5), δ-cadinene (4.3), α-pinene (4.0), citronelle (3.6)

[214]

Algeria, North East

ap

HD

α-pinene (18.0 – 14.1), β-pinene (18.1 – 15.0), germacrene D (19.0 – 3.8), myrcene (10.4 – 8.2), limonene (8.7 – 5.3), sabinene (4.3 – 2.7)

[215]

Croatia

ap

HD

β-caryophyllene (52.0), germacrene D (8.7), limonene (5.9), β-thujone (5.7), α-humulene (4.6), (Z)-β-farnesene (4.3), trans-α-bergamotene (4.1)

[165]

Algeria, Birska

ap

HS

α-guaiene (11.3), β-caryophyllene (9.5), γ-elemene (9.2), β-farnesene (7.6), farnesol (6.1), 6-methyl-5-hepten-2-one (4.4), allo-aromadendrene (4.3), δ-guaiene (4.2), geranyl acetone (3,6), α-gurjunene (3.4)

[216]

Algeria, El Mamounia

ap

HD

limonene (29.9 – 26.4), spathulenol (17.2 – 13.3), 1-adamantanemethylamine (9.8 – 0), camphor (8.2 – 0), pinocarvone (7.8 – 5.6), τ-cadinol (5.4 – 3.7), pinene oxide (4.8 – 0), α-terpineol (4.6 – 0), β-myrcene (4.0 – 0), α-phellandrene (3.4 – 0)

[217]

France, Montserrat

lv

DCM

germacrene D (26.4), β-pinene (19.3), myrcene (11.4), α-pinene (6.3), bicyclogermacrene (4.8), limonene (4.4), β-selinene (3.9), trans-α-bergamotene (3.0), δ-cadinene (3.0)

[218]

France, Rougon

fl

DCM

germacrene D (34.4), β-pinene (14.1), α-pinene (10.3), myrcene (7.2), bicyclogermacrene (5.8), β-caryophyllene (5.4), α-humulene (4.7)

[218]

France, Rougon

lv

DCM

germacrene D (31.9), β-pinene (14.0), myrcene (9.0), α-pinene (8.9), β-caryophyllene (7.4), β-bourbonene (7.1), bicyclogermacrene (6.2), α-humulene (5.8)

[218]

France, Lure Mt.

fl

DCM

germacrene D (21.4), α-pinene (14.8), β-pinene (12.2), myrcene (9.9), β-caryophyllene (9.7), α-humulene (7.9), bicyclogermacrene (4.5)

[218]

France, Lure Mt.

lv

DCM

germacrene D (18.1), β-pinene (15.4), α-pinene (14.6), β-caryophyllene (8.8), myrcene (8.6), α-humulene (5.6), δ-cadinene (4.7), sabinene (4.3), bicyclogermacrene (3.0)

[218]

France, Rustrel

lv

DCM

germacrene D (35.0), α-pinene (20.0), β-pinene (10.9), myrcene (9.6), δ-cadinene (4.0), bicyclogermacrene (3.7), β-gujurnene (3.1)

[218]

France, Gras

fl

DCM

β-pinene (22.7), β-caryophyllene (14.7), α-pinene (14.3), germacrene D (12.7), sabinene (6.5), myrcene (6.2), α-humulene (4.8), limonene (3.0)

[218]

France, Gras

lv

DCM

sabinene (25.5), β-pinene (17.9), β-caryophyllene (16.7), α-pinene (11.5), germacrene D (11.1), myrcene (5.0), α-humulene (3.7), α-thujene (3.2)

[218]

France, Notre Dame la Brune

fl

DCM

sabinene (21.8), β-pinene (16.2), germacrene D (14.9), β-caryophyllene (12.1), α-pinene (9.7), myrcene (6.4), bicyclogermacrene (4.4), limonene (3.9)

[218]

France, Notre Dame la Brune

lv

DCM

sabinene (20.1), β-pinene (14.9), germacrene D (12.1), β-caryophyllene (12.7), α-pinene (9.1), thymol (7.9), myrcene (6.5), bicyclogermacrene (3.3), limonene (3.7)

[218]

Greece, Mt. Hymettus

lv + fl

HD

τ-cadinol (9.3), β-caryophyllene (7.7), caryophyllene oxide (5.9), α-cadinol (5.4), α-humulene (3.7), trans-verbenol (3.0), γ-cadinene (3.0)

[219]

Greece, Mt. Hymettus

lv + fl

Et2O/pent

τ-cadinol (10.8), caryophyllene oxide (9.0), α-cadinol (7.8), undecane (7.5), ε-cadinene (3.0), dodecane (3.0)

[219]

Iran, Kashan

lv + fl

HD

β-caryophyllene (18.0), germacrene D (13.2), spathulenol (10.4), β-pinene (9.7), α-pinene (9.0), bicyclogernacrene (9.0), caryophyllene oxide (7.1), limonene (4.6), (Z)-β-famesene (3.1)

[220]

Iran, Kashan

lv + fl

CO2

germacrene D (23.6), β-caryophyllene (16.5), bicyclogernacrene (11.9), α-pinene (9.8), β-pinene (7.2), (Z)-β-famesene (6.0), spathulenol (4.0), limonene (3.7)

[220]

Iran, Khuzestan

ap

HD

γ-muurolene (23.1), γ-elemene (16.8), spathulenol (11.6), β-caryophylene (9.2), limonene (9.2), 3-carene/α-pinene (8.0), β-eudesmol (7.5), β-pinene (5.8), germacrene B (3.4)

[221]

Iran, Fars

ap

HD

limonene (37.7), 2,4-di-tetr-butylphenol (10.8), p-cymene (8.2), α-pinene (4.3), valerianol (3.9), β-pinene (3.7), hedycaryol (3.6)

[222]

Iran

ap

bicyclodec-1-ene (11.7), 1,3-cyclooctadiene (9.7), iso-aromadendrene epoxide (4.9), 2,3,3-trimethyl-3-cyclopentene acetaldehyde (3.2), bicyclohexene,4-methylene (3.0)

[223]

Iran, Kermanshah

ap

HD

(Z)-a-caryophyllene (19.5), cedrol (14.5), germacrene D (7.5), α-epi-cadinol (5.3), α-pinene (4.6), salicylic acid butyl ester (4.4), (E)-γ-bisabolene (3.9), (E)-β-famesene (3.7)

[224]

Iran, Kermanshah

ap

SPME

(Z)-a-caryophyllene (18.9), cedrol (15.2), germacrene D (7.9), α-epi-cadinol (5.3), α-pinene (4.3), salicylic acid butyl ester (4.8), (E)-γ-bisabolene (4.0), (E)-β-famesene (3.9), α-humulene (3.0),

[224]

Iran, Behbehan

ap

HD

β-bisabolol (23.0), 11-acetoxyeudesman-4α-ol (16.0), β-caryophylene (11.1), α-bisabolol (5.6), α-bisaboloxide B (3.7), β-pinene (3.3), dehydro-sesquicineol (3.2), bicyclogernacrene (3.1)

[225]

Iran, Haft Kel

ap

HD

β-bisabolol (18.6), 11-acetoxyeudesman-4α-ol (16.9), α-bisabolol (14.2), β-caryophylene (10.5), caryophyllene oxide (4.4), β-pinene (3.6)

[225]

Iran, Masjed-e-Solaiman

ap

HD

α-bisabolol (26.5), 11-acetoxyeudesman-4α-ol (18.1), β-caryophylene (11.2), caryophyllene oxide (6.6), α-bisaboloxide B (4.8), β-pinene (3.2), dehydro-sesquicineol (3.2), limonene (3.1)

[225]

Iran, Lali

ap

HD

11-acetoxyeudesman-4α-ol (28.8), α-bisabolol (25.1), β-caryophylene (8.2), α-bisaboloxide B (5.0), caryophyllene oxide (4.5), dehydro-sesquicineol (3.2)

[225]

Iran, Kerman

ap

HD

spathulenol (15.1), β-pinene (11.0), β-myrcene (10.0), germacrene B (10.1), germacrene D (8.1), bicyclogermacrene (8.2), linalool (4.0)

[226], [227], [228]

Iran, Tehran

ap

HD

β-caryophyllene (29.0), farnesene (13.0), β-pinene (11.0), germacrene D (6.5), α-pinene (5.5), limonene (4.2), β-bisabolene (3.7)

[229]

Iran

ap

HD

α-pinene (16.2), spathulenol (10.6), carvacrol (8.0), β-pinene (7.1), trans-verbenol (6.3), caryophyllene oxide (5.7), β-eudesmol (5.7), limonene (5.2), β-caryophyllene (3.7), germacrene D (3.5)

[230]

Iran, Hormozgan

fr

HD

α-pinene (18.2), elemol (14.5), β-pinene (10.1), cubenol (10.0), limonene (5.0), β-caryophyllene (4.2), myrcene (3.4)

[231]

Iran, Fars

ap

HD

11-acetoxyeudesman-4-α-ol (26.3), α-bisabolol (24.6), β-caryophyllene (9.8), caryophyllene oxide (5.3), β-pinene (4.2), dehydro-sesquicineol (3.7)

[232]

Iran, Rayen

ap

HD

1,2,3,6,7,7a-hexahydro-5H-inden 5-one (25.8), terpinyl acetate (19.6), 3-methyl-4-propyl-2,5-furandione (13.2), (E,E)-1,3,5-undecatriene (9.0), β-phellandrene (6.2), 4-nitrophenyl laurate (5.9), pulegone (4.3)

[233]

Iran, Kerman

ap

HD

spathulenol (18.4), epizonaren (9.6), bicyclo heptenol (6.8), germacrene D (6.3), β-caryophyllene (6.2), p-mentha-1,5-dien-8-ol (3.8), 7-epi-α-selinene (3.3)

[91]

Iran, Kerman

ap

HD

α-pinene (11.2), cis-verbenol (6.2), α-terpineol (5.2), verbenol (4.3), (1S)-verbenone (4.2), myrtenol (3.2)

[234]

Iran, Ilam,

st

HD

α-muurolol (25.0), α-cadinol (15.7), β-caryophyllene (10.9), caryophyllene oxide (6.5), elemol (5.5), hexadecanoic acid (5.2), γ-cadinene (3.8)

[235]

Iran, Ilam,

lv

HD

α-muurolol (20.0), β-caryophyllene (10.1), α-cadinol (8.1), (Z)-nerolidol (7.1), β-pinene (6.6), γ-cadinene (4.6), caryophyllene oxide (3.8), elemol (3.2), limonene (3.1), α-humulene (3.1), δ-cadinene (3.0)

[235]

Iran, Ilam,

rt

HD

α-muurolol (19.5), α-cadinol (13.0), β-caryophyllene (10.6), hexadecanoic acid (16.4), eicosane (4.9), (E)-9-octadecanoic acid (4.2), elemol (3.5), caryophyllene oxide (3.2)

[235]

Iran, Ardebil

ap

HD

lycopersene (26.0), dodecane (14.8), 1,5-dimethyl-decahydronaphthalene (9.3), tridecane (7.4), undecane (7.2), decane (3.8), heptadecane (3.4)

[236]

Iran, Kerman

lv

HD

α-pinene (12.5), linalool (10.6), caryophyllene oxide (9.7), β-pinene (7.1), β-caryophyllene (7.0), bornyl acetate (5.3), α-camphene (5.7), camphor (5.2), carvacrol (5.2), germacrene D (5.0), γ-cadinene (3.7), 1,8-cineole (3.6), 3-octanol (3.3), 1-octen-3-ol (3.0)

[237]

Iran, Fars

ap

HD

α-pinene (30.8), β-pinene (12.0), myrcene (8.9), limonene (7.9), β-caryophyllene (5.6), germacrene D (6.9), bicyclogermacrene (4.5), valerianol (3.4), 7-epi-α-eudesmol (3.2)

[238]

Iran, Fars

ap

HS

α-pinene (38.8), β-pinene (15.5), myrcene (21.0), limonene (13.1), trans-β-ocimene (3.4)

[238]

Iran, Fars

ap

HD

α-pinene (25.8%), myrcene (12.5), germacrene-D (11.8), β-pinene (11.8), limonene (8.5), bicyclogermacrene (7.2), spathulenol (4.6)

[239]

Iran, Mashhad

ap

HD

(E)-piperitenone oxide (21.7), α-pinene (11.3), carvone (11.3), spathulenol (6.2), β-pinene (5.8), limonene (5.0), myrcene (4.3), β-eudesmol (4.3), caryophyllene oxide (3.4)

[240]

Jordan, AI-Salt

ap

HD

8-cedren-13-ol (24.8), β-caryophllene (8.7), germacrene D (6.8), sabinene (5.2), α-humulene (4.3), allo-aromadendrene (4.5), δ-cadinene (3.5)

[241]

Jordan, Tlail

ap

Hex

bisoflex DNP (36.5), diethylphthalate (24.1), hexanedioic acid (10.3), nonacosane (5.6), n-hexatriocontane (3.6), cyclohexane (3.3), isooctane (3.2), spathulenol (3.0)

[242]

Jordan, Batheyeh

ap

Hex

n-hexatriocontane (19.1), hexanedioic acid (12.3), nonacosane (10.7), diethylphthalate (7.3), bisoflex 91 (6.8), spathulenol (6.0), germacrene D (4.1), pentadecane (3.3), caryophyllene oxide (3.2)

[242]

Jordan, Jdaideh

ap

Hex

phenol-2-methoxy-3-(2propenyl) (13.6 – 12.0), bisoflex DNP (12.8 – 6.4), hexanedioic acid (9.7 – 0), phthalic acid dinonylester (9.3 – 0), n-hexatriocontane (9.0 – 7.7), 2-hexanal (8.4 – 6.6), thyme-camphor (8.4 – 4.7), bisoflex 91 (7.7 – 6.4), heptane 3,4,5-trimethyl (4.8 – 0), pentadecane (4.6 – 2.6), 2-methylpent-2-en-4-one (4.2 – 1.9), carvacrol (3.5 – 2.8), 3,8-dimethylundecane (3.4 – 3.1), 6,6-dimethyl-5,6-dihydropyran (3.4 – 2.9), α-bisobalol (3.1 – 3.0)

[242]

Jordan, Gawaʼa

ap

Hex

spathulenol (21.9), isooctane (19.2), pentane 2.2.4-trimethyl (8.5), α–bisobaloloxide (5.5), 2-hexanal (4.9), heptane (4.4), δ-cadinene (3.6), nonacosane (3.3), phthalic acid dinonylester (3.2)

[242]

Jordan, Ain Janna

fl

HD

gauilyl acetate (9.5), α-cadinol (9.4), τ-cadinol (9.2), guaiol (8.7), spathulenol (8.6), elemol (8.2), camphene (6.4), endobornyl acetate (5.9), α-terpineol (5.1), terpineol (5.0), verbenol (4.7), linalool (4.2)

[243]

Montenegro

ap

HD

carvacrol (67.8), sabinen (10.7), α-pinene (3.6)

[244]

Morocco, Midelt

ap

HD

3-carene (16.5), γ-muurolene (14.0), α-pinene (9.9), caryophyllene (7.5), α-phellandrene (6.9), muurolol (6.5), α-gurjunene (6.5), α-himachalene (5.6), τ-cadinol (5.1), germacrene D-4-ol (3.9), allo-aromadendrene (3.2)

[245]

Oman

ap

SFME

ledeneoxide (II) (20.5), linalyl acetate (11.2), β-eudesmol (11.6), α-trans-bergamatene (6.8)

[246]

Russia, Orgievsky

ap

HD

trans-cadina-1,4-diene (13.3), trans-β-farnesene (8.2), τ-cadinol (6.6), γ-chymachalene (6.6), germacrene D (6.2), β-curcumene (6.0), cis-β-farnesene (6.0), (1E,4Z)-germacrene B (5.1), cadalene (3.7), γ-elemene (3.6)

[247]

Saudi Arabia, Sudair

ap

HD

cedrol > guaiol > δ-cadinene > limonene > cedrenol > γ-cadinene > linalool > α-phellandrene > terpinen-4-ol, > β-pinene*

[248]

Saudi Arabia, Gabal Al-aquiq

ap

HD

(E)-3-caren-2-ol (12.1), δ-cadinene (8.4), spathulenol (7.0), τ-muurolene (5.9), terpinen-4-ol (5.8), (E)-pinocarveol (5.4), β-linalool (5.3), p-cymen-3-ol (4.3), τ-gurjunene (3.5), verbenone (3.0)

[249]

Saudi Arabia, Tabuk

ap

HD

caryophyllene oxide (17.8), farnesol (14.3), spathulenol (11.9), αr-curcumene (7.2), ledene oxide (7.1), caryophyllene (5.2)

[250]

Saudi Arabia, North

ap

HD

γ-muurolene (8.7), α-cadinol (5.9), δ-cadinene (5.1), β-pinene (4.6), β-gurjurene (4.43), α-limonene (4.3), α-pinene (3.8), α-thujene (3.7), spathulenol (3.4)

[251]

Saudi Arabia, Riyadh

ap

HD

α-cadinol (49.5), δ-cadinene (10.2), limonene (3.6)

[252]

Serbia, Nis

ap

HD

germacrene D (31.0), bicyclogermacrene (6.7), spathulenol (5.0), oct-1-en-3-ol (4.3), γ-cadinene (4.3)

[208]

Serbia-Mont, Cijevna

ap

HD

β-pinene (19.8), germacrene D (11.9), α-pinene (6.4), limonene (4.5), trans-α-bergamotene (3.0)

[169]

Syria, Aleppo

ap

HD

α-pinene (27.5), β-pinene (12.4), myrtenal (8.5), terpinol (8.5), α-humulene (3.6)

[253]

Tunisia

ap

Hex

myrcene (15.5), germacrene D (9.0), α-pinene (6.6), β-pinene (5.8), α-cadinol (5.1), β-caryophyllene (4.0)

[254]

Tunisia, South West

ap

HD

α-pinene (17.0), β-pinene (12.7), limonene (6.6), β-myrcene (6.1), germacrene D (5.9)

[255]

Tunisia, North

ap

HD

carvacrol (56.1), β-caryophyllene (7.7), α-pinene (5.0)

[256]

Turkey, Gaziantep

ap

HD

β-pinene (18.0), β-caryophyllene (17.8), α-pinene (12.0), caryophyllene oxide (10.0), myrcene (6.8), germacrene D (5.3), limonene (3.5), spathulenol (3.3)

[257]

Turkey, Ardahan

ap

HD

(Z)-β-farnesene (15.5), β-phellandrene (10.8), α-farnesene (10.7), germacrene D (9.7), β-gurjunene (7.5), ledene (6.3), limonene (5.9)

[258]

Turkey, Elazığ

ap

HD

β-pinene (10.2), germacrene D (17.8), α-pinene (8.9), β-caryophyllene (8.2), myrcene (6.2), bicyclogermacrene (5.5), limonene (4.1)

[259]

T. polium ssp. album

Egypt, Sinai

ap

HD

patchouly alcohol (33.3), 10-cadinol (9.0), α-cadinol (5.9), δ-cadinene (4.0), β-eudesmol (3.3)

[260]

T. polium ssp. aurasiacum

Algeria̧ Aures

ap

HD

α-cadinol (46.8), 3-β-hydroxy-α-muurolene (22.5), α-pinene (9.5), β-pinene (8.3)

[261], [262]

Algeria, Aures

ap

HD

limonene (34.7), α-pinene (25.4), β-pinene (8.6), β-myrcene (5.2), α-elemol (4.2)

[263]

T. polium ssp. aureum

Morocco, Midelt

ap

HD

caryophyllene (19.1), γ-muurolene (13.0), τ-cadinol, (11.0), α-gurjunene (9.2), rosifoliol (8.8), 3-carene (7.0), allo-aromadendrene (5.1), α-pinene (3.5), myrtenol (3.0)

[245]

T. polium ssp. capitatum

Algeria, Boussaada

ap

HD

τ-cadinol (18.3), germacrene D (15.3), β-pinene (10.5), carvacrol (5.5), bicyclogermacrene (5.5), α-pinene (4.1), limonene (3.1)

[264]

Bulgaria

ap

HD

β-pinene (26.8), germacrene D (17.7), α-pinene (9.3), limonene (6.4), trans-nerodilol (4.6), bicyclogermacrene (4.0), myrtenal (3.3), spathulenol (3.2)

[265]

Corsica

ap

HD

α-pinene (24.1), β-pinene (9.2), α-thujene (8.1), terpinen-4-ol (6.2), limonene (5.2), sabinene (4.1), p-cymene (4.0)

[212]

Corsica, Corti

ap

HD

α-pinene (28.8), β-pinene (7.2), p-cymene (7.0), α-thujene (5.0), terpinen-4-ol (4.6), p-cymene-4-ol (3.0), limonene (3.0)

[266]

Corsica

ap

HD

α-pinene (24.1), β-pinene (9.2), α-thujene (8.1), terpinen-4-ol (6.6), limonene (5.2), sabinene (4.1), p-cymene (4.0)

[164]

Crete, Greece

ap

HD

caryophyllene (9.8), carvacrol (10.1), torreyol (7.6), α-cadinol (4.5), cis-verbenone (3.7) germacrene D (3.1), α-humulene (3.8), δ-cadinene (3.1), α-amorphene (3.0)

[177]

Greece

ap

HD

α-pinene (14.8), β-pinene (12.8), β-caryophyllene (11.3), epi-α-cadinol (7.7), myrcene (5.5), germacrene D (4.8), sabinene (4.7), α-humulene (3.3), α-cadinol (3.2), limonene (3.1)

[267]

Kos, Greece

lv+fl

HD

germacrene D (53.7), (E)-β-farnesene (10.0), bicyclogermacrene (9.1), spathulenol (3.2), limonene (3.1)

[268]

Crete, Greece

ap

HD

caryophyllene (10.1), carvacrol (9.6), torreyol (6.5), caryophyllene oxide (5.0), α-cadinol (4.0), cis-verbenone (4.0) germacrene D (3.9), α-humulene (3.4), δ-cadinene (3.1), germacrene D 4-ol (3.0)

[190]

Iran

ap

HD

α-cadinol (46.2), caryophyllene oxide (25.9), epi-α-muurolol (8.1), cadalene (3.7)

[269]

Morocco

ap

HD

endo-borneol (33.0), naphthalene,1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methyl ethyl)-,(1s-cis)- (19.6), bronyle acetate (15.6), α-terpineol (12.0), bicyclo[3.1.0]hexan-3-ol,4-methyl-1-(1-methylethyl)-(10.9)

[270]

Portugal

ap

HD

τ-cadinol (24.1 – 1.6), sabinene (11.2 – 1.1), β-pinene (10.3 – 1.3), δ-cadinene (9.8 – 3.0), α-cadinol (9.8 – 1.6), α-pinene (7.7 – 0.6), γ-cadinene (5.5 – 0), β-caryophyllene (5.4 – 3.3), germacrene D (3.6 – 0), myrcene (3.5 – 08), (Z)-verbenol (3.5 – 0), terpine-4-ol (3.5 – 1.4), limonene (3.1 – 0.6), carvacrol (3.0 – 0), β-cubebene (3.0 – 1.1)

[271]

Serbia

ap

HD

germacrene D (31.8), linalool (14.0), β-pinene (10.7), β-caryophyllene (8.8), bicyclogermacrene (6.2), α-pinene (3.5)

[265]

T. polium ssp. gabesianum

Tunisia

ap

HD

β-pinene (36.0), α-pinene (13.3), α-thujene (8.5), p-cymene (5.2), verbenone (5.0), myrcene (4.7)

[272]

T. polium ssp. geyrii

Algeria

ap

HD

limonene (11.2), δ-cadinene (10.0), β-caryophyllene (9.1), caryophyllene oxyde (4.7), τ-cadinol (4.3), cis-α-bisabolene (3.4), α-humulene (3.2), germacrene B (3.1)

[273]

T. polium ssp. pilosum

Qatar

ap

HD

β-eudesmol (19.1), γ-cadinene (18.4), spathulenol (11.6), δ-cadinene (8.3), α-cadinol (5.1), germacrene D (4.4)

[260]

T. polium ssp. valentinum

Spain

ap

HD

α-pinene (15.8), β-pinene (11.7), sabinene (7.2), trans-pinocarveol (4.3), terpinen-4-ol (4.5), p-cymene (3.8), limonene (3.2)

[199]

T. puechiae

France

ap

HD

β-caryophyllene (16.7 – 16.0), germacrene-D (11.8 – 11.2), α-pinene (8.7 – 8.5), γ-elemene (6.0 – 5.5), β-pinene (5.0 – 4.9), α-humulene (4.6 – 4.0), β-myrcene (3.2 – 3.1), sabinene (3.2 – 3.1)

[274]

T. ramosissimum

Tunisia, Gafsa

ap

HD

β-eudesmol (44.5), caryophyllene oxide (9.3), α-thujene (5.5), sabinene (4.7), τ-cadinol (3.9)

[131]

Tunisia, Gafsa

ap

HD

β-eudesmol (22.1), p-cymene (13.0), α-cadinol (10.7), 1,6-germacradien-5-ol (10.0), α-thujene (7.3), sabinene (7.3), allo-aromadendrene (4.8), γ-cadinene (3.6), β-caryophyllene (3.2)

[275]

Tunisia, Gafsa

ap

HD

δ-cadinene (23.8 – 15.3), δ-cadinol (18.7 – 8.4), β-eudesmol (17.5 – 7.8), α-thujene (6.3 – 0.7), tujol (5.7 – 0), γ-gurjunene (4.9 – 2.8), cubenol (4.7 – 0.4), 8-cedrene (4.9 – 2.1), cis-α-santalol (4.5 – 1.1), o-cymene (4.5 – 0), α-pinene (3.7 – 0.3), sabinene (3.5 – 0.4)

[276]

Tunisia, Gafsa

ap

HD

δ-cadinol (18.7), δ-cadinene (18.6), β-eudesmol (12.13), γ-gurjunene (4.3), 8-cedrene (4.0)

[277]

Tunisia, Gafsa

lv

HD

β-eudesmol (22.1), p-cymene (13.0), α-cadinol (10.7), 1,6-germacradien-5-ol (10.0), α-thujene (7.3), sabinene (7.3), allo-aromadendrene (4.8), γ-cadinene (3.6), β-caryophyllene (3.2)

[278]

T. sauvegi

Tunisia

lv

HD

β-eudesmol (28.8), τ-cadinol (17.5), α-thujene (8.7), γ-cadinene (5.6), sabinene (4.8), β-selinene (4.2)

[279]

T. stocksianum

UEA

ap

HD

α-cadinol (14.6), δ-cadinene (13.8), τ-cadinol (8.1), seychellene (6.4), β-caryophyllene (6.1), germacrene D-4-ol (3.0)

[280]

South Iran

fr

HD

α-cadinol (37.6), α-pinene (9.7), caryophyllene oxide (4.9), β-selinene (3.9),δ-cadinene (3.8), β-pinene (3.5)

[281]

Iran, Swat

ap BB

HD

caryophyllene oxide (37.1), o-cymene (18.6), germacrene B (5.6), caryophyllene (4.2), α-caryophyllene (3.2)

[282]

Iran, Swat

ap FB

HD

cis-α-santalol (16.3), D-limonene (12.8), o-cymene (12.4), (Z)-β-farnesene (8.5), α-phellandrene (7.3), bicyclo[3.1.0] hexane,4-methylene-1-(1-methyl) (5.3), caryophyllene (3.5), p-cymen-8-ol (3.1), α-caryophyllene (3.1)

[282]

Iran, Swat

ap AFB

HD

1H-cycloprop[e]azulen-7-ol,decahydro-1,1,7-trimethyl-4-methylene (38.2), cis-α-santalol (26.4), o-cymene (11.0), germacrene B (4.5)

[282]

Pakistan, Swat

ap

HD

α-cadinene (12.9), α-pinene (10.3), myrcene (8.6), β-caryophyllene (8.2), seychellene (6.7), germacrene D (6.2)

[283], [284]

South Iran

ap

HD

α-pinene (23.0), β-pinene (13.0), epi-α-cadinol (9.1), sabinene (6.6), myrcene (6.3), α-cadinol (3.3), limonene (3.2)

[144]

T. stocksianum ssp. gabrielae

South Iran

fl

HD

camphene (20.6), α-cadinol (19.7), myrcene (10.2), carvacrol (9.9), (Z)-γ-bisabolene (5.0), linalool (3.3), camphor (3.0)

[285]

South Iran

ap

HD

α-pinene (22.0), cis-sesquisabinene hydrate (12.0%), epi-β-bisabolol (6.6%), β-pinene (6.5), guaiol (5.4%), δ-cadinene (4.9), β-eudesmol (4.4%), α-copaene (3.3)

[144]

South Iran

ap

HD

α-pinene (36.6), β-pinene, (14.1), β-cubebene (5.0)

[286]

Oman

lv

HD

α-cadinol (7.6), β-selinene (6.4), trans-verbenol (5.9), caryophyllene oxide (5.7%), δ-cadinene (5.1%), α-phellandren-8-ol (5.0), verbenone (5.0), τ-murrolol (3.4), β-caryophyllene (3.3)

[142]

T. turredanum

Spain

ap

HD

β-caryophyllene (32.6 – 15 – 6), α-humulene (10.1 – 4.7), β-bisabolol (8.3 – 6.4), cis-γ-bisabolene (6.9 – 4.6), caryophyllene oxide (4.5 – 3.1), β-bisabolene (3.3 – 2.0)

[202]

T. yemense

Yemen, Dhamar

lv

HD

7-epi-α-selinene (20.1), caryophyllene oxide (20.1), β-caryophyllene (11.2), γ-selinene (5.5), α-humulene (4.0), valancene (3.7), ledol (3.6), cis-sesquisabinene hydrate (3.4)

[287]

Yemen, Taiz

lv

HD

β-caryophyllene (19.1), α-cadinol (9.5), δ-cadinene (6.5), α-humulene (6.4), τ-cadinol (5.7), τ-muurolol (4.9), shyobunol (4.6), caryophyllene oxide (4.3), germacrene D-4-ol (3.1)

[287]

Yemen, Taiz

lv

HD

δ-cadinene (34.9), β-caryophyllene (22.7), α-humulene (6.1), α-selinene (5.4)

[156]

T. zanoni

Libya

fl

HD

β-pinene (14.1), linalool (11.0), linalyl acetate (11.1), germacrene D (8.8), γ-elemene (7.8), α-terpimol (5.6), D-limonene (3.5)

[288]

Section Pycnobotrys

T. quadrifarium

India, Garampani

ap

HD

β-caryophyllene (38.3), germacrene D (9.4), α-humulene (5.9), α-pinene (5.7), α-salinene (5.4), sesquisabinene (4.8)

[289]

India, Kumaun

ap

HD

β-caryophyllene (25.0), α-cubebene (20.1), copane 4-α-ol (10.0), aromadendrane (6.3), pinocamphene (3.3), α-pinene (2.3), trans-bergamotene (2.3), α-humulene (4.2), germacrene-D (3.7)

[290]

China

ap

HD

germacrene D (8.8), linalool (8.2), camphene (7.8), β-caryophyllene (7.3), β-cadinene (6.8), 1,8-cineole (6.5), 4-terpineol (5.8), α-terpineol (5.1), trans-geraniol (3.2)

[130]

Section Scordium

T. melissoides

Iran

ap

HD

α-pinene (27.7), β-pinene (16.4), limonene (12.4), germacrene D (10.2), β-caryophyllene (8.9), (Z)-γ-bisabolene (7.5), α-humulene (4.5)

[291]

T. scordium

Serbia-Monten

ap

HD

α-pinene (17.7) β-pinene (10.0), cadinol (6.7), δ-cadinene (6.3), β-caryophyllene (5.5), α-copaene (5.2), α-cadinol (4.3), γ-cadinene (3.7)

[169]

Iran, Mazandaran

ap

HD

β-caryophyllene (22.8), (E)-β-farnesene (10.4), caryophyllene oxide (8.6), 1,8-cineole (6.1), β-eudesmol (5.1), α-pinene (3.3), β-pinene (3.2)

[292]

Iran, Kerman

ap

HD

pulegone (39.1), β-caryophyllene (20.1), β-farnesene (5.7), menthofuran (4.2), 1,8 cineole (4.1), α-humulene (3.1)

[293]

T. scordium ssp. scordiodes

Serbia

ap

HD

menthofuran (11.9), (Z)-octadec-9-enoic acid (11.5), (Z,Z)-octadeca-9,12-dienoic acid (7.9), hexadecanoic acid (6.3), β-caryophyllene (3.5), (E)-phytol (3.5)

[208]

Italy, Sicily

ap

HD

carophyllene oxide (25.8), α-pinene (19.4), β-pinene (8.5), 4-(1,5-dimethylhex-4-enyl)cyclohex-2-enone (6.4), β-sesquiphellandrene (5.9), (E)-β-caryophyllene (4.4), β-bisabolene (3.8), sesquisabinene (3.4)

[294]

Section Scorodonia

T. asiaticum

Balearic Is.

ap

HD

calamenene (23.1), linalool (15.4), α-muurolene (9.9), α-calocorene (8.6), linalyl acetate (6.2), germacrene D (5.2), α-humulene + allo-aromadendrene (3.8), α-terpineol (3.2)

[295]

T. canadensis

Canada

lv

HD

germacrene D (32.7), caryophyllene (13.6), δ-cadinene (13.0), α-humulene (10.2), linalool (6.0)

[296]

T. kotschyanum

Cyprus, Spilia

lv

HD

β-cubebene (26.8), β-burbonene (23.0), β-caryophyllene (22.4), α-humulene (7.6), caryophyllene oxide (4.5), γ-terpinene (3.1)

[58]

Cyprus, Spilia

fl

HD

β-caryophyllene (35.1), β-cubebene (25.1), α-humulene (12.2)

[58]

Cyprus, Spilia

st

HD

β-burbonene (20.9), β-caryophyllene (20.6), β-cubebene (10.6), α-humulene (6.7), allo-aromadendrene (5.8), caryophyllene oxide (4.7), anethole (3.7), α-caryophyllene (3.2)

[58]

Cyprus, Stavros

lv

HD

β-caryophyllene (19.3 – 18.9), β-cubebene (11.8 – 11.4), β-burbonene (11.4 – 7.1), caryophyllene oxide (7.7 – 0.3), α-humulene (7.2 – 6.1), trans-pinocarveol (3.9 – 2.7), δ-cadinene (3.4 – 3.2)

[58]

Cyprus, Stavros

st

HD

β-caryophyllene (18.8 – 13.6), caryophyllene oxide (11.7 – 7.9), β-cubebene (10.2 – 4.2), β-burbonene (9.4 – 5.8), α-humulene (7.3 – 4.4), trans-pinocarveol (3.8 – 2.6), δ-cadinene (3.1 – 1.2)

[58]

Cyprus, Cedar Valley

fr

HD

β-caryophyllene (31.6), β-cubebene (15.1), α-humulene (11.0), β-burbonene (4.5), caryophyllene oxide (4.2), δ-cadinene (3.4)

[58]

Cyprus, Cedar Valley

st

HD

β-caryophyllene (22.8), β-cubebene (12.7), α-humulene (8.5), β-burbonene (6.7), caryophyllene oxide (5.9), δ-cadinene (3.3), trans-pinocarveol (3.1)

[58]

T. massiliense

Corsica

ap

HD

6-methyl-3-heptyl acetate (20.3), germacrene D (7.6), 3-octanyl-acetate (7.1), pulegone (6.7), isobutyl isovalerate (5.9), linalool (4.8), citronellol (3.6), 3-methyl butyl isovalerate (3.3), (Z)-β-ocimene (3.1)

[297]

Corsica

ap

HD

6-methyl-3-heptyl acetate (19.1), 3-octanyl-acetate (7.0), pulegone (6.9), germacrene D (6.1), isobutyl isovalerate (5.8), linalool (5.2), citronellol (4.1), 3-methyl butyl isovalerate (3.4)

[164]

Sardinia, Mt. Albo

ap

HD

3,7-dimethyloctan-2-one (15.2), butyl 2-methylbutyrate (12.1), linalool (10.6), linalyl acetate (7.1), zingiberene (4.7), γ-cadinene (4.1), (E,E)-α-farnesene (3.8), δ-3-carene (3.3), β-bisabolene (3.1)

[298]

Sardinia, Cagliari

ap

HD

6-methyl-3-heptyl acetate (19.5), 3-octanyl-acetate (7.1), linalool (5.8), β-bisabolene (5.4), isobutyl isovalerate (3.0)

[297]

T. pseudoscorodonia ssp. baeticum

Morocco

lv

HD

N-formylmorpholine (25.1), 4-acetyl-morpholine, (17.6), 2-oxabicyclo[2, 2, 2]octan-6-one, 1,3,3-trimethyl- (6.5), heptylcyclohexane (6.0), 3-methyl-2-butenoic acid, 2-ethylcyclohexyl ester (3.7)

[299]

T. royleanum

Pakistan

ap

HD

β-santalene (20.7), cis-α-bisabolene (11.8), o-cymene (8.7), α-bisabolol (6.0), terpineol-4 (3.9), germacrene D (4.3), β-caryophyllene (3.2), β-eudesmol (3.0)

[300]

India

ap

HD

β-caryophyllene (23.6), germacrene D (28.9), α-humulene (5.7), 9-epi-β-caryophyllene (5.6), 1-octen-3-ol (8.5), linalool (4.8)

[289]

T. salviastrum

Portugal

ap

HP

aristolene + β-caryophyllene (21.6), α-humulene + allo-aromadendrene (19.0), germacrene D (7.7), caryophyllene oxide + spathulenol (18.6), humulene epoxyde (3.0)

[295]

Portugal

ap, lv, fl

HD

(E)-β-farnesene (29.3 – 26.1), β-caryophyllene (26.6 – 19.1), germacrene D (21.6 – 13.7), (Z)-β-ocimene (4.6 – 2.1), α-humulene (4.1 – 3.1), caryophyllene oxide (3.6 – 1.4)

[301]

T. scorodonia

Italy, Elba

lv

HD

α-cubebene (18.3), β-elemene (10.7), cis-caryophyllene (10.6), α-bergamotene (6.8), β-selinene (6.7), β-cubebene (5.2), eremophilene (3.2)

[302]

Italy, Elba

br, ca, co

HD

β-elemene (21.4 – 0), sabinene (18.1 – 6.1), α-terpinolene (17.9 – 0), hex-3-enyl acetate (14.4 – 0), (Z)-hex-3-en-l-o1 (14.1 – 0), oct-1-en-3-ol (12.9 – 0), α-cubebene (12.4 – 0), hexenal (10.7 – 4.8), cis-caryophyllene (10.5 – 0.9), α-pinene (10.1 – 0), oct-7-en-1-ol (8.9 – 0), α-copaene (6.8 – 0), eremophilene (6.5 – 0), limonene (6.4 – 0), α-bergamotene (5.5 – 0), β-selinene (3.9 – 0), β-cubebene (3.5 – 0)

[302]

Italy, Prealps

lv

HD

β-cubebene (7.8), α-terpinolene (7.7), γ-elemene (6.8), cis-caryophyllene (5.2), phenylacetaldehyde (4.9), α-bergamotene (4.8), α-cubebene (4.6), β-selinene (4.1), β-pinene (4.1), α-humulene (3.9), eremophilene (3.2)

[302]

Italy, Prealps

br, ca, co

HD

phenylacetaldehyde (41.5 – 0), α-pinene (18.8 – 0), eremophilene (15.3 – 0), β-cubebene (15.2 – 1.5), sabinene (11.8 – 0), γ-elemene (10.4 – 0), α-bergamotene (10.0 – 0), β-pinene (9.6 – 0), oct-1-en-3-ol (8.9 – 0), linalool (8.5 – 0), cis-caryophyllene (6.9 – 0), 3-methylenecycloheptene (4.5 – 0), β-selinene (3.9 – 0), α-gurjunene (3.3 – 0)

[302]

T. scorodonia ssp. baeticum

Algeria

ap

HD

β-caryophyllene (35.4), germacrene D (22.1), α-humulene (9.3), caryophyllene oxide (4.3), bicyclogermacrene (3.8), linalool (3.5), spathulenol (3.2)

[303]

Spain

ap

HD

aristolene + β-caryophyllene (39.7 – 35.1), aromadendrene (14.0 – 10.6), germacrene D (11.3 – 4.9), caryophyllene oxide + spathulenol (9.1 – 4.9), α-cubebene (6.0 – 4.5), humulene epoxyde (3.9 – 2.2)

[295]

T. scorodonia ssp. scorodonia

Corsica

ap

HD

(E)-α-caryophyllene (21.1), germacrene B (8.3), α-humulene (6.9), germacrene D (6.7), α-cubebene (6.2), δ-elemene (3.9), zingiberene (3.6), α-gurjunene (3.5), β-bisabolene (3.3)

[164]

Corsica

ap

HD

β-caryophyllene (21.1), germacrene B (8.3), α-humulene (6.9), germacrene D (6.7), α-cubebene (6.2), γ-elemene (3.9), α-gurjunene (3.5), β-bisabolene (3.3)

[303]

Italy

ap

HD

germacrene B (26.2), β-caryophyllene (25.2), α-cubebene (8.0), α-humulene (8.0), β-cubebene (6.5), germacrene D (6.3), α-gurjuene (6.0), α-copaene (4.3), α-cuprenene (3.2), δ-cadinene (3.0)

[304]

Poland, cultived

ap

HD

β-caryophyllene (22.3), caryophyllene oxide (15.4), α-humulene (8.4), α-cubebene (5.3), oct-1-en-3-ol (4.4), humulene epoxide 2 (4.4), germacrene D (3.0)

[305]

Spain

ap

HD

aristolene + β-caryophyllene (21.0 – 12.3), germacrene D (13.4 – 6.4), caryophyllene oxide + spathulenol (13.0 – 4.2), α-copaene (9.3 – 4.8), α-cubebene (8.5 – 4.7), aromadendrene (6.5 – 0.9), β-pinene (6.0 – 0.4), β-bourbonene (5.7 – 4.5), humulene epoxyde (5.4 – 2.6), δ-cadinene (3.6 – 2.2), longipinene (3.3-t), calamenene (3.2 – 2.6)

[295]

T. siculum

Italy, Euganei

lv

HD

α-pinene (28.6), α-bergamotene (13.7), phenylacetaldehyde (9.8), limonene (7.3), benzaldehyde (5.7), ethyl trans-cinnamate (3.9)

[302]

Italy, Euganei

br, ca, co

HD

ethyl trans-cinnamate (51.7 – 0), α-pinene (28.7 – 0), phenylacetaldehyde (17.9 – 0), ethyl cis-cinnamate (14.5 – 0), benzaldehyde (13.7 – 0), 1-phenylethanol (8.1), hex-3-enyl acetate (7.6 – 0), α-bergamotene (6.9 – 0), limonene (6.3 – 0), eptanal (3.9 – 0), α-gurjunene (3.5 – 0)

[302]

Italy, Tuscany

lv

HD

β-caryophyllene (32.9), β-selinene (7.3), β-farnesene (5.6), eugenol (3.5), sesquiphellandrene (3.1)

[302]

Italy, Tuscany

br, ca, co

HD

linalool (75.7 – 0), isopropyl-3-methylbutyrate (24.2 – 0), carvone (9.5 – 0)

[302]

Italy, Sicily

lv

HD

β-caryophyllene (25.6), isoeugenol (23.8), δ-cadinene (18.6), oct-1-en-3-ol (5.5), linalool (3.6)

[302]

Italy, Sicily

br, ca, co

HD

isoeugenol (43.6 – 28.1), ethyl trans-cinnamate (39.1 – 15.5), β-farnesene (24.2 – 0), ethyl cis-cinnamate (21.4 – 11.2), linalool (11.3 – 0)

[302]

Italy, Sicily

ap

HD

(E)-β-caryophyllene (30.9), 1-octen-3-ol (9.0), α-humulene (8.6), germacrene D (8.0), linalool (7.6), (2E)-hexanal (3.6), caryophyllene oxide (3.6)

[294]

Section Spinularia

T. botrys

Serbia-Montenegro

ap

HD

β-caryophyllene (20.4), (E)-β-farnesene (17.7), α-humulene (13.9), α-pinene (8.1), β-pinene (7.9), limonene (5.5), caryophyllene oxide (4.4)

[169]

T. maghrebinum

Algeria

ap

HD

δ-cadinene (12.7), germacrene D (11.4), γ-cadinene (9.5), 4-vinylguaiacol, (4.0), β-caryophyllene (3.7), limonene (3.7), α-cadinol (3.3)

[68]

cultived, Milan, Italy

ap

HD

germacrene D (14.3), δ-cadinene (13.5), γ-cadinene (7.5), caryophyllene (4.9), limonene (4.4), caryophyllene oxide (4.0)

[190]

Section Stachybotrys

T. arduini

Croatia, Poljicka

old apic p

HD

germacrene D (23.6), β-caryophyllene (17.3), δ-cadinene (9.7), cyperene (8.2)

[306]

Croatia, Poljicka

young lv

HD

germacrene D (57.8), β-caryophyllene (13.5), germacene B (10.0)

[306]

Croatia, Mt. Biokovo

ap

HD

β-caryophyllene (19.9), caryophyllene oxide (14.6), (E)-β-farnesene (5.6), δ-cadinene (5.3), spathulenol (5.0), aromadendrene (4.9), α-humulene (4.8), viridifloene (4.3)

[307]

Croatia, Mt. Biokovo

ap

HD

β-cryophyllene (32.9), germacrene D (16.4), borneol (5.4), δ-elemene (3.6), β-thujone (3.5), camphor (3.2), β-bourbonene (3.1)

[308]

Croatia, Mt. Biokovo

ap

HD

β-cryophyllene (35.2), germacrene D (18.7), borneol (4.9), camphor (4.4), δ-cadinene (4.2)

[309]

Serbia-Mont, Njegusi

ap

HD

β-caryophyllene (24.5), germacrene D (21.9), α-humulene (5.3), caryophyllene oxide (5.1), bicyclogermacrene (4.3), 3-octanol (3.6)

[169]

Montenegro, Kotor

ap

HD

germacrene D (17.0), β-caryophyllene (15.0), linalool (7.0), β-burbonene (5.6), α-terpinolene (5.2), 1-octen-3-ol (4.7), α-amorphene (4.7), α-cadinol (4.6)

[310]

Croatia, Ucka

ap

HD

pulegone (26.3), β-caryophyllene (22.1), germacrene D (11.9), piperitone oxide (10.3), caryophyllene oxide (5.5)

[311]

Croatia, Mt. Velebit, Susanj

ap

HD

β-caryophyllene (29.1), germacrene D (18.7), piperitone oxide (10.3), caryophyllene oxide (10.2), linalool (5.6), pulegone (3.5)

[311]

Croatia, Mt. Velebit, Velaki

ap

HD

β-caryophyllene (35.4), caryophyllene oxide (17.1), germacrene D (9.6), linalool (5.6), pulegone (3.1)

[311]

Croatia, Mt. Biokovo, Vosak

ap

HD

β-caryophyllene (33.7), caryophyllene oxide (14.6), germacrene D (12.2), pulegone (4.1)

[311]

Croatia, Mt. Biokovo, Svjure

ap

HD

β-caryophyllene (28.8), caryophyllene oxide (14.2), germacrene D (12.5), linalool (3.4)

[311]

Croatia, Mt. Sijeznca

ap

HD

β-caryophyllene (31.3), caryophyllene oxide (16.8), germacrene D (8.9), linalool (5.3), germacrone (4.6), spathulenol (4.5), α-humulene (3.2)

[311]

Bosnia and Herzegovina, Diva Grabov.

ap

HD

β-caryophyllene (30.1), germacrene D (28.9), caryophyllene oxide (6.1), α-humulene (3.5), spathulenol (3.3)

[311]

Bosnia and Herzegovina, Mt. Prenj

ap

HD

piperitone oxide (39.1), germacrene D (15.2), β-caryophyllene (8.2), linalool (6.6), caryophyllene oxide (4.4), spathulenol (4.1), limonene (3.9)

[311]

Montenegro, Mt. Orjen

ap

HD

β-caryophyllene (29.2), germacrene D (17.3), caryophyllene oxide (8.9), pulegone (4.9), piperitone oxide (4.6), spathulenol (4.5), α-humulene (4.2), germacrone (3.9)

[311]

Montenegro, Mt. Lovcen

ap

HD

β-caryophyllene (24.7), germacrene D (16.6), caryophyllene oxide (10.8), piperitone oxide (8.8), linalool (4.6)

[311]

Montenegro, Trebjesa

ap

HD

β-caryophyllene (30.7), germacrene D (18.1), caryophyllene oxide (7.2), linalool (4.5), piperitone oxide (3.3), germacrone (3.2)

[311]

cultived, Milan, Italy

ap

HD

caryophyllene (10.0), hexadecanoic acid (9.3), caryophyllene oxide (7.7), germacrene D (5.8), spathulenol (5.8), cedrenol (4.8), heptacosane (4.0), hexahydrofarnesylacetone (3.8), α-humulene (3.1)

[190]

T. hyrcanicum

Iran, Caspian

ap

HD

hexahydrofarnesyl acetone (12.7), linalool (11.7), (E)-β-farnesene (10.7), dihydroedulane (8.6), ar-curcumene (8.5), β-himachalene (4.2), trans-β-ionone (3.4)

[167], [312]

Iran, Sari

ap

HD

(E)-α-bergamotene (65.5), linalool (20.9)

[313]

Iran, Babol

ap

HD

(E)-α-bergamotene (57.5), α-terpineol (12.3), 6 – 10–14-trimethyl pentadecanone (4.1), linalool (3.4), phytol (3.1)

[313]

Iran, Tonekabon

ap

HD

(E)-α-bergamotene (33.3), (E)-β-farnesene (16.4), camphene (6.0), 6 – 10-14-trimethyl pentadecanone (3.5), α-himachalene (3.3), β-bisabolene (3.2), linalool (3.1), ar-curcumene (3.1)

[313]

Iran, Qaemshahr

ap

HD

(E)-α-bergamotene (86.9), 6 – 10-14-trimethyl pentadecanone (3.4)

[313]

Iran, Amol

ap

HD

(E)-α-bergamotene (49.7), (E)-β-farnesene (7.6), phytol (4.9), linalool (4.5), 6 – 10-14-trimethyl pentadecanone (3.6)

[313]

Iran, Shirgah

ap

HD

(E)-α-bergamotene (43.9), (E)-β-farnesene (6.4), phytol (5.6), 6 – 10-14-trimethyl pentadecanone (5.0), α-cadinol (4.1), 1,8-cineole (4.0), α-himachalene (3.7)

[313]

Iran, Gorgan

ap

HD

(E)-α-bergamotene (54.5), (E)-β-farnesene (8.0), 6 – 10-14-trimethyl pentadecanone (6.9), phytol (5.8), α-cadinol (3.3), caryophyllene oxide (3.1)

[313]

Iran, Ramsar

ap

HD

(E)-α-bergamotene (32.6), (E)-β-farnesene (11.0), trans-piperitone epoxide (6.4), 6 – 10-14-trimethyl pentadecanone 5.7), β-bisabolene (5.0), cis-piperitone epoxide (4.7), α-cadinol (4.1), caryophyllene oxide (3.8), linalool (3.1).

[313]

Iran, Fooman

ap

HD

(E)-α-bergamotene (17.5), (E)-β-farnesene (21.4), α-cadinol (8.0), ar-curcumene (4.1), carvacrol (6.4), 6-10-14-trimethyl pentadecanone (6.6), caryophyllene oxide (6.4)

[313]

Iran, Behshahr

ap

HD

(E)-α-bergamotene (21.4), 6 – 10-14-trimethyl pentadecanone (14.2), (E)-β-farnesene (7.8), α-cadinol (3.8), linalool (3.2)

[313]

Iran, Savadkook

ap

HD

(Z)-β-farnesene (21.4), aromadendrene (4.3), β-caryophyllene (4.1), β-pinene (3.4), methyl hexadecanoate (3.4), (E)-β-ionone (3.2), n-hexadecanol (3.1)

[314]

T. lamiifolium ssp. lamiifolium

Turkey

ap

HD

β-caryophyllene (44.8 – 23.5), trans-β-bergamotene (26.4 – 0), germacrene D (22.2 – 5.6), (Z)-β-farnesene (14.0 – 3.0), caryophyllene oxide (8.1 – 2.7), hexadecanoic acid (5.8 – 0.7)

[315]

T. lamiifolium ssp. stachyophyllum

Turkey

ap

HD

trans-β-bergamotene (41.1 – 38.1), β-caryophyllene (8.9 – 8.7), α-humulene (6.4 – 6.1), germacrene D (7.4 – 6.6), hexadecanoic acid (4.6 – 2.8)

[315]

T. oxylepis ssp. oxylepis

Spain

ap

HD

α-cadinol (12.8), aristolene + β-caryophyllene (10.4), α-cubebene (8.5), epi-cubenol (7.7), δ-cadinene (7.2), α-copaene (4.8), calamarene (3.7), aromadendrene (3.6), sabinene (3.5), germacrene D (3.3)

[295]

T. oxylepis ssp. marianum

Spain

ap

HD

calamarene (13.1 – 7.9), linalool (12.9 – 7.1), τ-cadinol (9.2 – 5.7), α-cadinol (8.8 – 6.1), γ-cadinene (7.9 – 7.4), α-cubebene (6.1 – 0.2), germacrene D (5.9 – 5.2), α-copaene (4.8 – 3.3), aristolene + β-caryophyllene (4.3 – 3.5), ar-curcumene (3.1 – 0.8)

[295]

Section Teucriopsis

T. abutiloides

Madeira

ap

HD

1-octen-3-ol (20.1), germacrene D (13.4), δ-cadinene (11.4), allo-aromadendrene (9.1), β-bisabolene (4.2), α-cadinol (3.8), γ-muurolene (3.0)

[316]

T. betonicum

Madeira

ap

HD

1-octen-3-ol (24.2), β-caryophyllene (12.1), bicycloelemene (6.8), linalool (6.2), zingiberene (5.2), caryophyllene oxide (5.0), phenylacetaldehyde (3.3), α-humulene (3.3), n-nonanal (3.0)

[316]

T. hetrophyllum

Madeira

ap-fl stage

HD

τ-cadinol (20.7), α-pinene (16.2), α-cadinol (11.0), β-pinene (8.7), 1-octen-3-ol (3.5)

[317]

Madeira

ap-vg stage

HD

τ-cadinol (17.0), α-pinene (16.4), α-cadinol (9.0), 1-octen-3-ol (8.0), β-pinene (4.2)

[317]

Canary Is

ap

HD

(E)-α-bisabolene (20.8), β-caryophyllene (15.1), α-pinene (8.5), caphene (5.2), β-pinene (4.3), linalool (3.0), α-humulene (3.4), β-bisabolene (3.3), caryophyllene oxide (3.4)

[318]

Section Teucrium

T. africanum

S. Africa

ap

HD

α-cubebene (23.9), β-cubebene (20.5), calamarene (4.0), pathoulene (3.7), α-copaene (3.2), bicyclosesquiphellendrene (3.2), δ-cadinene (3.0)

[24]

T. alyssipholium

Turkey

ap

HD

trans-β-caryophillene (16.9), ar-curcumene (11.4), bisabolene (11.1), caryophyllene oxide (5.1), limonene (3.5)

[319]

T. brevifolium

Greece, Karpathos

ap

HD

spathulenol (9.0), δ-cadinene (4.2), caryophyllene oxide (3.8), trans-pinocarveol (3.8), β-pinene (3.6), viridiflorol (3.4), β-eudesmol (3.4), cadalene (3.4)

[177]

T. creticum

Cyprus, Kato Lefkara

fl + lv + fr

HD

β-caryophyllene (22.0), caryophyllene oxide (15.7), spathulenol (14.2), linalool (10.6), germacrene D (5.4), α-humulene (4.3), bicyclogermacrene (3.8), α-bisabolol oxide (3.4)

[320]

Cyprus, Kato Lefkara

fl + lv

HD

linalool (23.1), β-caryophyllene (13.3), caryophyllene oxide (11.3), spatulenol (7.1), germacrene D (6.5), α-bisabolol oxide (6.2), bicyclogermacrene (5.9), β-bourbonene (3.8), geraniol (3.3), germacrene B (3.1), α-humulene (3.0)

[320]

Cyprus, Kato Lefkara

st

HD

α-bisabolol oxide (16.7), β-bourbonene (9.9), linalol (8.1), calamenene (3.6), caryophyllene oxide (3.5)

[320]

Cyprus, Katopyrgos

fl

HD

β-caryophyllene (21.5), caryophyllene oxide (13.8), germacrene D (10.8), spathulenol (8.6), α-humulene (5.7), geraniol (5.5), bicyclogermacrene (5.0)

[320]

T. fruticans

Italy, Tuscany

ap fl

HD

β-pinene (21.2), germacrene D (17.7), myrcene (12.8), β-caryophyllene (12.2), β-phellandrene (4.3), β-selinene (4.1), α-pinene (3.6), limonene (3.5), α-humulene (3.0)

[321]

Italy, Tuscany

ap fr

HD

germacrene D (24.4), β-caryophyllene (21.8), β-pinene (7.1), β-selinene (6.9), myrcene (5.7), α-humulene (5.5)

[321]

Italy, Sicily

ap

HD

germacrene D (29.4), 1-octen-3-ol (19.7), (E)-β-caryophyllene (19.6), trans-calamenene (7.3), linalool (6.0), α-humulene (5.6), trans-cadina-1,4-diene (4.0)

[294]

Malta

ap

HD

germacrene D (50.0), (E)-β-caryophyllene (21.9), 1-octen-3-ol (7.4), α-humulene (3.3), linalool (3.2), trans-cadina-1,4-diene (3.0), β-pinene (3.0)

[294]

T. multicaule

Turkey, Erzincan

ap

HD

germacrene D (13.2), caryophyllene oxide (10.9), spathulenol (6.6), β-caryophyllene (5.6), (6Z,10Z)-pseudo phytol (4.1), myrtenol (3.8), α-cadinol (3.6), δ-cadinene (3.2), hexadecanoic acid (3.2)

[322]

Turkey, Elazığ

ap

HD

caryophyllene oxide (31.1), thymol (13.2), terpineol (10.6), spathulenol (7.6), azulene (3.3)

[259]

T. orientale ssp. glabrescens

Iran

fl-ap

HD

β-cubebene (34.5), α-cubebene (16.6), α-copaene (10.1), β-caryophyllene (10.0), caryophyllene oxide (4.7), n-eicosane (4.7), α-amorphene (3.8)

[323]

Turkey, Maras

ap

HD

α-pinene (18.2), elemol (14.5), β-pinene (10.1), cubenol (10.0) limonene (5.0), β-caryophyllene (4.2), myrcene (3.4)

[324]

Turkey, Kusakkaya

ap

SPME

nonanal (25.0), thuja-2,4(10)-diene (22.9), tetracosane (15.2), pentacosane (7.2), eicosane (6.8), decanal (4.5), 2-amyl furan (3.9)

[325]

T. orientale ssp. orientale

Iran

ap

HD

caryophyllene oxide (33.5), linalool (17.0), β-caryophyllene (9.3), δ-cadinene (3.7), carvacrol (3.2), α-copaene (3.0)

[326]

Turkey Erzurum

ap, bud st

HD

linalool (29.1), β-caryophyllene (23.6), 3-octanol (10.4), germacrene D (8.8), β-bourbonene (5.7), γ-gurjunene (3.6)

[327]

Turkey Erzurum

ap fl st

HD

linalool (30.9), β-caryophyllene (13.8), 3-octanol (10.4), germacrene D (6.7), β-bourbonene (4.5)

[327]

Turkey Erzurum

ap veg st

HD

β-bourbonene (19.2), 3-octanol (13.2), linalool (10.6), β-caryophyllene (9.5), α-cubebene (6.9), germacrene D (6.2), α-copaene (5.6), (E)-γ-bisabolene (5.2)

[327]

Turkey, Erzurum

ap

HD

β-caryophyllene (15.3), germacrene D (14.2), caryophyllene oxide (14.0), spathulenol (6.4), bicyclogermacrene (3.6), hexadecanoic acid (3.1)

[328]

Turkey, Karaman

ap

HD

germacrene D (246), β-caryophyllene (22.6), hexadecanoic acid (7.9), bicyclogermacrene (6.7), caryophyllene oxide (5.6)

[324]

T. orientale ssp. puberulens

Turkey, Tersun Mt.

ap

HD

β-caryophyllene (21.7), 2-methyl cumarone (20.0), germacrene D (10.6), α-humulene (4.8), δ-cadinene (4.1), bicyclogermacrene (3.4)

[172]

Turkey, Erzurum

ap

HD

β-caryophyllene (15.3), germacrene D (14.2), caryophyllene oxide (14.0), spathulenol (6.4), bicyclogermacrene (3.6), hexadecanoic acid (3.1)

[328]

Turkey, Aksaray

ap

HD

germacrene D (33.4), hexadecanoic acid (12.8), β-caryophyllene (8.5), bicyclogermacrene (8.5), β-cubebene (3.5)

[324]

T. orientale ssp. taylori

Iran

ap-fr

HD

linalool (28,6), caryophyllene oxide (15.6), 3-octanol (9.5), β-pinene (8.7), β-caryophyllene (7.3), 1,8-cineol (4.5), germacrene D (4.1), β-bisabolene (3.4)

[329], [330]

T. parviflorum

Turkey

ap

HD

β-caryophyllene (18.6), germacrene D (9.2), caryophyllene oxide (8.8), bicyclogermacrene (6.0), δ-cadinene (4.5), α-pinene (4.4), β-bisabolene (4.4), β-farnesene (3.7)

[331]

T. pestalozzae

Turkey

ap

HD

β-caryophyllene (27.6), germacrene D (13.8), α-humulene (5.6), (E)-β-farnesene (4.4), linalool (3.8), caryophyllene oxide (3.3), germacrene B (3.2), ledene (3.0)

[205]

T. pruinosum

Palestine

lv

MU

agarospirol (43.5), caryophyllene (19.3), D-limonene (3.7), α-caryophyllene (3.4), caryophyllene oxide (3.1)

[332]

T. pseudochamaepitys

Tunisia

ap

HD

hexadecanoic acid (26.1), apiole (7.1), caryophyllene oxide (6.3), myristicin (4.9), (E)-β-damascenone (4.6), α-cubebene (3.9), β-caryophyllene (3.5), elemicin (3.3), pentadecanol (3.1), cadidene-1,4-diene (3.1)

[333]

T. sandrasicum

Turkey

ap

HD

germacrene D (27.9), β-caryophyllene (9.1), sabinene (8.9), α-pinene (6.5), bicyclogermacrene (5.8), linalool (5.6), terpinen-4-ol (4.5), β-pinene (3.8), α-humulene (3.2), hexadecanoic acid (3.0)

[205]

T. trifidum

S. Africa

ap

HD

β-cubebene (31.1), α-cubebene (11.4), β-caryophyllene (7.7), δ-cadinene (5.2), bicyclosesquiphellendrene (4.2), epi-cubebol (4.2), cubebol (3.5)

[24]

Section not determined

T. atratum

Algeria, cultivated

ap

HD

τ-cadinol (40.1), thymol (22.1), cravacrol (14.0), spatulenol (5.6), α-cubenol (5.0), α-cadinol (5.0)

[262], [334]

In the EOs of Teucrium species, generally, the main compounds are represented by sesquiterpene hydrocarbons, such as germacrene D and β-caryophyllene, or monoterpene hydrocarbons such as α- and β-pinene. The taxa can be grouped into two different classes: the sesquiterpene and monoterpene chemotypes. As can be seen, examining the composition of some very commonly studied taxa (e.g., T. polium or T. polium ssp. capitatum), this variation is intraspecific and probably due to different climatic or soil growing conditions.

Biological activities

Several biological activities have been disclosed for the EOs of the Teucrium genus, and they are discussed in the following paragraphs. Some of the effects, proven both in vitro and in vivo, can be associated to the traditional uses of the individual species. In other cases, a correlation between the ethnobotanical panorama and rigorous scientific evidence lacks.

The complexity of the chemical composition of EOs makes it rather arduous to interpret the results in terms of interactions with cellular molecular targets, even though the reductionist paradigm is more widely accepted; this is to attribute a particular bioactivity to the principal chemical component of the mixture or to one of the major components, for which a certain activity had been demonstrated for its pure form. The so-called “synergistic” model, based upon what the overall effect of the EO is higher than that of any single component, is advocated by some authors even though, in our opinion, it lacks strong experimental evidence.


#

Antioxidant activity

The antioxidant activity was evaluated for the EOs of several members of the genus Teucrium; [Table 4] reports the more relevant results. A great number of tests have been developed to measure the antioxidant power, which entail the interaction of a suitable probe with different molecules involved in the complex oxidative pathway, such as primary oxidation products hydroperoxides and/or secondary aldehydes, etc. Therefore, careful attention should be devoted to the selection of coherent data for a matter of comparison. However, most of the data reported in the literature concern the use of the DPPH radical scavaging test, based on radical hydrogen donation power of the sample. The activities disclosed vary from quite weak (order of magnitude of the IC50 in the DPPH assay 1000 µg/mL) to moderate (10 – 100 µg/mL) and, in some cases, stronger (1 – 10 µg/mL). In the case of EOs, the activity of the sample is related to the activity of the single components and attempts were made to make such a correlation explicit, even though these attempts are not always convincing. For example, Yildirim et al. [327] showed a direct correlation between the antioxidant activity of T. orientale EO harvested at different vegetative stages and its β-caryophyllene content. On other hand, other authors [319] did not recognize this compound as the main component responsible for the antioxidant activity of the Teucrium alyssifolium EO, even though it was found to be the major component (16.97%) in the oil. Surprisingly, the antioxidant activity of the oil was ascribed to the phenolic compounds present as minor components. Another group [188] justified the observed antioxidant activity of the EO of T. marum spp. marum to the presence of dolichodial.

Table 4 The antioxidant activity of the essential oils from Teucrium taxa.

Species

Origin

Test type

Ref.

T. alyssipholium

Turkey

IC50 (µg/mL) DPPH 132

[319]

T. flavum ssp. flavum

Tunisia

IC50 (µg/mL) DPPH 1230

[185]

T. marum ssp. marum

Italy

IC50 (µg/mL) DPPH 13.13, X/XO 0.161

[188]

T. massiliense

Italy

IC50 (µg/mL) DPPH 13.30, LO 37.0

[298]

T. orientale ssp. orientale

Turkey

IC50 DPPH not determined

[327]

T. orientale ssp. taylori

Iran

IC50 (µg/mL) DPPH 121.6; β-carotene/LO 79.85 (comparable to BHT)

[329]

T. polium

Algeria

TEAC (mg TE/gr DWP): DPPH 19.14 (F) and 18.01 (B), FRAP 20.21 (F) and 18.21 (B)

[210]

T. polium

Algeria

IC50 (µg/mL) DPPH 547.68, ABTS 3.84, CUPRAC 9.82, β-carotene 33.47

[211]

T. polium

Iran

IC50 (µg/mL) DPPH 9200, LO > 2000

[226]

T. polium

Iran

IC50 (µg/mL) DPPH ca. 600, β-carotene/LO ca. 600

[232]

T. polium

Iran

IC50 (µg/mL) DPPH ca. 250

[233]

T. polium ssp. aurum

Marocco

IC50 (µg/mL) DPPH ca. 7200, FRAP 3500

[245]

T. polium ssp. polium

Marocco

IC50 (µg/mL) DPPH 3700, FRAP 2310

[245]

T. polium

Tunisia

IC50 (µg/mL) DPPH 20.0, FRAP ND, β-carotene 150

[255]

T. polium ssp. aurasianum

Algeria

IC50 (µg/mL) DPPH 58.63, EC50 (µg/mL): FRAP 48.19

[263]

T. polium ssp. capitatum

Algeria

IC50 (µg/mL) DPPH ca. 300

[264]

T. pruinosum

Palestine

IC50 (µg/mL) DPPH 16.98

[332]

T. sauvegi

Tunisia

IC50 (µg/mL) DPPH 1000, ABTS 590

[279]

T. pseudochamaepitys

Tunisia

IC50 (µg/mL) DPPH 770

[333]

Quite an interesting attempt to comprehensively rationalize the correlation between the antioxidant activity and the chemical composition of the EOs was made by Ruberto and Baratta [335], who investigated the radical scavenging activity of more than 100 individual compounds normally included in the EO composition of many species. They made use of two dinstinct assays (TBAR and ABAP) that gave comparable results: phenols, allylic alcohols, and unsaturated hydrocarbons, which can better stabilize unpaired electrons, were the more active compounds.

It would be useful and desirable that future investigations concerning the antioxidant activity of EOs will employ these two methods in order to better understand the molecular basis of the efficacy of different blends.


#

Antimicrobial activity

The antimicrobial activity of the EOs obtained from plants of Teucrium taxa has been largely explored. [Table 5] includes a survey of the most relevant available literature data, reported as MIC values – where available – as a matter for easier comparison. As can be seen, the range of these values is rather wide, being comprised within three orders of magnitude, from about 10−1 to 102 mg/mL. Just for a matter of clarity, an arbitrary and qualitative classification of the efficacies reported could be stated as good (up to 1 mg/mL), medium (from 1 to 10 mg/mL), and weak (> 10 mg/mL). Only in one study, that is the evaluation of the antimicrobial activity of T. polium ssp. aurasiacum from Algeria, the results obtained showed MIC values notably high toward all of the tested microbial strains, ranging from 0.08 to 40 µg/mL [262]. The authors explained this remarkable antimicrobial potency with the presence of thymol as the major component in the oil, based upon the recognized antimicrobial effect of this compound.

Table 5 Antimicrobial activity of the EOs of Teucrium taxa.

Species

Origin

Test

Target

Ref

T. africanum

South Africa

MIC (mg/mL)

B. cereus ATCC 11778, E. coli ATCC 8739, K. pneumoniae ATCC 13883, M. catarrhalis ATCC 23246, P. aeruginosa ATCC 27858, S. aureus ATCC 2592: 4.0 to > 8.0; S. pyogenes ATCC 8668: 0.16

[24]

T. arduini

Croatia

MIC (mg/mL)

S. aureus ATCC 6538: 6.25, E. faecalis ATCC 21212: 37.50, E. coli ATCC 10536: 12.50, P. aeruginosa ATCC 27853: 6.25, C. albicans ATCC 10231: 7.81, M. gypseum MFBF S3: 12.50, A. brasiliensis ATCC 16404: 25

[308]

T. arduini

Montenegro

MIC (mg/mL)

E. faecalis, E. coli, P. mirabilis, K. pnemoniae, P. aeruginosa, B. subtilis FSB 2: 50, E. faecalis ATCC 29212: 50, M. lysodeikticus ATCC 4698: 50, S. aureus ATCC 25923: 25, S. aureus FSB 30: 25, E. cloaceae FSB 22: 25, E. coli ATCC 25922: 50, K. pneumonia FSB 26: 6.25, P. mirabilis FSB 34: 25, C. albicans ATCC 10259: 50

[310]

T. atratum

Algeria

MIC (µg/mL)

E. aerogenes: 5, E. coli ATCC 25922: 64, K. pneumoniae: 128, P. mirabilis: 128, P. aeruginosa ATCC 27853: 5, S. typhimurium: 64

[262]

T. capitatum

Morocco

MIC (µL/mL)

T. rubrum: 32.3, T. mentagrophytes: 32.3, E. floccosum: 32.3, M. gypseum: 20.4, C. glabrata: 20.4, C. albicans: 15.9, M. canis: 15.9, A. niger: 15.9

[270]

T. chamaedrys

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 3.0, > 50.0, 3.0, > 50.0, > 50.0, 1.0

[164]

T. chamaedrys

Turkey

IZD (mm) at 1.0 mg/mL

E. coli ATCC 35218: 5 – 10, Y. pseudotuberculosis ATCC 911: 10 – 15, K. pneumoniae ATCC 13883: < 5, S. marcescens ATCC 13880: 5 – 10, E. faecalis ATCC 29212: 5 – 10, S. aureus ATCC 25923: 5 – 10, B. subtilis ATCC 6633: < 5, C. albicans ATCC 60193: < 5, C. tropicalis ATCC 13803: < 5

[172]

T. chamaedrys spp. lydium

Turkey

IZD (mm) at 0.5 mg/mL

E. coli ATCC 35218: < 5, Y. pseudotuberculosis ATCC 911: < 5, K. pneumoniae ATCC 13883: < 5, S. marcescens ATCC 13880: < 5, E. faecalis ATCC 29212: 5 – 10, S. aureus ATCC 25923: 10 – 15, B. subtilis ATCC 6633: 10 – 15, C. albicans ATCC 60193: < 5, C. tropicalis ATCC 13803: < 5

[172]

T. divaricatum

Lebanon

MIC (µg/mL)

B. cereus ATCC 11778: > 100, B. subtilis ATCC 6633: 50, S. aureus ATCC 25923: 100, S. epidermidis ATCC 12228: 25, S. faecalis ATCC 29212: > 100, E. coli ATCC 25922: > 100, P. mirabilis ATCC 25933: > 100, P. vulgaris ATCC 13315: > 100, P. aeruginosa ATCC 27853: > 100, S. typhi Ty2 ATCC 19430: > 100

[61]

T. flavum spp. glaucum

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 0.8, 1.5, 1.5, 1.5, 1.5, 0.2

[164]

T. hyrcanicum

Iran

MIC (mg/mL)

B. subtilis: 2.5, S. aureus: 0.625, E. coli: NA, S. typhi: 5, P. aeruginosa: 10, C. albicans: NA, A. niger: 0.625

[314]

T. leucocladum

Egypt

IZD (mm) at 20 mg/mL

E. coli: 12, P. aeruginosa: 15, S. aureus: 12, B. subtilis: 30, C. albicans: 26

[210]

T. marum

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 0.4, 25.0, 12.5, 0.4, 0.4, 1.0

[164]

T. marum spp. marum

Italy

MIC (mg/mL)

R. solani: 250, F. oxysporum: 450, B. cinerea: 1000, A. solani: 3800

[188]

T. mascatense

Oman

MIC (mg/mL):

S. aureus [NCTC6571]: 2.0, S. aureus: 2.5, S. albus: 2.0, S. epidermidis: 2.0, Strept. mitis: 1.5, Strept. sanguis: 1.5, M. luteus: 2.5, B. subtilis: 2.0, B. cereus: 1.5, E. coli: 6.0, E. coli [NCTC10418]: 7.0, E. aerogenes: 8.0, K. pneumonia: 8.5, S. typhi: 6.5, P. vulgaris: 8.5, P. aeruginosa [NCTC10662]: 8.0, P. aeruginosa: 8.5

[71]

IZD (mm) at 20 mg/mL

C. albicans: 5.5, S. cerevisiae: 5, R. stolonifera: 4.5, P. notatum: 8.0, F. oxysporum: 4.0

T. massiliense

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 0.8, 0.8, 0.8, 6.0, 6.0, 1.0

[164]

T. montanum

Serbia

IZD (mm) at 0.3 mg/mL

B. mycoides: 25, B. subtilis: 26, S. aureus: 10, A. tumefaciens: 16, A. chlorococcum: 24, E. cloaceae: 24, E. carotovora: 18, K. pneumonia: 29, Proteus sp.: NA, P. aeruginosa: NA, P. glycinea: 20, P. fluorescens: 22, P. phaseolicola: 23, A. niger: 9, F. oxysporum: 17, P. canescens: 10

[206], [207]

T. orientale var. puberulens

Turkey

IZD (mm) at 0.5 mg/mL

E. coli ATCC 35218: < 5, Y. pseudotuberculosis ATCC 911: < 5, K. pneumoniae ATCC 13883: < 5, S. marcescens ATCC 13880: < 5, E. faecalis ATCC 29212: 10 – 15, S. aureus ATCC 25923: 5 – 10, B. subtilis ATCC 6633: 5 – 10, C. albicans ATCC 60193: < 5, C. tropicalis ATCC 13803: < 5

[172]

T. polium

Algeria

MIC (µL/mL)

B. cereus ATCC 11778: 5, E. faecalis ATCC 29212: 5, E. coli ATCC 25922: 4, P. aeruginosa ATCC 27853: NA, S. aureus ATCC 25923: 3

[214]

T. polium

Greece

IZD (mm) at 0.25 mg/mL

E. coli: 0.9, S. aureus: 17.5, P. aeruginosa: 12.5, P. mirabilis: 11

[213]

T. polium

Iran

MIC (µg/mL)

K. pneumoniae ATCC 10031 and patient urinary isolates: 0.62

[229]

T. polium

Morocco

MIC (µL/mL)

S. aureus ATCC 29213: 1.3, E. coli ATCC 25922: NA, P. aeruginosa ATCC 27853: NA C. albicans ATCC 10231: NA A. brasiliensis ATCC 1640: NA

[336]

T. polium

Morocco

MIC (mg/mL)

From individual patients: K. pneumoniae: 0.7, P. aeruginosa: 5. 62, S. aureus: 0.17, A. baumannii: 2.81, C. koseri: 2.81, E. coli: 5.62

[245]

T. polium spp. aurasiacum

Algeria

MIC (µg/mL)

E. aerogenes: 40, E. coli ATCC 25922: 0.08, K. pneumoniae: 32, P. mirabilis: 32, P. aeruginosa ATCC 27853: 0.08, S. typhimurium: 40, S. aureus ATCC 25923: 0.16

[262]

T. polium ssp. aureum

Morocco

MIC (mg/mL)

From individual patients: K. pneumoniae: 1.4, P. aeruginosa: 5.62, S. aureus: 0.17, A. baumannii: 1.4, C. koseri: 2.81, E. coli: 2.81

[245]

T. palium spp. capitatum

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 0.4, 12.5, 6.0, 0.8, 0.8, 0.2.

[164]

T. polium ssp. gabesianum

Tunisia

MIC (mg/mL)

E. coli ATCC 25922, E. faecalis ATCC 29212, S. aureus ATCC 25923, P. aeruginosa ATCC 27853, C. freundei, P. mirabilis: >1; M. canis: 0.062

[272]

T. polium ssp. geyrii

Algeria

MIC (µL/mL)

S. aureus ATCC 27923: 4.9, E. coli ATCC 25922: 12.25, P. aeruginosa ATCC 25853: 12.25, C. albicans: 2.45

[273]

T. polium spp. paurasianum

Algeria

MIC (mg/mL)

E. coli VL, Leisteria VL, Salmonella: 0.66, S. aureus: 0.33, Staphylococcus SP: 0.33, Proleus VL, K. pneumoniae: 0.5

[263]

T. ramosissimum

Tunisia

MIC (mg/mL)

S. aureus ATCC 25923: 0.32, E. faecalis ATCC 29212: 0.36, E. coli ATCC 25922: 0.28, S. enteritidis ATCC 13076: 0.27, S. typhimurium NRRLB 4420: 0.24

[131]

T. sauvagei

Tunisia

MIC (mg/mL)

C. albicans, C. neoforman, T. mentagrophytes var. mentagrophytes, T. mentagrophytes var. interdigitale, T. rubrum, T. soudanense, M. canis, M. gypseum, E. floccosum, A. fumigatus, S. brevicaulis, S. dimidiatum: 0.8 – 1.0

[279]

T. scorodonia spp. scorodonia

France

MIC (mg/mL)

S. aureus, S. epidermidis, L. innocua, EAEP289, E. aerogenes, C. jejuni: 12.5, > 50.0, 50.0, 0.2, 1.5, 2.0

[164]

T. stocksianum

Oman

MIC (mg/mL)

S. aureus ATCC 9144: 4.5, B. cereus ATCC 11778: 4.5, K. pneumoniae ATCC 4352: 7.5, P. aerugenosa ATCC 25668: 11.0, E. coli ATCC 10536: 8.5, S. aureus: 5.5; wild strains from normal human flora: S. albus: 5.5, S. epidermidis: 5.0, S. mitis: 5.0, S. sanguis: 4.5, E. coli: 9.5, E. aerogenes: 8.0; wild strains from environment: M. luteus: 5.5, B. subtilis: 5.0, S. typhi: 6.5, P. vulgaris: NA, P. aeruginosa: 10.5

[142]

T. stocksianum

Pakistan

MIC (mg/mL)

S. aureus: 0.95, B. subtilis: 0.85, B. cereus: 0.45, E. fecalis: 1.8, E. coli: 0.45, K. pneumoniae: 3.6, P. aeruginosa: 0.25, S. typhi: 0.5

[283]

T. trifidum

South Africa

MIC mg/mL)

B. cereus ATCC 11778, E. coli ATCC 8739, K. pneumoniae ATCC 13883, M. catarrhalis ATCC 23246, P. aeruginosa ATCC 27858, S. aureus ATCC 25923: > 8.0; S. pyogenes ATCC 866: 4.0

[24]

T. yemense

Yemen

MIC (mg/mL)

S. aureus: 0.16, B. cereus: 0.16, E. coli: 0.31, P. aeruginosa: 1.25, C. albicans: 1.25, A. niger: 0.31, B. cinerea: 0.31

[287]

Regarding EOs obtained from the species that showed an activity comprised in the range defined as “good”, it is worth noting that most of them include a significant amount (ca. 9 – 25%) of α-pinene, a well-recognized antimicrobial compound [337], in their composition, irrespective of their geographical origin. They are: T. polium from Greece [213]; T. polim ssp. aurasiacum [263], [264] from Algeria, ssp. gabesianum from Tunisia [272]; T. flavum ssp. glaucum from Corsica [164]; T. stocksianum from Pakistan [283] and T. yemense from Yemen [287].

An increasingly deep concern in the field of clinical infections control is the development of multidrug-resistant microbial strains in hospitalized patients. The efficacy of traditional antibiotics to combat this phenomenon is limited and the research on possible new remedies is welcomed and demanding. In this context, the use of new natural products, as well as EOs from plants, seems to be promising. An interesting work on this topic was published in 2016 by Lahmar et al. [275], who isolated multi drugs resistant Acinetobacter baumannii and lactamase-producing Escherichia coli strains from patients and tested the antimicrobial effect of the EO of three species belonging to Tunisian flora, among which was T. ramosissimum. The results showed that the MICs values for T. ramosissimum EO against MRSA (methicillin resistant Staphylococcus aureus) colonies varied from 0.25 to 1 mg/mL. In an attempt to reinduce antibiotic sensitivity, the EO was tested in combination with amoxicillin, tetracycilin, piperacillin, and ofloxacin, for which A. baumanni was shown to be resistant. No interaction was found between the EOs and piperacillin, but the active oil, at 15.6 mg/mL, restored the efficacy of ofloxacin by lowering the MIC values from 4- to 8-fold. The tendency of EOs to reduce antibiotic resistance is more pronounced against MRSA strains (138, 760, and 753). In the case of the MRSA 760 strain, the EO improved the effect of all antibiotics (amoxicillin, piperacillin, tetracycline, and oxacillin), with a reduction of their MIC value. However, the association was not efficient enough to modulate the antibacterial activity of ofloxacin (MIC of 4 mg/mL). The authors correlated the observed activity to the presence of β-eudesmol, p-cymene, 1,6-germacradien-5-ol, cedreanol, β-caryophyllene, and the above-cited α-pinene in the oil. However, it should be underlined that not all of these compounds had been previously shown to be individually active.

Klebsiella pneumoniae is an opportunistic pathogen that is known to develop multiple antibiotic-resistant strains responsible for dangerous nosocomial infections, including urinary tract, pneumonia, septicemia, and soft tissue infections. That is because the improvement in the chemical instruments available for its clinical control is of primary importance. In this regard, the good efficacy of T. polium EO from Iran [229] against K. pneumoniae ATCC 10031, as well as several strains isolated from urine of hospitalized patients, is relevant. However, the association that the authors made between the observed activity and the presence of the main components in the oil, caryophyllene oxide, β-caryophyllene, and β-pinene, seems to be poorly supported as none of the cited compounds was ever demonstrated to be active against K. pneumoniae, and α-pinene, also present in significant amounts in the oil of this sample of T. polium, possesses a wider antibiotic activity spectrum [337].

The above reported studies concerning possible clinical application of some EOs as effective antibiotics are surely interesting and promising for external use, but internal use requires much more additional safety and efficacy data.

An interesting potential application of the antimicrobial power of EOs concerns the implementation as preservative additives in food in order to fight microbial contaminations and development. In this context, the EO obtained from T. polium [228] was assessed for its efficacy; samples of yogurt and of probiotic yogurt were inoculated with different concentrations of the EO alone and together with variable amounts of Lactobacillus casei in order to investigate the inhibitory effect toward the growth of Salmonella typhimurium at intervals of 7 days. T. polium EO had the best Salmonella growth inhibition at 120 and 160 ppm and in synergistic combination with L. casei. No Salmonella was isolated during the 28 days of preservation of yoghurt or probiotic yoghurt (L. casei added) containing different concentrations of T. polium EO. The same combination of T. polum EO and L. casei was successfully applied as a conservative antibacterial agent against E. coli O157:H7 in samples of Kishk, a traditional Middle Eastern dish [91]. Further, T. polium EO was also evaluated as an additive in a commercial barley soup employing Bacillus cereus as a contaminant model [230].

The potential application as preservatives in the food industry is, in our opinion, much less problematic than the previously highlighted clinical one and, consequently, possesses a higher commercial appeal.


#

Antitumor activity

Similar to other kinds of bioactivity, the cytotoxicity of Teucrium EOs toward cancer cells ([Table 6]) was correlated with the presence in a mixture of a significant amount of molecules with a well-established anticancer effect, as in the case of α-bisabolol and (+)-epi-bicyclosesquiphellandrene in the oil extracted from T. alopecurus [22], [23], and (E)-caryophyllene, α-humulene, δ-cadinene, caryophyllene oxide, and α-cadinol that are present in relevant concentrations within the leaf EOs of T. yemense [287]. In other studies, the in vitro cytotoxicity was related, in a rather vague way, with the “presence of terpenes” in the oil [177].

Table 6 Antitumor activity of essential oils of Teucrium taxa.

Species

Origin

Cell type/cytotoxicity

Mechanism of action

Recognized targets

Ref

T. alopecurus

Tunisia

KBM5 human myeloid leukemia

Apoptosis activation by PARP cleavage;

PARP, Capsase-9

[23]

Inhibition of antiapoptotic signalling;

cFLIP, XIAP, BCL-2, Survivin, c-IAP1/2, Bcl-xL, Mcl-1.

reduction of NF-κB p65 subunit translocation;

P65

reduction of NF-κB activity by blocking IκBα phosphorylation;

IκBα

inhibition of reporter gene expression;

inhibition of NF-κB-induced cell proliferation;

C-myc, cyclin D1

inhibition of NF-κB-induced angiogenesis and metastasis;

ICAM1, VEGF, MMP-9

inhibition of NF-κB binding to nucleus

HCT-116, U266, SCC4, Panc28, KBM5, MCF-7

Apoptosis activation by PARP cleavage;

PARP, Capsase-3, -8. – 9 (HCT-116)

[22]

production of ROS;

inhibition of STAT3 activity

C-myc, cyclin D1

T. brevifolium

Greece

CACO-2, COR-L23 and C32. IC50 (µg/mL): 104, 80.7, > 200

NA

NA

[177]

T. flavum

Greece

CACO-2, COR-L23 and C32. IC50 (µg/mL): > 200, 104, > 200

NA

NA

[177]

T. montbretii ssp. heliotropiifolium

Greece

CACO-2, COR-L23 and C32. IC50 (µg/mL): 92.2, 143, 135

NA

NA

[177]

T. polium ssp. capitatum

Greece

CACO-2, COR-L23 and C32. IC50 (µg/mL): 52.7, 104, 91.2

NA

NA

[177]

T. yemense

Yemen

MCF-7, MDA-MB-231, HT29. IC50 (µg/mL): 24.4, 59.9, 43.7

NA

NA

[287]

NF-κB is a transcription factor with multiple genetic targets that, in tumor cells, control the expression of several proteins involved in cell proliferation and apoptosis as well as metastasis and angiogenesis [338]; this is because the modulation of its activation has been the focus of much research. Furthermore, it is known that EOs and many of their components can affect the response to TNF-induced inflammation by blocking NF-κB activation and p50/p65 units translocation, as well as by reducing the phosphorylation of IκBα. Such evidence offers a promising perspective in the possible application of EOs as anticancer agents in NF-κB-overexpressing tumors. Interestingly, the inhibition exerted by T. alopecurus EO on the TNF-induced activation of NF-κB was shown not to be cell specific [23]. The EO from this species was shown to be cytotoxic against KBM5 cells with a multiple mechanism including apoptosis protein activation, metastasis, and adhesion protein inhibition, as well as NF-κB/nucleus binding inhibition ([Table 6]). The EO was also able to potentiate the apoptotic effect of anticancer drugs thalydomide, 5-fluorouracyle, and capecitabine.


#

Anti-inflammatory activity

The EOs of a number of Teucrium species were evaluated for their anti-inflammatory activity by different methods. The oils of T. flavum, Teucrium montbretii ssp. heliotropiifolium, T. polium ssp. Capitatum, and Teucrium brevifolium were evaluated as anti-imflammatory agents by measuring the inhibition of the lipopolysaccaride-induced nitric oxide release in macrophages RAW 264.7 [177]. All of the spp. were found to be very active, showing IC50 values ranging from 7.1 to 41.4 µg/mL, higher than that of the positive control indomethacin (52.8 µg/mL). This relevant result was attributed to the presence in the oil of sesquiterpenes spathulenol, δ-cadinene, caryophyllene, caryophyllene oxide, α-humulene, and torreyol. Further, the EO of Palestinian Teucrium pruinosum, obtained by an MU apparatus, was proven to be significantly efficient in inhibiting the activity of COX-1 and COX-2 enzymes with IC50 values of 0.103 and 0.208 µg/mL, respectively, with a COX-2/COX-1 ratio comparable to that of the NSAID drug etodolac [332].


#

Toxicity

In order to implement the possible therapeutic applications of EOs in human pathology, it is necessary to collect as much data as possible regarding both acute and chronic toxicity, and also the hypothesis that toxicity effects of the mixtures can be different from those already known for their single components.

A few papers deal with this kind of issue; in particular, the toxicity of Teucrium pseudochamaepitys was assessed by a viability test on Hep-2 cells, and the CC50 value was reported between 100 and 1000 µg/mL [333]. Unexpectedly, the authors do not furnish any explanation about the choice of this rather heterodox toxicity model. On the other hand, the toxicity of the T. stocksianum EO was evaluated by the more standard procedure of the brine shrimp test that gave a rather interesting LD50 value of 1200 µg/mL [283]. An in vivo study on rats concerning some pharmacological effects of T. polium gave evidence of hepatotoxicity after intraperitoneal administration of doses from 50 to 200 mg/kg bw of the EO [253].

Careful attention should be paid to the issue of the toxicity of Teucrium EOs in view of their possible biomedical applications in humans, both with systemic and topical administration routes. The lack of direct experimental evidence may be overcome by collecting data available for oils from other taxa with a similar composition or by combining available toxicity data for, at least, the major chemical constituents.


#
#

Other Bioactivities Related to Human Pharmacology

The antinociceptive activity was investigated for the EO of T. polium from Iran [339] by the writhing test in mice, a visceral pain model that measures the reduction of animal writhings caused by intraperitoneal administration of 0.6% acetic acid. The EO was effective in a dose-dependent manner and showed an ED50 value of 29.41 mg/kg bw, slightly higher than the positive controls hyoscine (14.17 mg/kg bw) and indomethacin (13.17 mg/kg bw). Furthermore, the antinociceptive effect observed in the ethanolic extract of the whole plant was proven to arise from the residual components of the EO in such an extract, as their complete removal by prolonged heating resulted in the full loss of activity. However, the composition of the EO was not given, so it was not possible to determine unambigous composition-activity correlations. The same species collected in Turkey [253] was evaluated by the tail flick latency test in rats. After intraperitoneal administration of the EO at 50, 100, and 200 mg/kg bw doses, significant results were obtained at 11 and 21 days and the antinociceptive effect observed was attributed to the presence of high levels of 1,8-cineole and β-pinene in the oil. Unfortunately, the range of effective doses is the same that induces hepatotoxicity, a circumstance that seriously limits the possibility of clinical application.

The antinociceptive effect of T. stocksianum EO from Pakistan [284] was assessed by the rat writhing test. Writhes induced by 0.6% acetic acid were effectively inhibited by the EO administrated intraperitoneally (ED50 of 31.5 mg/kg bw). The authors explained this positive effect with the similarity of the compositions of T. stocksianum and T. polium EOs. However, the perspective for an effective application in therapy is strongly limited, in our opinion, by the fairly high quantity of sample required, its apolar and water-insoluble nature, and the way of administration indicated.

The inhibition activity on the acetylcholinesterase enzyme was evaluated for the EOs of T. mascatense [340] and T. polium [211] and the results showed a poor effect in both the cases.

The EO obtained from T. ramosissimum showed an interesting antimutagenic activity in the bacterial reverse mutation assay conducted on S. typhimurium strains TA98, TA100, and TA1535 [341] with the mutagenic agent sodium azide, aflatoxin B1, benzo[a]pyrene, and 4-nitro-o-phenylenediamine. The efficacy was found to be dose dependent and different for the three targets; in particular, the EO introduced at 25 to 250 µg/plate doses reduced the aflatoxin B1- and benzo[a]pyrene-induced mutagenicity by 92 to 97% on the TA100 strain and by 45 to 89% on TA98. Further, the reduction of the sodium azide-induced mutagenicity for the two abovementioned strains was within 40 – 60%, while the inhibition on the TA1535 strain reached a rate of approximately 74% at the oil dose of 250 µg/plate. The authors did not explain the observed results with any specific correlation with the EO composition.


#

Other Bioactivities Not Related to Human Pharmacology

Phytotoxic activity

The effect of the EOs obtained from a set of four species belonging to Teucrium taxa, i.e., arduini, maghrebinum, polium ssp. capitatum and montbretii ssp. heliotropiifolium, were investigated for their phytotoxic activity by analyzing the germination and the initial radicle elongation of Raphanus sativus L. and Lepidium sativum L. [190]. T. polium was the only one able to affect the germination of R. sativus at a dose of 1.25 µg/mL, while T. arduini affected the germination of L. sativum at 2.5 µg/mL. On the other hand, the radicle elongation of R. sativus was significantly inhibited by all of the EOs tested. The authors interestingly compared the bioactivities of EOs with their main pure components, β-pinene, limonene, linalool, carvacrol, allo-aromadendrene, caryophyllene, and caryophyllene oxide, and confirmed that the bioactivity of the mixtures could be correlated to the presence of active monoterpenes, such as limonene.


#

Antiphytoviral activity

The antiphytoviral activity of the four Croatian endemic species T. polium, T. flavum, T. montanum, and T. chamaedrys was assessed toward the cucumber mosaic virus, inoculated to Chenopodium quinoa Willd. [165]. All of the EOs were active at various degrees in reducing the number of lesions. This activity was well correlated with the composition of the oils, in particular, with the percentage of β-caryophyllene, which explains the observed results for every species except T. montanum, which showed better antiviral activity regardless of having the lowest β-caryophyllene content. The presence of a significant percentage of germacrene D, β-pinene, and limonene can explain the relatively high antiviral activity of T. montanum.


#

Insecticidal activity

EOs are considered valid, ecofriendly, and human biocompatible alternatives to traditional chemical insecticides and pesticides. The literature reports many examples of this kind of research, also dealing with Teucrium taxa.

The larvicidal activity of T. polium EO was studied on Musca domestica [342]. The oil was proven to be active when mixed with feeding material withand had an LC50 of 80 µg/mL. The mechanism of action was attributed to the inhibition activity toward several digestive enzymes that were measured after dissection and removal of the larvae midguts. Inhibition rates were relevant for proteinase trypsin (61.5%), cathepsin B (79%), and cathepsin L (69%); also, carbohydrase activities were inhibited for α-amylase (93%), α-glucosidase (69.5%), and β-glucosidase (42%). The authors did not attempt to furnish any explanation about the activity-composition relationship of the oil.

T. polium EO was also tested against the larvae of Ephestia kuehniella Z. (Lep.: Pyralidae) [343], a pest commonly found in cereal flour. Its LC50 was found to be 4.91 µL/L, while α-pinene, which was claimed as the mayor component of the oil even though no analytical data were reported, showed an LC50 of 10.66 µL/mL. This larvicidal effect was associated to the reduction of the digestive enzymes activity, in particular, α-amylase, triacylglycerol lipase, general protease, serine proteases (trypsin and chymotrypsin-like), carboxypeptidases, and aminopeptidases. Another study about this species concerns the use of its EO as both a mosquitocidal and repellent agent against Culex pipiens L. [252]. The oil was moderately toxic with LC50 of approximately 25 µL/L and showed a better repellency of 292 min of protection at 2 µL/cm2. The relation of the activity with the composition of this oil remains quite uncertain.

The EO obtained from Teucrium leucocladum was effective as a larvicidal agent against C. pipiens, M. domestica, and Ceratitis capitata with LC50 values ranging from 16 to 24 µg/mL [201]. Such an activity was related to the alcohols and monoterpenes compounds contained in the oil. The EO obtained from same species was investigated for its potential as a fumigant insecticide and antifeedant agent against Tribolium castaneum Herbst, a pest that is considered a dangerous threat for post-harvested cereals [236]. The oil was effective in both of the modes of use in a dose- and time-dependent fashion. The optimal fumigant toxicity versus the adult insects was reached after 72 min of exposure with a 20 µL/L solution, with a mortality rate of 98%. Further, a concentration of 14.13 µL/L was determined as the optimum value for obtaining a 95% Feeding Deferens Index with 92% desirability. No hypothesis was made about the possible mechanisms of action or the components mainly responsible for the reported insecticidal activity.

A limited fumigant toxicity (LC50 of 37.9 µL/L) against the adults of Sitophilus oryzae was observed for the EO of Teucrium capitatum from Greece [267]; this was attributed to the circumstance of the presence of sesquiterpenes as the principal constituents of the oil.

T. polium subsp. capitatum from Iran furnished an EO that was assessed as a fumigant and repellent agent against the stored product pests Tribolium castaneum and Callosobruchus maculatus [269]. The repellent activity was moderate towards both of the targets with a concentration-dependent repellency index ranging from about 20 to 60% at doses of 0.2 to 3 µL/mL of the oil in acetone. The fumigant toxicity was also limited, with LC50 values of 360 and 149 µL/L for T. castaneum and C. maculatus, respectively. It is the opinion of the authors that the presence of α-canidol as the main component (46.2%), which is known to be active against several insect species, and a high percentage (25.9%) of caryophillene oxide, possessing insecticidal activity against T. castaneum, could explain the activity found.

The EO of Teucrium quadrifarium collected in India was evaluated as a pesticide and insect growth regulator against Spilarctia obliqua [290]. Topical application of the oil on 3rd instar larvae determined an increase in larval and pupal periods, augmented both larval mortality and adult deformity, and caused a decrease in larval and pupal weight as well as in adult emergence. The composition of the oil is not given and the authors generically connected the observed findings with the high lipophilic character of the EO. The EO extracted from the same species growing in China showed a strong insecticidal activity against Liposcelis bostrychophila [130]. The oil was effective both as a contact toxic agent, with an LC50 value of 95.1 µg/cm2, and as a fumigant agent, with an LC50 of 0.22 mg/L. Even though this paper reports the assessment of the oil composition, no clear connection was found concerning this data and the observed bioactivity.

The EO produced by the species T. montanum subsp. jailae collected in Slovakia was included in an investigation for the insecticidal activity against the insects M. domestica L., Culex quinquefasciatus, and Spodoptera littoralis [209]. The insecticidal activity toward M. domestica was poor, while the activity toward the other targets was relevant, with LD50 values of 56.7 µg per larva for S. littoralis and 180.5 µg/mL for C. quinquefasciatus. The authors admitted the inherent difficulty in relating the biological activity with the EO composition even though the presence of relatively high amounts of (E)-caryophyllene and germacrane D, both compounds active toward several pests, may be considered at least an important contribution to the overall action of the mixture.

The acaricidal activity of the EO obtained from an Iranian specimen of T. polium was tested in the leaf dipping and fumigant bioassays against the spotted spider mite Tetranychus urticae [344]. LC50 values obtained in the two tests were 1.784% and 5.395 µL/L respectively.


#

Antiprotozoal activity

The EO obtained from a sample of T. polium collected in Tunisia was an effective antileshmanial agent against the species Leishmania major (LCO3) and Leishmania infantum (LV20) directly isolated from infected patients [256]. The IC50 values were 0.15 and 0.09 µg/mL, respectively. The possible toxicity was tested on the RAW 264.7 macrophage cell line that showed an LC50 of 3.64 µg/mL. The same activity was tested for the main component (56%) of the oil, carvacrol, and for other significantly represented compounds, such as β-caryophyllene and geraniol, all of them showing remarkable activity with IC50 values < 10 µg/mL.

An interesting activity was disclosed for the EO of T. ramosissimum (Tunisia) that was active against the Acanthamoeba, an infective agent responsible for a rare human keratitis that lacks definitive successful pharmacological approaches [277]. The oil showed a remarkable IC50 value of 25.7 µg/mL. The authors speculated that the presence of a relevant amount of sesquiterpenes in the oil may explain the observed activity and supported this claim with literature data concerning active pure sesquiterpene compounds that, however, were not present in their sample.


#
#

Conclusions

In this review, a complete recognition of the volatile secondary metabolites occurring in the Teucrium genus has been carried out. Some relevant studies on several biological activities have been reported that include antioxidant, anti-inflammatory, antibacterial, antifungal, antitumor, and antidiabetic, justifying the widespread implementation reported in the ethnomedicine of several countries.


#

Contributorsʼ Statement

Conception and design of the work: M. Bruno, S. Rosselli, G. Fontana, R. Gagliano Candela. Data collection: M. Bruno, S. Rosselli, R. Gagliano Candela, G. Fontana. Analysis and interpretation of the data: M. Bruno, S. Rosselli, G. Fontana, R. Gagliano Candela. Drafting the manuscript: M. Bruno, S. Rosselli, G. Fontana. Critical revision of the manuscript: M. Bruno, S. Rosselli, G. Fontana, R. Gagliano Candela.


#
#

Conflict of Interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was supported by a grant from MIUR-ITALY PRIN 2017 (Project N. 2017A95NCJ).

  • References

  • 1 Tutin G, Wood D. Teucrium. In: Tutin G, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA. eds. Flora Europaea 3. Cambridge: Cambridge University Press; 1972: 129-135
  • 2 Royal Botanic Gardens, Kew and Missouri Botanical Garden. The Plant List. Accessed March 25, 2020 at: http://www.theplantlist.org
  • 3 McClintock E, Epling C. A revision of Teucrium in the new world, with observations on its variation, geographical distribution and history. Brittonia 1946; 5: 491-510
  • 4 Dinç M, Doğu S. Teucrium pruinosum var. aksarayense var. nov. (Lamiaceae) from Central Anatolia, Turkey. Mod Phytomorphol 2016; 9: 13-17
  • 5 Navarro T, El Oualidi J, Trigo MM. Pollen morphology of Teucrium (Labiatae) and its taxonomic value. Belg J Bot 2004; 137: 70-84
  • 6 Melnikov D. The system of the genus Teucrium L. (Lamiaceae). In: Tzvelev N. ed. Novitates systematicae plantarum vascularium, Tomus 45. Petropoli, Russia: Institutum Botanicum nomine V. L. Komarovii; 2014: 63-68
  • 7 Hollis S, Brummitt RK. World geographical Scheme for recording Plant Distributions. Pittsburgh: Hunt Institute for Botanical Documentation; 1992
  • 8 Mesuel H, Jäger E, Rauschert S, Wienert E. Veirleichende Chronologie der Zentraleuropäiscen Flora, Vol. 2. Jena: VEB Gustav Fisher; 1978
  • 9 Piozzi F. The diterpenoids of Teucrium species. Heterocycles 1981; 15: 1489-1503
  • 10 Piozzi F, Rodriguez B, Savona G. Advances in the chemistry of the furanoditerpenoids from Teucrium species. Heterocycles 1987; 25: 807-841
  • 11 Piozzi F. Further research on the furoclerodaness from Teucrium species. Heterocycles 1994; 37: 603-626
  • 12 Piozzi F, Bruno M, Rosselli S. Further furoneoclerodanes from Teucrium genus. Heterocycles 1998; 48: 2185-2203
  • 13 Piozzi F, Bruno M, Rosselli S, Maggio A. Advances in the chemistry of furano-diterpenoids from Teucrium genus. Heterocycles 2005; 65: 1221-1234
  • 14 Ulubelen A, Topçu G, Sönmez U. Chemical and biological evaluation of genus Teucrium . Stud Nat Prod Chem 2000; 23: 591-648
  • 15 Navarro T, El Oualidi J. Flower and life strategy diversity in Teucrium L. (Lamiaceae). Acta Botanica Malacitana 1999; 24: 63-75
  • 16 Juan R, Pastor J, Millan F, Alaiz M, Vioque J. Amino acids composition of Teucrium nutlet proteins and their systematic significance. Ann Bot 2004; 94: 615-621
  • 17 Marin P, Petković B, Duletić S. Nutlet sculpturing of selected Teucrium species (Lamiaceae): a character of taxonomic significance. Plant Syst Evol 1994; 192: 199-214
  • 18 Marzouk RI, El-Darier SM, Askar ABS. Pollen morphology of Teucrium L. (Lamiaceae, Ajugoideae) in Libya. Bangladesh J Plant Taxon 2017; 24: 219-226
  • 19 Oybak E, İnceoğlu Ö. Pollen morphology of some Teucrium L. (Labiatae) species. Commun Fac Sci Univ Ank Serie C 1988; 6: 133-146
  • 20 Navarro T, El Oualidi J. Trichome morphology in Teucrium L. (Labiatae). A taxonomic review. Annales Jardin Botanico de Madrid 2000; 57: 277-296
  • 21 Codd LE. The South African species of Teucrium (Lamiaceae). Bothalia 1977; 12: 177-179
  • 22 Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018; 9: 32305-32320
  • 23 Guesmi F, Prasad S, Tyagi AK, Landoulsi A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed Pharmacother 2017; 95: 1876-1885
  • 24 Ruiters AK, Tilney PM, Van Vuuren SF, Viljoen AM, Kamatou GPP, Van Wyk BE. The anatomy, ethnobotany, antimicrobial activity and essential oil composition of southern African species of Teucrium (Lamiaceae). S Afr J Bot 2016; 102: 175-185
  • 25 Kartaha B, Harhar H, Elmonfaloutia H, Gharbya S, Guillaume D, Charroufa Z. Chemical composition of the essential oil of Teucrium antiatlanticum (Lamiaceae). Der Pharma Chem 2015; 7: 23-25
  • 26 Agiel N, Mericli F. A survey on the aromatic plants of Libya. Indian J Pharm Educ 2017; 51: S304-S308
  • 27 Redžić SS. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll Antropol 2007; 31: 869-890
  • 28 Šarić-Kundalić B, Dobeš C, Klatte-Asselmeyer V, Saukel J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J Ethnopharmacol 2010; 131: 33-55
  • 29 Rivera D, Obón C. The ethnopharmacology of Madeira and Porto Santo Islands, a review. J Ethnopharmacol 1995; 46: 73-93
  • 30 Handong S, Xingliang C, Tianen W, Lutai P, Zhongwen L, Deyuant C. A neo-clerodane diterpenoid from Teucrium bidentatum . Phytochemistry 1991; 30: 1721-1723
  • 31 Fernandez Puntero B, Iglesias Peinado I, Villar de Fresno AM. Anti-inflammatory and antiulcer activity of Teucrium buxifolium . J Ethnopharmacol 1995; 55: 93-98
  • 32 Foster S, Duke JA. A Field Guide to medicinal Plants and Herbs of Eastern and Central North America. Boston: Houghton Mifflin Co.; 2000
  • 33 Bown D. Encyclopaedia of Herbs and their Uses. London: Dorling Kindersley; 1995
  • 34 Chiej R. Encyclopaedia of medicinal Plants. London: MacDonald; 1984
  • 35 Nencini C, Galluzzi P, Pippi F, Menchiari A, Micheli L. Hepatotoxicity of Teucrium chamaedrys L. decoction: role of difference in the harvesting area and preparation method. Indian J Pharmacol 2014; 46: 181-184
  • 36 Zdraveva P, Pavlova D, Krasteva I, Pencheva I. Phytochemical analysis on populations of Teucrium chamaedrys from serpentine sites in Bulgaria. CR Acad Bul Sci 2018; 71: 185-192
  • 37 Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin MM, Stefanescu R, Bild V, Melnic S, Tamba BI. Medicinal plants of the family lamiaceae in pain therapy: A review. Pain Res Manag 2018; 2018: 7801543
  • 38 Said O, Khalil K, Fulder S, Azaizeh H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol 2002; 83: 251-265
  • 39 Zargari A. Pharmaceutical Plants. Iran: Tehran University Publications; 1993: 127-130
  • 40 Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol 2000; 73: 221-232
  • 41 Vujanović M, Zengin G, Đurović S, Mašković P, Cvetanović A, Radojković M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. S Afr J Bo 2019; 120: 213-218
  • 42 Nastić N, Švarc-Gajić J, Delerue-Matos C, Barroso MF, Soares C, Moreira MM, Morais S, Mašković P, Gaurina Srček V, Slivac I, Radošević K, Radojković M. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind Crops Prod 2018; 111: 579-589
  • 43 Jarić S, Mačukanović-Jocić M, Djurdjević L, Mitrović M, Kostić O, Karadžić B, Pavlović P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J Ethnopharmacol 2015; 175: 93-108
  • 44 Gras A, Garnatje T, Ibáñez N, López-Pujol J, Nualart N, Vallès J. Medicinal plant uses and names from the herbarium of Francesc Bolòs (1773–1844). J Ethnopharmacol 2017; 204: 142-168
  • 45 Erbay MŞ, Sarı A. Plants used in traditional treatment against hemorrhoids in Turkey. Marmara Pharm J 2018; 22: 110-132
  • 46 Polat R, Satil F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balikesir-Turkey). J Ethnopharmacol 2012; 139: 626-641
  • 47 Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J Ethnopharmacol 2001; 75: 95-115
  • 48 Uysal I, Gücel S, Tütenocakli T, Öztürk M. Studies on the medicinal plants of Ayvacik-Çanakkale in Turkey. Pak J Bot 2012; 44: 239-244
  • 49 Bulut G, Tuzlaci E. An ethnobotanical study of medicinal plants in Bayramiç (Canakkale-Turkey). Marmara Pharm J 2015; 19: 268-282
  • 50 Bulut G, Haznedaroğlu MZ, Doğan A, Koyu H, Tuzlacı E. An ethnobotanical study of medicinal plants in Acipayam (Denizli-Turkey). J Herb Med 2017; 10: 64-81
  • 51 Ünsal Ç, Vural H, Sariyar G, Özbek B, Ötük G. Traditional medicine in Bi̇leci̇k province (Turkey) and antimicrobial activities of selected species. Turk J Pharm Sci 2010; 7: 139-150
  • 52 Kültür S. Medicinal plants used in Kirklareli Province (Turkey). J Ethnopharmacol 2007; 111: 341-364
  • 53 Paksoy MY, Selvi S, Savran A. Ethnopharmacological survey of medicinal plants in UlukIşla (Niğde-Turkey). J Herb Med 2016; 6: 42-48
  • 54 Husein AI, Ali-Shtayeh MS, Jondi WJ, Zatar NAA, Abu-Reidah IM, Jamous RM. In vitro antioxidant and antitumor activities of six selected plants used in the Traditional Arabic Palestinian herbal medicine. Pharm Biol 2014; 52: 1249-1255
  • 55 Hernandez-Galicia E, Aguilar-Contreras A, Aguilar-Santamaria L, Roman-Ramos R, Chavez-Miranda AA, Garcia-Vega LM, Flores-Saenz JL, Alarcon-Aguilar FJ. Studies on hypoglycemic activity of Mexican medicinal plants. Proc West Pharmacol Soc 2002; 45: 118-124
  • 56 Vera-Ku M, Méndez-González M, Moo-Puc R, Rosado-Vallado M, Simá-Polanco P, Cedillo-Rivera R, Peraza-Sánchez SR. Medicinal potions used against infectious bowel diseases in Mayan traditional medicine. J Ethnopharmacol 2010; 132: 303-308
  • 57 Jacobo-Salcedo MDR, Alonso-Castro AJ, Salazar-Olivo LA, Carranza-Alvarez C, Gonzaĺez-Espińdola LA, Domińguez F, Maciel-Torres SP, Garciá-Lujan C, Gonzaĺez-Martińez MDR, Gomez-Sańchez M, Estrada-Castilloń E, Zapata-Bustos R, Medellin-Milań P, Garciá-Carrancá A. Antimicrobial and cytotoxic effects of Mexican medicinal plants. Nat Prod Commun 2011; 6: 1925-1928
  • 58 Arnold N, Bellomaria B, Valentini G, Rafaiani SM. Comparative study on essential oil of some Teucrium species from Cyprus. J Ethnopharmacol 1991; 35: 105-113
  • 59 Meikle RD. Flora of Cyprus, Vol. 2. Hilversum, Holland: Bentham Maxon Trust; 1985: 1332-1342
  • 60 Gürdal B, Kültür Ş. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J Ethnopharmacol 2013; 146: 113-126
  • 61 Formisano C, Napolitano F, Rigano D, Arnold NA, Piozzi F, Senatore F. Essential oil composition of Teucrium divaricatum Sieb. ssp. villosum (Celak.) Rech. fil. growing wild in Lebanon. J Med Food 2010; 13: 1281-1285
  • 62 Bellomaria B, Arnold N, Valentini G. Essential oil of Teucrium flavum subsp. hellenicum from Greece. J Essent Oil Res 1998; 10: 131-133
  • 63 DallʼAcqua S, Cervellati R, Loi MC, Innocenti G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius . Food Chem 2008; 106: 745-749
  • 64 Sanna C, Ballero M, Maxia A. Le piante medicinali utilizzate contro le patologie epidermiche in Ogliastra (Sardegna centro-orientale). Atti Soc Tosc Sci Nat Mem Serie B 2006; 113: 73-82
  • 65 Camarda I. Ricerche etnobotaniche nel comune di Dorgali, Sardegna centro orientale. Boll Soc Sarda Sci Nat 1990; 27: 147-204
  • 66 Maccioni S, Guazzi E, Tomei PE. Le piante nella medicina popolare del Grossetano. I, Le colline fra lʼOmbrone e lʼAlbegna (Toscana). Atti Mus Stor Nat Maremma 1997; 16: 25-46
  • 67 Tuttolomondo T, Licata M, Leto C, Gargano ML, Venturella G, La Bella S. Plant genetic resources and traditional knowledge on medicinal use of wild shrub and herbaceous plant species in the Etna Regional Park (Eastern Sicily, Italy). J Ethnopharmacol 2014; 155: 1362-1381
  • 68 Formisano C, Rigano D, Senatore F, Al-Hillo MRY, Piozzi F, Rosselli S. Analysis of essential oil from Teucrium maghrebinum Greuter et Burdet growing wild in Algeria. Nat Prod Commun 2009; 4: 411-414
  • 69 Grieve M. A Modern Herbal. New York: Dover Publications Inc.; 1972
  • 70 Chevallier A. The Encyclopaedia of medicinal Plants. London: Dorling Kindersley; 1996
  • 71 Hisham A, Pathare N, Al-Saidi S, Al-Salmi A. The composition and antimicrobial activity of leaf essential oil of Teucrium mascatenses Boiss. from Oman. J Essent Oil Res 2006; 18: 465-468
  • 72 Ghazanfar SA, Al-Sabahi AMA. Medicinal plants of Northern and Central Oman (Arabia). Econ Bot 1993; 47: 89-98
  • 73 Zarshenas M, Zargaran A, Maüller J, Mohagheghzadeh A. Nasal drug delivery in traditional Persian medicine. Jundishapur J Nat Pharm Prod 2013; 8: 144-148
  • 74 Jančić R, Stošić D, Mimica-Dukić N, Lakušić B. The aromatic Plants from Serbia. In: Gajić V. ed. NIP Dečije novine. Serbia & Montenegro: Gornji Milanovac; 1995
  • 75 Zlatković BK, Bogosavljević SS, Radivojević AR, Pavlović MA. Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): ethnobotanical evaluation and comparison. J Ethnopharmacol 2014; 151: 704-713
  • 76 Ajabnoor MA, Al-Yahya MA, Tariq M, Jayyab AA. Antidiabetic activity of Teucrium oliverianum . Fitoterapia 1984; 55: 227-230
  • 77 Safaa B, Chalak L, Dalleh H, Arnold N. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. J Ethnopharmacol 2015; 173: 139-156
  • 78 Bahmani M, Saki K, Shahsavari S, Rafieian-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pac J Trop Bio 2015; 5: 858-864
  • 79 Bahmani M, Rafieian-Kopaei M, Saki K, Majlesi M, Bahmani F, Bahmani F, Sharifi A, Rasouli S, Sepahvand R, Abdollahi R, Moghimi-Monfared O, Baharvand S. Identification of medical plants acting on reproductive system disorders: An ethnobotanical study in Urmia, Northwest of Iran. J Chem Pharm Res 2015; 7: 493-502
  • 80 Miri A, Monsef-Esfahani HR, Amini M, Amanzadeh Y, Hadjiakhoondi A, Hajiaghaee R, Ebrahimi A. Comparative chemical composition and antioxidant properties of the essential oils and aromatic water from Teucrium persicum Boiss. Iran J Pharm Res 2012; 11: 573-581
  • 81 Pieroni A, Dibra B, Grishaj G, Grishaj I, Maçai SG. Traditional phytotherapy of the Albanians of Lepushe, Northern Albanian Alps. Fitoterapia 2005; 76: 379-399
  • 82 Ait Chaouche FS, Mouhouche F, Hazzit M. Antioxidant capacity and total phenol and flavonoid contents of Teucrium polium L. grown in Algeria. Med J Nutrition Met 2018; 11: 135-144
  • 83 Bouabdelli F, Djelloul A, Kaid-Omar Z, Semmoud A, Addou A. Antimicrobial activity of 22 plants used in urolithiasis medicine in Western Algeria. Asian Pac J Trop Dis 2012; 2 (Suppl. 01) S530-S535
  • 84 Galstyan HM. Standardization of felty germander (Teucrium polium L.) by natural phytoestrogens: phenylpropanoid and flavonoid glycosides. New Armen Med J 2014; 8: 53-58
  • 85 Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J Ethnopharmacol 2012; 141: 80-95
  • 86 Shojaii A, Ghods R, Fard MA. Medicinal herbs in Iranian traditional medicine for learning and memory. Afr J Tradit Complem 2016; 13: 199-209
  • 87 Feiz Haddad MH, Mahbodfar H, Zamani Z, Ramazani A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. Iran J Basic Med Sci 2017; 20: 415-422
  • 88 Bahramikia S, Ardestani A, Yazdanparast R. Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chem 2009; 115: 37-42
  • 89 Asadi-Samani M, Moradi MT, Mahmoodnia L, Alaei S, Asadi-Samani F, Luther T. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J Nephropathol 2017; 6: 118-125
  • 90 Tajallaie-Asl F, Mardani M, Shahsavari S, Abbaszadeh S. Menstruation phytotherapy according to Iran ethnobotanical sources. J Pharm Sci Res 2017; 9: 986-990
  • 91 Sadrizadeh N, Khezri S, Dehghan P, Mahmoudi R. Antibacterial effect of Teucrium polium essential oil and Lactobacillus casei probiotic on Escherichia coli O157:H7 in Kishk. Appl Food Biotechnol 2018; 5: 131-140
  • 92 Mikaili P, Shayegh J, Asghari MH. Review on the indigenous use and ethnopharmacology of hot and cold natures of phytomedicines in the Iranian traditional medicine. Asian Pac J Trop Bio 2012; 2 (Suppl. 02) S1189-S1193
  • 93 Haghighi M, Mozafariyan M. The introduction of extinct endemic vegetables of Iran. J Med Plant Res 2011; 5: 7085-7107
  • 94 Sadeghi Z, Kuhestani K, Abdollahi V, Mahmood A. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. J Ethnopharmacol 2014; 153: 111-118
  • 95 Fallah Huseini H, Abdolghaffari AH, Ahwazi M, Jasemi E, Yaghoobi M, Ziaee M. Topical application of Teucrium polium can improve wound healing in diabetic rats. Int J Low Extrem Wounds 2020; 19: 132-138
  • 96 Azaizeh H, Saad B, Khalil K, Said O. The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: a review. Evid Based Complement Alternat Med 2006; 3: 229-235
  • 97 Abu-Rish EY, Kasabri V, Hudaib MM, Mashalla SH, AlAlawi LH, Tawaha K, Mohammad MK, Mohamed YS, Bustanji Y. Evaluation of antiproliferative activity of some traditional anticancer herbal remedies from Jordan. Trop J Pharm Res 2016; 15: 469-474
  • 98 Nawash O, Shudiefat M, Al-Tabini R, Al-Khalidi K. Ethnobotanical study of medicinal plants commonly used by local bedouins in the badia region of Jordan. J Ethnopharmacol 2013; 148: 921-925
  • 99 Talib WH, Mahasneh AM. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 2010; 78: 33-45
  • 100 Dababneh BF. Antimicrobial activity of selected Jordanian medicinal plant extracts against pathogenic microorganisms. J Food Agric Environ 2008; 6: 134-139
  • 101 Alzweiri M, Sarhan AA, Mansi K, Hudaib M, Aburjai T. Ethnopharmacological survey of medicinal herbs in Jordan, the Northern Badia region. J Ethnopharmacol 2011; 137: 27-35
  • 102 El-Mokasabi FM, Al-Sanousi AF, El-Mabrouk RM. Taxonomy and ethnobotany of medicinal plants in eastern region of Libya. J Environ Sci Toxicol Food Technol 2018; 12: 14-23
  • 103 El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Taleb M, Abdellaoui A. Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today Proc 2019; 13: 777-783
  • 104 El Amrani F, Rhallab A, Alaoui T, El Badaoui K, Chakir S. Ethnopharmacological survey of some plants used for the treatment of diabetes in the region of Meknès-Tafilalet (Morocco). Phytotherapie 2010; 8: 161-165
  • 105 Fakchich J, Elachouri M. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J Ethnopharmacol 2014; 154: 76-87
  • 106 Ali-Shtayeh MS, Jamous RM, Jamous RM. Traditional Arabic Palestinian ethnoveterinary practices in animal health care: A field survey in the West Bank (Palestine). J Ethnopharmacol 2016; 182: 35-49
  • 107 Jaradat NA, Ayesh OI, Anderson C. Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. J Ethnopharmacol 2016; 182: 57-66
  • 108 Suleiman MS, Abdul-Ghani AS, Al-Khalil S, Amin R. Effect of Teucrium polium boiled leaf extract on intestinal motility and blood pressure. J Ethnopharmacol 1988; 22: 111-116
  • 109 Khader M, Bresgen N, Eckl PM. Antimutagenic effects of ethanolic extracts from selected Palestinian medicinal plants. J Ethnopharmacol 2010; 127: 319-324
  • 110 Qabaha KI. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants. Afr J Tradit Complement Altern Med 2013; 10: 101-108
  • 111 Harlev E, Nevo E, Mirsky N, Ofir R. Antidiabetic attributes of desert and steppic plants: a review. Planta Med 2013; 79: 425-436
  • 112 Hammiche V, Maiza K. Traditional medicine in Central Sahara: pharmacopoeia of Tassili Nʼajjer. J Ethnopharmacol 2006; 105: 358-367
  • 113 Mossa JS, Al-Yahya MA, Al-Meshal IA. Medicinal Plants of Saudi Arabia. Riyadh: King Saud University Press; 2000
  • 114 Rahman MA, Mossa JS, Al-Said MS, Al-Yahya MA. Medicinal plant diversity in the flora of Saudi Arabia: a report on seven plant families. Fitoterapia 2004; 75: 149-161
  • 115 Alachkar A, Jaddouh A, Elsheikh MS, Bilia AR, Vincieri FF. Traditional medicine in Syria: folk medicine in Aleppo governorate. Nat Prod Commun 2011; 6: 79-84
  • 116 Bulut G, Doğan A, Şenkardeş İ, Avci R, Tuzlaci E. The medicinal and wild food plants of Batman City and Kozluk District (Batman-Turkey). Agric Conspec Sci 2019; 84: 29-36
  • 117 Demirci S, Özhatay N. An ethnobotanical study in Kahramanmaraş (Turkey); wild plants used for medicinal purpose in Andirin, Kahramanmaraş. Turk J Pharm Sci 2012; 9: 75-92
  • 118 Güneş S, Savran A, Paksoy MY, Koşar M, Çakılcıoğlu U. Ethnopharmacological survey of medicinal plants in Karaisalı and its surrounding (Adana-Turkey). J Herb Med 2017; 8: 68-75
  • 119 Cakilcioglu U, Khatun S, Turkoglu I, Hayta S. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 2011; 137: 469-486
  • 120 Çakilcioğlu U, Şengün MT, Türkoğlu I. An ethnobotanical survey of medicinal plants of Yazikonak and Yurtbaşi districts of Elaziğ province, Turkey. J Med Plants Res 2010; 4: 567-572
  • 121 Akgul A, Akgul A, Senol SG, Yildirim H, Secmen O, Dogan Y. An ethnobotanical study in Midyat (Turkey), a city on the silk road where cultures meet. J Ethnobiol Ethnomed 2018; 14: 12
  • 122 Akin M, Oguz D, Saracoglu H. Antibacterial activity of essential oil from Thymbra spicata var. spicata L. and Teucrium polium (Stapf Brig.). Interventions 2010; 8: 53-58
  • 123 Polat R, Cakilcioglu U, Satil F. Traditional uses of medicinal plants in Solhan (Bingöl – Turkey). J Ethnopharmacol 2013; 148: 951-963
  • 124 Le Flocʼh E. Contribution a une etude ethnobotanique de la flore tunisienne, vol 2. Tunis: Publications Scientifiques Tunisiennes; 1983
  • 125 Facciola S. Cornucopia – A Source Book of edible Plants. California, USA: Kampong Publications; 1990
  • 126 Jamous RM, Ali-Shtayeh MS, Abu-Zaitoun SY, Markovics A, Azaizeh H. Effects of selected Palestinian plants on the in vitro exsheathment of the third stage larvae of gastrointestinal nematodes. BMC Vete Res 2017; 13: 308
  • 127 Ali-Shtayeh MS, Jamous RM, Jamous RM. Complementary and alternative medicine use amongst Palestinian diabetic patients. Complement Ther Clin 2012; 18: 16-21
  • 128 Meguellati H, Ouafi S, Saad S, Djemouai N. Evaluation of acute, subacute oral toxicity and wound healing activity of mother plant and callus of Teucrium polium L. subsp. geyrii Maire from Algeria. S Afr J Bot 2019; 127: 25-34
  • 129 Meguellati H, Ouafi S, Saad S. Callogenesis and analgesic evaluation of adult plant extracts and callus in Teucrium polium L. subsp. geyrii Maire. J Biol Sci 2018; 18: 192-200
  • 130 Liu XC, Liu SL, Liu ZL. GC-MS Analysis of the Essential Oil and Insecticidal Activity of Teucrium quadrifarium Buch.-Ham. (Lamiaceae) Aerial Parts against Liposcelis bostrychophil . J Essent Oil Bear Pl 2019; 19: 1794-1800
  • 131 Ben Sghaier M, Chraief I, Skandrani I, Bouhlel I, Boubaker J, Kilani S, Neffati A, Mahmoud A, Hammami M, Chekir-Ghedira L, Ghedira K. Chemical composition and antimicrobial activity of the essential oil of Teucrium ramosissimum (Lamiaceae). Chem Biodivers 2007; 4: 1480-1486
  • 132 Henchiri H, Bodo B, Deville A, Dubost L, Zourgui L, Raies A, Grellier P, Mambu L. Sesquiterpenoids from Teucrium ramosissimum . Phytochemistry 2009; 70: 1435-1441
  • 133 Srivastava DK, Saggoo MIS. Few medicinal plants of family Labiatae and Scrophulariaceae in the high altitude cold desert areas of Lahaul-Spiti and its adjoining areas of Himachal Pradesh (India). Insight Int J Sci 2015; 2: 75-81
  • 134 Ahmed MJ, Akhtar T. Indigenous knowledge of the use of medicinal plants in Bheri, Muzaffarabad, Azad Kashmir, Pakistan. Eur J Integr Med 2016; 8: 560-569
  • 135 Aksoy-Sagirli P, Ozsoy N, Ecevit-Genc G, Melikoglu G. In vitro antioxidant activity, cyclooxygenase-2, thioredoxin reductase inhibition and DNA protection properties of Teucrium sandrasicum L. Ind Crops Prod 2015; 74: 545-550
  • 136 Chemli R, Elaissi A, Ben Salah M, Marzouk Z, Mahmoud A. Enquête Ethnobotanique en Tunisie. Tunis: Secrétariat dʼétat de la recherche scientifique de Tunisie; 1993
  • 137 Allen ED, Hatfield G. Medicinal Plants in Folk Medicine: an Ethonobotany of Britain & Ireland. Portland, Oregon, USA: Timber Press Inc.; 2004
  • 138 Zargari A. Medicinal Plants, Vol. 4. Tehran: Tehran University Publications; 1993: 132-133
  • 139 Lans C, Turner N, Khan T, Brauer G, Boepple W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J Ethnobiol Ethnomed 2007; 3: 11
  • 140 Gastaldo P. Compendio della flora officinale italiana. Padova: Piccin Editor; 1987
  • 141 Pardo-de-Santayana M. Salud y tradición popular. Guía de las plantas medicinales de Cantabria. Santander: Librería Estudio; 2004
  • 142 Hisham A, Pathare N, Al-Saidi S. The composition and antimicrobial activity of the essential oil of Teucrium stocksianum subsp. stocksianum leaf from Oman. Nat Prod Commun 2006; 1: 195-199
  • 143 Migahid AM. Flora of Saudi Arabia, II. Saudi Arabia: Riyadh University Press; 1978: 463
  • 144 Sonboli A, Bahadori MB, Dehghan H, Aarabi L, Savehdroudi P, Nekuei M, Pournaghi N, Mirzania F. Chemotaxonomic importance of the essential-oil composition in two subspecies of Teucrium stocksianum Boiss. from Iran. Chem Biodivers 2013; 10: 687-694
  • 145 Ahmad L, Semotiuk A, Zafar M, Ahmad M, Sultana S, Liu QR, Zada MP, Abidin SZU, Yaseen G. Ethnopharmacological documentation of medicinal plants used for hypertension among the local communities of DIR Lower, Pakistan. J Ethnopharmacol 2015; 175: 138-146
  • 146 Rehman K, Mashwani ZUR, Khan MA, Ullah Z, Chaudhary HJ. An ethno botanical perspective of traditional medicinal plants from the Khattak tribe of Chonthra Karak, Pakistan. J Ethnopharmacol 2015; 165: 251-259
  • 147 Ullah R, Hussain Z, Iqbal Z, Hussain J, Khan FU, Khan N, Muhammad Z, Ayaz S, Ahmad S, Rehman NU, Hussain I. Traditional uses of medicinal plants in Darra Adam Khel NWFP Pakistan. J Med Plants Res 2010; 4: 1815-1821
  • 148 Rahim G, Qureshi R, Arshad M, Gulfraz M. Phytochemical analysis and antioxidant properties of Teucrium stocksianum flower from Malakand Division, Pakistan. Int J Agr Biol 2013; 15: 377-381
  • 149 Rahim G, Qureshi R, Gulfraz M, Arshad M, Rahim S. Preliminary phytochemical screening and ethnomedicinal uses of Teucrium stocksianum from Malakand Division. J Med Plants Res 2012; 6: 704-707
  • 150 Uddin G, Rauf A, Siddiqui BS, Khan H, Barkatullah. Ullah R. Antinociceptive, antioxidant and phytochemical studies of Pakistani medicinal plants. Pak J Pharm Sci 2016; 29: 929-933
  • 151 Ibrar M, Hussain F. Ethnobotanical studies of plants of Charkotli hills, Batkhela district, Malakand, Pakistan. Front Biol China 2009; 4: 539-548
  • 152 Hao X, Zhang J, Zhan G, Xue Y, Luo Z, Yao G, Zhang Y. Chemical constituents from Teucrium viscidum . Biochem Syst Ecol 2013; 51: 78-82
  • 153 Srithi K, Trisonthi C, Wangpakapattanawong P, Balslev H. Medicinal plants used in Hmong womenʼs healthcare in northern Thailand. J Ethnopharmacol 2012; 139: 119-135
  • 154 Tounekti T, Mahdhi M, Khemira H. Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia. Evid Based Complement Alternat Med 2019; 2019: 3190670
  • 155 Mothana R, Gruenert R, Bednarski PJ, Lindequist U. Evaluation of the in vitro anticancer, antimicrobial and antioxidant activities of some Yemeni plants used in folk medicine. Pharmazie 2009; 64: 260-268
  • 156 Ali NAA, Wurster M, Arnold N, Lindequist U, Wessjohann L. Chemical composition of the essential oil of Teucrium yemense Deflers. Rec Nat Prod 2008; 2: 25-32
  • 157 Charters ML. California Plant Names: Latin and Greek Meanings and Derivations. A Dictionary of Botanical and Biographical Etymology. Accessed June 17, 2020 at: http://www.calflora.net/botanicalnames/pageT.html
  • 158 Navarro T, El Oualidi J. Sinopsis of Teucrium L. (Lamiaceae) in the Mediterranean region and surrounding areas. Flora Med 2000; 10: 349-363
  • 159 Bahramikia S, Yazdanparast R. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae). Phytother Res 2012; 26: 1581-1593
  • 160 Stanković MS, Zlatić MN. Ethnobotany of Teucrium species. In: Martinez JL, Muñoz-Acevedo A, Rai M. eds. Ethnobotany: Local Knowledge and Traditions. Boca Raton, USA: CRC Press, Taylor & Francis Group; 2019: 214-231
  • 161 de Boer YS, Sherker AH. Herbal and dietary supplement-induced liver injury. Clin Liver Dis 2017; 21: 135-149
  • 162 Arnold N. Contribution à la connaissance ethnobotanique et médicinale de la flore de Chypre. Tome III. Paris: Université René Descartes; 1985: 1203-1210
  • 163 Muselli A, Desjobert JM, Paolini J, Bernardini AF, Costa J, Rosa A, Dessi MA. Chemical composition of the essential oils of Teucrium chamaedrys L. from Corsica and Sardinia. J Essent Oil Res 2009; 21: 138-143
  • 164 Djabou N, Lorenzi V, Guinoiseau E, Andreani S, Giuliani MC, Desjobert JM, Bolla JM, Costa J, Berti L, Luciani A, Muselli A. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 2013; 30: 354-363
  • 165 Bezić N, Vuko E, Dunkić V, Ruščić M, Blažević I, Burčul F. Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules 2011; 16: 8119-8129
  • 166 Morteza-Semnani K, Akbarzadeh M, Rostami B. The essential oil composition of Teucrium chamaedrys L. from Iran. Flavour Frag J 2005; 20: 544-546
  • 167 Kazemizadeh Z, Basiri A, Habibi Z. Chemical composition of the essential oil of Teucrium hyrcanicum and T. chamaedrys L. subsp. chamaedrys from Iran. Chem Nat Comp 2008; 44: 651-653
  • 168 Hajdari A, Mustafa B, Hyseni L, Bajrami A, Mustafa G, Quave CL, Nebija D. Phytochemical study of eight medicinal plants of the lamiaceae family traditionally used as tea in the Sharri Mountains region of the Balkans. Sci World J 2020; 2020: 4182064
  • 169 Kovacevic NN, Lakusic BS, Ristic MS. Composition of the essential oils of seven Teucrium species from Serbia and Montenegro. J Essent Oil Res 2001; 13: 163-165
  • 170 Özel MZ, Göğüş F, Lewis AC. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 2006; 1114: 164-169
  • 171 Bagci E, Yazgin A, Hayta S, Cakilcioglu U. Composition of the essential oil of Teucrium chamaedrys L. (Lamiaceae) from Turkey. J Med Plants Res 2010; 4: 2588-2590
  • 172 Küçük M, Güleç C, Yaşar A, Üçüncü O, Yayli N, Coşkunçelebi K, Terzioğlu S, Yayli N. Chemical composition and antimicrobial activities of the essential oils of Teucrium chamaedrys subsp. chamaedrys, T. orientale var. puberulens, and T. chamaedrys subsp. lydium . Pharm Biol 2006; 44: 592-599
  • 173 Kaya A, Demirci B, Başer KHC. Compositions of essential oils and trichomes of Teucrium chamaedrys L. subsp. trapezunticum Rech. fil. and subsp. syspirense (C. Koch) Rech. fil. Chem Biodivers 2009; 6: 96-104
  • 174 Sajjadi SE, Shookohinia Y. Composition of the essential oil of Teucrium chamaedrys L. subsp. syspirense (C. Koch) rech. fil. growing wild in Iran. J Esset Oil Bear Pl 2010; 13: 175-180
  • 175 Tzakou O, Roussis V, Loukis A, Harvala C, Galati EM, Germanò MP. Essential oil analysis of Teucrium divaricatum Heldr. ssp. divaricatum growing in Greece. Flavour Fragr J 1997; 12: 113-115
  • 176 Stanic G, Petricic J, Blazevic N, Plazibat M. Essential oil of Teucrium flavum L. from Croatia. J Essent Oil Res 1993; 5: 625-627
  • 177 Menichini F, Conforti F, Rigano D, Formisano C, Piozzi F, Senatore F. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem 2009; 115: 679-686
  • 178 Baher ZF, Mirza M. Volatile constituents of Teucrium flavum L. from Iran. J Essent Oil Res 2003; 15: 106-107
  • 179 Presti ML, Crupi ML, Costa R, Dugo G, Mondello L, Ragusa S, Santi L. Seasonal variations of Teucrium flavum L. essential oil. J Essent Oil Res 2010; 22: 211-216
  • 180 Sagratini G, Maggi F, Blek T, Papa F, Vittori S. Analysis of the volatile compounds of Teucrium flavum L. subsp. flavum (Lamiaceae) by headspace solid-phase microextraction coupled to gas chromatography with flame ionisation and mass spectrometric detection. Nat Prod Res 2012; 26: 1339-1347
  • 181 Maggi F, Bilek T, Cristalli G, Papa F, Sagratini G, Vittori S. Comparison of the characterization of the fruit-like aroma of Teucrium flavum L. subsp. flavum by hydrodistillation and solid-phase micro-extraction. J Sci Food Agric 2009; 89: 2505-2518
  • 182 Flamini G, Cioni PL, Baldini R, Maccioni S, Bedini G. Composition of the essential oil of two populations of Teucrium flavum L. subsp. flavum, collected on calcareous soil (Caprione – Eastern Liguria) and on ophiolitic soil (Leghorn Hills). Atti Soc Tosc Sci Nat Mem, Serie B 2011; 118: 15-21
  • 183 Formisano C, Rigano D, Senatore F, Bruno M, Maggio A, Piozzi F. Chemical composition of the essential oil of Teucrium flavum ssp. flavum from Zakynthos, Greece. Rec Nat Prod 2012; 6: 306-310
  • 184 Djabou N, Battesti MJ, Allali H, Desjobert JM, Varesi L, Costa J, Muselli A. Chemical and genetic differentiation of Corsican subspecies of Teucrium flavum L. Phytochemistry 2011; 72: 1390-1399
  • 185 Hammami S, El Mokni R, Faidi K, Falconieric D, Piras A, Procedda S, Mighria Z, El Aouni MH. Chemical composition and antioxidant activity of essential oil from aerial parts of Teucrium flavum L. subsp. flavum growing spontaneously in Tunisia. Nat Prod Res 2015; 29: 2336-2340
  • 186 Djabou N, Andreani S, Varesi L, Tomi F, Costa J, Muselli A. Analysis of the volatile fraction of Teucrium marum L. Flavour Fragr J 2013; 28: 14-24
  • 187 Sanz J, Mus M, Rossello JA. Volatile components variation in the Teucrium marum complex (Lamiaceae) from the Balearic Islands. Bot J Linn Soc 2000; 132: 253-261
  • 188 Ricci D, Fraternale D, Giamperi L, Bucchini A, Epifano F, Burini G, Curini M. Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). J Ethnopharmacol 2005; 98: 195-200
  • 189 Kaya A, Demirci B, Dinç M, Dogu S, Baser HC. Compositions of the essential oils of Teucrium cavernarum and Teucrium paederotoides, two endemic species from Turkey. J Essent Oil Bear Pl 2013; 16: 588-594
  • 190 De Martino L, Formisano C, Mancini E, De Feo V, Piozzi F, Rigano D, Senatore F. Chemical composition and phytotoxic effects of essential oils from four Teucrium species. Nat Prod Commun 2010; 5: 1969-1976
  • 191 Javidnia K, Miri R, Khosravi AR. Composition of the Essential Oil of Teucrium persicum Boiss. From Iran. J Essent Oil Res 2007; 19: 430-432
  • 192 Masoudi S, Aghajani Z, Rustaiyan A, Feizbakhsh A, Kakhky AM. Volatile constituents of Teucrium persicum Boiss., Thymus caucasicus Willd. ex Ronniger subsp. grossheimii (Ronniger) Jalas. and Marrubium crassidens Boiss. three labiatae herbs growing wild in Iran. J Essent Oil Res 2009; 21: 5-7
  • 193 Cavaleiro C, Salgueiro LR, Miguel MG, Proença da Cunha A. Analysis by gas chromatography-mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis . J Chromatogr A 2004; 1033: 187-190
  • 194 Hachicha SF, Skanji T, Barrek S, Zarrouk H, Ghrabi ZG. Chemical composition of Teucrium alopecurus essential oil from Tunisia. J Essent Oil Res 2007; 19: 413-415
  • 195 Baser KHC, Demirci B, Duman H, Aytaç Z. Composition of the essential oil of Teucrium antitauricum T. Ekim. J Essent Oil Res 1999; 11: 61-62
  • 196 Elabbara FA, Habel AM, Bozkeh NMA, El-Tuonsi ATM, Awin TM. The essential oil composition of Teucrium apollinis (Lamiaceae) from Libya. Der Chemica Sinica 2014; 5: 26-27
  • 197 Pérez I, Blázquez MA, Boira H. Chemotaxonomic value of the essential oil compounds in species of Teucrium pumilum aggregate. Phytochemistry 2000; 55: 397-401
  • 198 Palá-Paúl J, Pérez-Alonso MJ, Velasco-Negueruela A, García-Jiménez N, Jiménez RG, Vargas L. Composition of the essential oil of Teucrium carolipaui Pau grown in Spain. J Essent Oil Res 2001; 13: 452-453
  • 199 Pérez-Alonso MJ, Velasco-Negueruela A, López-Sáez JA. The essential oils of two Iberian Teucrium species. J Essent Oil Res 1994; 5: 397-402
  • 200 Gaspar H, Brito Palma FMS, de La Torre MC, Rodríguez B, Barroso JG, Figueiredo AC. Composition of the essential oil of Teucrium haenseleri Boiss. Flavour Fragr J 1997; 12: 355-357
  • 201 El-Shazly AM, Hussein KT. Chemical analysis and biological activities of the essential oil of Teucrium leucocladum Boiss. (Lamiaceae). Biochem Syst Ecol 2004; 32: 665-674
  • 202 Blázquez MA, Pérez I, Boira H. Essential oil analysis of Teucrium libanitis and T. turredanum by GC and GC-MS. Flavour Fragr J 2003; 18: 497-501
  • 203 Velasco-Nagueruela A, Perez Alonzo MJ. Volatile oils of Teucria species endemic to Spain. I. Teucium lusitanicum subsp. aureiformis . Anal Bromatol 1989; 21: 241-248
  • 204 Al Oraimi MM, Al-Sabahi JN, Weli AM, Selim D, Akhtar MS, Al-Riyami Q, Al-Khanjari S. Chemical composition of essential oil of Tecurium mascatenses Bois grown in Oman. J Essent Oil Bear Pl 2012; 15: 822-826
  • 205 Baser KHC, Demirçakmak B, Duman H. Composition of the essential oils of three Teucrium species from Turkey. J Essent Oil Res 1997; 9: 545-549
  • 206 Vuković N, Milošević T, Sukdolak S, Solujić S. The chemical composition of the essential oil and the antibacterial activities of the essential oil and methanol extract of Teucrium montanum . J Serbian Chem Soc 2008; 73: 299-305
  • 207 Vukovic N, Milosevi T, Sukdolak S, Solujic S. Antimicrobial activities of essential oil and methanol extract of Teucrium montanum . Evid Based Complement Alternat Med 2007; 4 (Suppl. 01) 17-20
  • 208 Radulović N, Dekić M, Joksović M, Vukićević R. Chemotaxonomy of Serbian Teucrium species inferred from essential oil chemical composition: the case of Teucrium scordium L. ssp. scordioides . Chem Biodivers 2012; 9: 106-122
  • 209 Pavela R, Benelli G, Canale A, Maggi F, Mártonfi P. Exploring essential oils of Slovak medicinal plants for insecticidal activity: The case of Thymus alternans and Teucrium montanum subsp. jailae . Food Chem Toxicol 2020; 138: 111203
  • 210 Bendif H, Lazali M, Souilah N, Miara MD, Kazernavičiūtė R, Baranauskienė R, Venskutonis PR, Maggi F. Supercritical CO2 extracts and essential oils from Teucrium polium L. growing in Algeria: chemical composition and antioxidant activity. J Essent Oil Res 2018; 30: 488-497
  • 211 Bendjabeur S, Benchabane O, Bensouici C, Hazzit M, Baaliouamer A, Bitam A. Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. J Food Meas Charact 2018; 12: 2278-2288
  • 212 Djabou N, Muselli A, Allali H, Dib MEA, Tabti B, Varesi L, Costa J. Chemical and genetic diversity of two Mediterranean subspecies of Teucrium polium L. Phytochemistry 2012; 83: 51-62
  • 213 Fertout-Mouri N, Latrèche A, Mehdadi Z, Toumi-Bénali F, Khaled MB. Chemical composition and antibacterial activity of the essential oil of Teucrium polium L. of Tessala Mount (Western Algeria). Phytothérapie 2017; 15: 346-353
  • 214 Belmekki N, Bendimerad N, Bekhechi C, Fernandez X. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Western Algeria. J Med Plants Res 2013; 7: 897-902
  • 215 Lograda T, Ramdani M, Chalard P, Figueredo G, Deghar A. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Eastern Algeria. Am J Adv Drug Deliv 2014; 2: 697-710
  • 216 Zouaoui N, Chenchouni H, Bouguerra A, Massouras T, Barkat M. Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS J 2020; 18: 19-28
  • 217 Maizi Y, Meddah B, Meddah ATT, Hernandez JAG. Seasonal variation in essential oil content, chemical composition and antioxidant activity of Teucrium polium L. growing in Mascara (North West of Algeria). J Appl Biotechnol Rep 2019; 6: 151-157
  • 218 Chizzola R. Volatile compounds from some wild growing aromatic herbs of the Lamiaceae from southern France. Plant Biosyst 2006; 140: 206-210
  • 219 Vokou D, Bessiere JM. Volatile constituents of Teucrium polium . J Nat Prod 1985; 48: 498-499
  • 220 Eikani MH, Goodarznia I, Mirza M. Comparison between the essential oil and supercritical carbon dioxide extract of Teucrium polium L. J Essent Oil Res 1999; 11: 470-472
  • 221 Ashnagar A, Gharib Naseri N, Foroozanfar S. Isolation and identification of the major chemical components found in the upper parts of Teucrium polium plants grown in Khuzestan Province of Iran. Chin J Chem 2007; 25: 1171-1173
  • 222 Vahdani M, Faridi P, Zarshenas MM, Javadpour S, Abolhassanzadeh Z, Moradi N, Bakzadeh Z, Karmostaji A, Mohagheghzadeh A, Ghasemi Y. Major compounds and antimicrobial activity of essential oils from five Iranian endemic medicinal plants. Pharmacognosy Journal 2011; 3: 48-53
  • 223 Zare P, Mahmoudi R, Ehsani A. Biochemical and antibacterial properties of essential oil from Teucrium polium using resazurin as the indicator of bacterial cell growth. Pharm Sci 2011; 17: 183-188
  • 224 Gholivand MB, Piryaei M, Abolghasemi MM, Maassoumi SM. Rapid analysis of volatile components from Teucrium polium L. by nanoporous silica-polyaniline solid phase microextraction fibre. Phytochem Anal 2013; 24: 69-74
  • 225 Sadeghi H, Jamalpoor S, Shirzadi MH. Variability in essential oil of Teucrium polium L. of different latitudinal populations. Ind Crops Prod 2014; 54: 130-134
  • 226 Mahmoudi R, Nosratpour S. Teucrium polium L. essential oil: phytochemiacl component and antioxidant properties. Int Food Res J 2013; 20: 1697-1701
  • 227 Mahmoudi R, Zare P, Hassanzadeh P, Nosratpour S. Effect of Teucrium polium essential oil on the physicochemical and sensory properties of probiotic yoghurt. J Food Process Pres 2014; 38: 880-888
  • 228 Mahmoudi R, Zare P, Nosratpour S. Application of Teucrium polium essential oil and Lactobacillus casei in yoghurt. J Essent Oil Bear Pl 2015; 18: 477-481
  • 229 Raei F, Ashoori N, Eftekhar F, Yousefzadi M. Chemical composition and antibacterial activity of Teucrium polium essential oil against urinary isolates of Klebsiella pneumoniae . J Essent Oil Res 2014; 26: 65-69
  • 230 Keykavousi M, Tarzi BG, Mahmoudi R, Bahhoda H, Kabudari A, Mahalleh SFRP. Study of antibacterial effects of Teucrium polium essential oil on Bacillus cereus in cultural laboratory and commercial soup. Carpath J Food Sci Technol 2016; 8: 176-183
  • 231 Sabzeghabaie A, Asgarpanah J. Essential oil composition of Teucrium polium L. fruits. J Essent Oil Res 2015; 28: 77-80
  • 232 Sayyad R, Farahmandfar R. Influence of Teucrium polium L. essential oil on the oxidative stability of canola oil during storage. J Food Sci Technol 2017; 54: 3073-3081
  • 233 Boroomand N, Sadat-Hosseini M, Moghbeli M, Farajpour M. Phytochemical components, total phenol and mineral contents and antioxidant activity of six major medicinal plants from Rayen, Iran. Nat Prod Res 2018; 32: 564-567
  • 234 Nikpour H, Mousavi M, Asadollahzadeh H. Qualitative and quantitative analysis of Teucrium polium essential oil components by GC-MS coupled with MCR and PARAFAC methods. Phytochem Anal 2018; 29: 590-600
  • 235 Masoudi S. Volatile constituents from different parts of three Lamiaceae herbs from Iran. Iran J Pharm Res 2018; 17: 365-376
  • 236 Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of Teucrium polium L. essential oil against red flour beetle (Tribolium castaneum Herbst) using response surface methodology. Inf Process Agric 2020; 7: 286-293
  • 237 Moghtader M. Chemical composition of the essential oil of Teucrium polium L. from Iran. American-Eurasian J Agric Environ Sci 2009; 5: 843-846
  • 238 Rowshan V, Najafian S. Comparison of volatile compounds in Teucrium polium L. by headspace and hydrodistillation techniques. Int J Appl Biol Pharm 2012; 3: 151-157
  • 239 Purnavab S, Ketabchi S, Rowshan V. Chemical composition and antibacterial activity of methanolic extract and essential oil of Iranian Teucrium polium against some of phytobacteria. Nat Prod Res 2015; 29: 1376-1379
  • 240 Heydarzade A, Moravvej G. Contact toxicity and persistence of essential oils from Foeniculum vulgare, Teucrium polium and Satureja hortensis against Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) adults. Turk Entomol Derg 2012; 36: 507-518
  • 241 Aburjai T, Hudaib M, Cavrini V. Composition of the essential oil from Jordanian germander (Teucrium polium L.). J Essent Oil Res 2006; 18: 97-99
  • 242 Afifi FU, Abu-Irmaileh BE, Al-Noubani RA. Comparative analysis of the essential oils of Teucrium polium L. grown in different arid and semiarid habitats in Jordan. Jordan J Pharma Sci 2009; 2: 42-52
  • 243 Al-Qudah TS, Shibli RA, Alali FQ. In vitro propagation and secondary metabolites production in wild germander (Teucrium polium L.). In Vitro Cell Dev Biol Plant 2011; 47: 496-505
  • 244 Popović A, Šućur J, Orčić D, Štrbac P. Effects of essential oil formulations on the adult insect Tribolium castaneum (Herbst) (Col., Tenebrionidae). J Cent Eur Agric 2013; 14: 181-193
  • 245 El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Oumokhtar B, Abdellaoui A. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab J Chem 2020; 13: 3866-3874
  • 246 Hussain J, Rehman NU, Al-Harrasi A, Ali L, Khan AL, Albroumi MA. Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman. Asian Pac J Trop Dis 2013; 3: 421-428
  • 247 Rudakova Y, Popova O. Chemical composition of the essential oil of the Teucrium polium L. Clin Pharmacol 2016; 11: 425-428
  • 248 Hassan MMA, Muhtadi FJ, Al-Badr AA. GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 1979; 68: 800-801
  • 249 Ibrahim SR, Abdallah HM, Mohamed GA, Farag MA, Alshali KZ, Alsherif EA, Ross SA. Volatile oil profile of some Lamiaceous plants growing in Saudi Arabia and their biological activities. Z Naturforsch C J Biosci 2017; 72: 35-41
  • 250 Basudan N, Abu-Gabal NS. Phytochemistry and biological properties investigation of Teucrium polium L. Int J Pharm Biol Sci 2018; 8: 660-670
  • 251 Guetata A, Al-Ghamdia FA. Analysis of the essential oil of the germander (Teucrium polium L.) aerial parts from the northern region of Saudi Arabia. Int J Appl Biol Pharm 2014; 5: 128-135
  • 252 Al-Sarar AS, Hussein HI, Abobakr Y, Al-Zabib AAS, Bazeyad AY. Mosquitocidal and repellent activities of essential oils against Culex pipiens L. Entomol Res 2020; 50: 182-188
  • 253 Skouti E, Kattah A, Alachkar A, Ben Hedda J, Vincieri F. Biochemical, antinociceptive and hepatotoxic effects of the chronic administration of Teucrium polium essential oil in rats. Int J Pharm Pharm Sci 2012; 4 (Suppl. 03) 193-197
  • 254 Boulila A, Béjaoui A, Messaoud C, Boussaid M. Variation of volatiles in Tunisian populations of Teucrium polium L. (Lamiaceae). Chem Biodivers 2008; 5: 1389-1400
  • 255 Bakari S, Ncir M, Felhi S, Hajlaoui H, Saoudi M, Gharsallah N, Kadri A. Chemical composition and in vitro evaluation of total phenolic, flavonoid, and antioxidant properties of essential oil and solvent extract from the aerial parts of Teucrium polium grown in Tunisia. Food Sci Biotechnol 2015; 24: 1943-1949
  • 256 Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, Aoun K, Limam F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod 2015; 77: 795-802
  • 257 Çakir A, Duru ME, Harmandar M, Ciriminna R, Passannanti S. Volatile constituents of Teucrium polium L. from Turkey. J Essent Oil Res 1998; 10: 113-115
  • 258 Sevindik E, Abacı ZT, Yamaner C, Ayvaz M. Determination of the chemical composition and antimicrobial activity of the essential oils of Teucrium polium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnol Biotechnol Equip 2016; 30: 375-380
  • 259 Hayta S, Yazgin A, Bagci E. Constituents of the volatile oils of two Teucrium species from Turkey. Bitlis Eren Univ J Sci Technol 2017; 7: 140-144
  • 260 Kamel A, Sandra P. Gas chromatography-mass spectrometry analysis of the volatile oils of two Teucrium polium varieties. Biochem Syst Ecol 1994; 22: 529-532
  • 261 Kabouche A, Kabouche Z, Ghannadi A, Sajjadi SE. Analysis of the essential oil of Teucrium polium ssp. aurasiacum from Algeria. J Essent Oil Res 2007; 19: 44-46
  • 262 Kabouche Z, Boutaghane N, Laggoune S, Kabouche A, Ait-Kaki Z, Benlabed K. Comparative antibacterial activity of five Lamiaceae essential oils from Algeria. Int J Aromather 2005; 15: 129-133
  • 263 Bencheikh SE, Ladjel S, Goudjil MB, Mehani M, Zighmi S. Chemical analysis, antimicrobial and antioxidant activity of the essential oil of Teucrium polium ssp. aurasianum Labiatae. Der Pharma Chem 2015; 7: 308-314
  • 264 Kerbouche L, Hazzit M, Ferhat MA, Baaliouamer A, Miguel MG. Biological activities of essential oils and ethanol extracts of Teucrium polium subsp. capitatum (L.) Briq. and Origanum floribundum Munby. J Essent Oil Bear Pl 2015; 18: 1197-1208
  • 265 Mitić V, Jovanović O, Stankov-Jovanović V, Zlatkovic B, Stojanovic G. Analysis of the essential oil of Teucrium polium ssp. capitatum from the Balkan Peninsula. Nat Prod Commun 2012; 7: 83-86
  • 266 Cozzani S, Muselli A, Desjobert JM, Bernardini AF, Tomi F, Casanova J. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr J 2005; 20: 436-441
  • 267 Koutsaviti A, Antonopoulou V, Vlassi A, Antonatos S, Michaelakis A, Papachristos DP, Tzakou O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J Pest Sci 2018; 91: 873-886
  • 268 Fanourioua E, Kalivasb D, Dafererac D, Tarantilisc P, Trigasd P, Vahamidisa P, Economoua G. Hippocratic medicinal flora on the Greek Island of Kos: Spatial distribution, assessment of soil conditions, essential oil content and chemotype analysis. J Appl Res Med Aromat Plants 2018; 9: 97-109
  • 269 Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med 2014; 7: 956-961
  • 270 El Amri J, El Badaoui K, Haloui Z. The chemical composition and the antimicrobial properties of the essential oil extracted from the leaves of Teucrium capitatum L. Asian J Pharm Clin Res 2017; 10: 112-115
  • 271 Antunes T, Sevinate-Pinto I, Barroso JG, Cavaleiro C, Salgueiro LR. Micromorphology of trichomes and composition of essential oil of Teucrium capitatum . Flavour Fragr J 2004; 19: 336-340
  • 272 Othman MB, Bel Hadj Salah-Fatnassi K, Ncibi S, Elaissi A, Zourgui L. Antimicrobial activity of essential oil and aqueous and ethanol extracts of Teucrium polium L. subsp. gabesianum (L.H.) from Tunisia. Physiol Mol Biol Plants 2017; 23: 723-729
  • 273 Roukia H, Mahfoud HM, Didi OEM. Chemical composition and antioxidant and antimicrobial activities of the essential oil from Teucrium polium geyrii (Labiatae). J Med Plants Res 2013; 7: 1506-1510
  • 274 Allain P, El Oualidi J, Puech S, Pellecuer J. La variabilité chimique de lʼhuile essentielle chez Teucrium puechiae Greuter et Burdet sur le littoral Languedocien (France). Biochem Syst Ecol 1994; 22: 239-248
  • 275 Lahmar A, Bedoui A, Mokdad-Bzeouich I, Dhaouifi Z, Kalboussi Z, Cheraif I, Ghedira K, Chekir-Ghedira L. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb Pathog 2017; 106: 50-59
  • 276 Ghazouani N, Abderrabba M, Bouajila J. Teucrium ramosissimum (Lamiaceae): volatile composition, seasonal variation, and pharmaceutical activity. Anal Lett 2015; 49: 1258-1271
  • 277 Ghazouani N, Sifaoui I, Bachrouch O, Abderrabba M, Pinero JE, Lorenzo-Morales J. Essential oil composition and anti Acanthamoeba studies of Teucrium ramosissimum . Exp Parasitol 2017; 183: 207-211
  • 278 Lahmar A, Morcuende D, Andrade MJ, Chekir-Ghedira L, Estévez M. Prolonging shelf life of lamb cutlets packed under high-oxygen modified atmosphere by spraying essential oils from North-African plants. Meat Sci 2018; 139: 56-64
  • 279 Salah KBH, Mahjoub MA, Chaumont JP, Michel L, Millet-Clerc J, Chraeif I, Ammar S, Mighri Z, Aouni M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat Prod Res 2006; 20: 1089-1097
  • 280 Al Yousuf MH, Bashir AK, Dobos Á, Veres K, Nagy G, Máthé I, Blunden G. The composition of the essential oil of Teucrium stocksianum from the United Arab Emirate. J Essent Oil Res 2002; 14: 47-48
  • 281 Bakhtiari M, Asgarpanah J. Volatile constituents of Teucrium stocksianum Boiss. fruits from South of Iran. J Essent Oil Bear Pl 2015; 18: 1174-1179
  • 282 Shah SMM, Ali Khan F, Ali M, Shah SMS, Afridi MS, Ullah N. Molecular profiling of the essential oil of Teucrium stocksianum collected at three different stages. Am-Eurasian J Toxicol Sci 2015; 7: 279-285
  • 283 Shah SMM, Khan S, Shah SMH, Shah SMS. Antimicrobial and cytotoxic potential of the essential oil of Teucrium stocksianum Boiss. Am-Eurasian J Toxicol Sci 2016; 8: 42-46
  • 284 Shah SMM, Ullah F, Shah SMH, Zahoor M, Sadiq A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium stocksianum Bioss collected from the North West of Pakistan. BMC Complement Altern Med 2012; 12: 244
  • 285 Jaimand K, Rezaee MB, Soltanipoor MA, Mozaffarian V. Volatile constituents of Teucrium stocksianum Boiss. ssp. stocksianum from Iran. J Essent Oil Res 2006; 18: 476-477
  • 286 Mojab F, Javidnia K, Yazdani D, Rustaiyan A. Essential oil of the aerial parts of Teucrium stocksianum Boiss. subsp. stocksianum (Lamiaceae) from Iran. Faslnamah-i Giyahan-i Daruyi 2003; 2: 49-53 60
  • 287 Ali NAA, Ali NAA, Shari K, Chhetri BK, Dosoky NS, Setzer WN, Al-Fahad AJA, Wessjohann L. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines (Basel, Switzerland) 2017; 4: 17
  • 288 Abdelshafeek KA, Elgattar AA, Zarkoon AH, Alwahash MA, Shahat AA. Investigation of the volatile oils, lipid constituents and biological activity of Ballota andreuzziana, Teucrium zanonii and Verbena tenuisecta in Libya. Asian Pac J Trop Med 2010; 3: 594-601
  • 289 Mohan L, Pant CC, Melkani AB, Dev V. Terpenoid composition of the essential oils of Teucrium royleanum and T. quadrifarium . Nat Prod Commun 2010; 5: 939-942
  • 290 Tandon S, Mittal AK. Insecticidal and growth inhibitory activity of essential oils of Boenninghausenia albiflora and Teucrium quadrifarium against Spilarctia obliqua . Biochem Syst Ecol 2018; 81: 70-73
  • 291 Ahmadi L, Mirza M, Shahmir F. Essential oil of Teucrium melissoides Boiss. et Hausskn. ex Boiss. J Essent Oil Res 2002; 14: 355-356
  • 292 Morteza-Semnani K, Saeedi M, Akbarzadeh M. Essential oil composition of Teucrium scordium L. Acta Pharm 2007; 57: 499-504
  • 293 Sharififar F, Mahdavi Z, Mirtajaldini M, Purhematy A. Volatile constituents of aerial parts of Teucrium scordium L. from Iran. J Essent Oil Res 2010; 22: 202-204
  • 294 Gagliano Candela R, Ilardi V, Badalamenti N, Bruno M, Rosselli S, Maggi F. Essential oil compositions of Teucrium fruticans, T. scordium subsp. scordioides and T. siculum growing in Sicily and Malta. Nat Prod Res 2020; DOI: 10.1080/14786419.2019.1709193.
  • 295 Velasco-Negueruela A, Pérez-Alonso MJ. The volatiles of six Teucrium species from the Iberian Peninsula and the Balearic Islands. Phytochemistry 1990; 29: 1165-1169
  • 296 Lawrence BM, Hogg JW, Terhune SJ, Morton JK, Gill LS. Terpenoid composition of some Canadian Labiatae. Phytochemistry 1972; 11: 2636-2638
  • 297 Djabou N, Paolini J, Desjobert JM, Allali H, Baldovini N, Costa J, Muselli A. Qualitative and quantitative analysis of volatile components of Teucrium massiliense L. – identification of 6-methyl-3-heptyl acetate as a new natural product. Flavour Fragr J 2010; 25: 475-487
  • 298 Giamperi L, Bucchini A, Fraternale D, Cara P, Ricci D, Epifano F, Genovese S, Curini M. Chemical composition and antioxidant activity of the essential oil of Teucrium massiliense L. J Essent Oil Res 2008; 20: 446-449
  • 299 Tahoum N, Arakrak A, Bakkali M, Jatunov SS, Franconetti AG, Guillen MG, Escribano FC, Laglaoui A. Chemical composition of essential oil of Teucrium pseudoscorodonia subsp. baeticum, endemic plant of north of Morocco. Int J Adv Res 2017; 5: 914-919
  • 300 Saroglou V, Arfan M, Shabir A, Hadjipavlou-Litina D, Skaltsa H. Composition and antioxidant activity of the essential oil of Teucrium royleanum Wall. ex Benth growing in Pakistan. Flavour Fragr J 2007; 22: 154-157
  • 301 Cavaleiro C, Salgueiro LR, Antunes T, Sevinate-Pinto I, Barroso JG. Composition of the essential oil and micromorphology of trichomes of Teucrium salviastrum, an endemic species from Portugal. Flavour Fragr J 2002; 17: 287-291
  • 302 Servettaz O, Pinetti A, Bellesia F, Bini Malec L. Micromorphological and phytochemical research on Teucrium scorodonia and Teucrium siculum from the Italian Flora. Bot Acta 1994; 107: 416-421
  • 303 Djabou N, Allali H, Battesti MJ, Tabti B, Cost J, Muselli A, Varesi L. Chemical and genetic differentiation of two Mediterranean subspecies of Teucrium scorodonia L. Phytochemistry 2012; 74: 123-132
  • 304 Maccioni S, Baldini R, Tebano M, Cioni PL, Flamini G. Essential oil of Teucrium scorodonia L. ssp. scorodonia from Italy. Food Chem 2007; 104: 1393-1395
  • 305 Makowczynska J, Sliwinska E, Kalemba D, Piatczak E, Wysokinska H. In vitro propagation, DNA content and essential oil composition of Teucrium scorodonia L. ssp. scorodonia. Plant Cell Tiss Organ Cult 2016; 127: 1-13
  • 306 Blazevic N, Kalodera Z, Petricic J, Plazibat M. Essential oil content and composition of Teucrium arduini L. J Essent Oil Res 1993; 4: 223-225
  • 307 Dunkić V, Bezić N, Vuko E. Antiphytoviral activity of essential oil from endemic species Teucrium arduini . Nat Prod Commun 2011; 6: 1385-1388
  • 308 Kremer D, Müller ID, Dunkić V, Vitali D, Stabentheiner E, Oberländer A, Bezić N, Kosalec I. Chemical traits and antimicrobial activity of endemic Teucrium arduini L. from Mt Biokovo (Croatia). Cent Eur J Biol 2012; 7: 941-947
  • 309 Kremer D, Kosir IJ, Kosalec I, Koncic MZ, Potocnik T, Cerenak A, Bezic N, Srecec S, Dunkic V. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L. (Lamiaceae). Curr Drug Targets 2013; 14: 1006-1014
  • 310 Vukovic N, Sukdolak S, Solujic S, Mihailovic V, Mladenovic M, Stojanovic J, Stankovic MS. Chemical composition and antimicrobial activity of Teucrium arduini essential oil and cirsimarin from Montenegro. J Med Plants Res 2011; 5: 1244-1250
  • 311 Kremer D, Bolarić S, Ballian D, Bogunić F, Stesević D, Karlović K, Kosalec I, Vokurka A, Vuković Rodriguez J, Randić M, Bezić N, Dunkić V. Morphological, genetic and phytochemical variation of the endemic Teucrium arduini L. (Lamiaceae). Phytochemistry 2015; 116: 111-119
  • 312 Kazemizadeh Z, Habibi Z, Moradi A. Chemical composition of the essential oils of two populations Teucrium hyrcanicum L. in two different localities. J Med Plants 2008; 7: 87-93
  • 313 Mohammad AR, Vahideh N, Seyed AA, Fatemeh S. Variation in essential oil composition of Teucrium hyrcanicum L. from Iran-A rich source of (E)-α-bergamotene. Nat Prod Res 2018; 33: 1227-1232
  • 314 Morteza-Semnani K, Saeedi M, Akbarzadeh M. Chemical composition and antimicrobial activity of essential oil of Teucrium hyrcanicum L. J Essent Oil Bear Pl 2011; 14: 770-775
  • 315 Doğu S, Dinç M, Kaya A, Demirci B. Taxonomic status of the subspecies of Teucrium lamiifolium in Turkey: reevaluation based on macro- and micro-morphology, anatomy and chemistry. Nord J Bot 2013; 31: 198-207
  • 316 Barroso JG, Pedro LG, Figueiredo AC, Antunes T, Sevinate-Pinto I, Scheffer JJC. The essential oils of two endemic Teucrium species from Madeira: T. abutiloides LʼHér. and T. betonicum LʼHér. Flavour Fragr J 1993; 8: 277-280
  • 317 Barroso JG, Figueiredo AC, Pedro LG, Antunes T, Sevinate-Pinto I, Fontinha SS, Scheffer JJC. Composition of the essential oil of Teucrium heteropbyllum LʼHér. grown on Madeira. Flavour Fragr J 1996; 11: 129-132
  • 318 Velasco-Negueruela A, Pérez-Alonso MJ, Palá-Paul J, Ramos-Vázquez P, De Páz PLP, Vallejo MCG. Composition of the essential oil of Teucrium heterophyllum lʼHér. grown in the Canary Islands. J Essent Oil Res 1999; 11: 553-555
  • 319 Semiz G, Çelik G, Gönen E, Semiz A. Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res 2016; 30: 2225-2229
  • 320 Valentini G, Bellomaria B, Arnold N. Essential oil of Teucrium creticum L. from Cyprus. J Essent Oil Res 1997; 9: 649-652
  • 321 Flamini G, Cioni PL, Morelli I, Maccioni S, Monti G. Composition of the essential oil of Teucrium fruticans L. from the Maremma Regional Park (Tuscany, Italy). Flavour Fragr J 2001; 16: 367-369
  • 322 Polat T, Özer H, Öztürk E, Çakir A, Kandemir A, Demir Y. Chemical composition of the essential oil of Teucrium multicaule Montbret et Aucher ex Bentham from Turkey. J Essent Oil Res 2010; 22: 443-445
  • 323 Aberumand M, Asgarpanah J. Essential oil composition of Teucrium orientale subsp. glabrescens from Iran. Chem Nat Comp 2017; 53: 381-382
  • 324 Özek G, Özek T, Dinç M, Doğu S, Başera KHC. Chemical diversity of volatiles of Teucrium orientale L. var. orientale, var. puberulens, and var. glabrescens determined by simultaneous GC-FID and GC/MS techniques. Chem Biodivers 2012; 9: 1144-1154
  • 325 Yildirmis S, Aliyaziciogl R, Eyupoglu OE, Ozgen U, Alpay Karaoglu S. Biological activity and characterization of volatile compounds of Teucrium orientale var. glabrescens by SPME and GC-FID/MS. J Food Biochem 2017; 41: e12284
  • 326 Javidnia K, Miri R. Composition of the essential oil of Teucrium orientate L. ssp. orientate from Iran. J Essent Oil Res 2003; 15: 118-119
  • 327 Yildirim A, Cakir A, Mavi A, Yalcin M, Fauler G, Taskesenligil Y. The variation of antioxidant activities and chemical composition of essential oils of Teucrium orientale L. var. orientale during harvesting stages. Flavour Fragr J 2004; 19: 367-372
  • 328 Kucukbay FZ, Yildiz B, Kuyumcu E, Gunal S. Chemical composition and antimicrobial activities of the essential oils of Teucrium orientale var. orientale and Teucrium orientale var. puberulens . Chem Nat Comp 2011; 47: 833-836
  • 329 Amiri H. Antioxidant activity of the essential oil and methanolic extract of Teucrium orientale (L.) subsp. taylori (Boiss.) Rech. F. Iran J Pharm Res 2010; 9: 417-423
  • 330 Amiri H. Chemical composition of essential oil of Teucrium orientate L. subsp. taylori (Boiss.) Rech. f. J Med Plants 2008; 7: 100-104
  • 331 Bagci E, Hayta S, Yazgin A, Dogan G. Composition of the essential oil of Teucrium parviflorum L. (Lamiaceae) from Turkey. J Med Plants Res 2011; 5: 3457-3460
  • 332 Jaradat N, Al-lahham S, Abualhasan MN, Bakri A, Zaide H, Hammad J, Hussein F, Issa L, Mousa A, Speih R. Chemical constituents, antioxidant, cyclooxygenase inhibitor, and cytotoxic activities of Teucrium pruinosum Boiss. essential oil. Biomed Res Int 2018; 2018: 4034689
  • 333 Hammami S, Jmii H, El Mokni R, Khmiri A, Faidi K, Dhaouadi H, El Aouni MH, Aouni M, Joshi RK. Essential oil composition, antioxidant, cytotoxic and antiviral activities of Teucrium pseudochamaepitys growing spontaneously in Tunisia. Molecules 2015; 20: 20426-20433
  • 334 Kabouche A, Touafek O, Nacer A, Kabouche Z, Bruneau C. Volatile oil constituents of Teucrium atratum Pomel from Algeria. J Essent Oil Res 2006; 18: 175-177
  • 335 Ruberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2000; 69: 167-174
  • 336 Smahane B, Mounyr B, Faisl B, Stephane M, Sghir TM, Dalila B. Antimicrobial activities of essential oil of five plant species from Morocco against some microbial strains. Int J Res Phytochem Pharmacol 2016; 8: 1901-1906
  • 337 NIH National Library of Medicine. PubChem. Accessed March 30, 2020 at: https://pubchem.ncbi.nlm.nih.gov/
  • 338 Kani K, Momota Y, Harada H, Yamamura Y, Aota K, Yamanoi T, Takano H, Motegi K, Azuma M. γ-Tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int J Oncol 2013; 42: 75-82
  • 339 Abdollahi M, Karimpour H, Monsef-Esfehani HR. Antinociceptive effects of Teucrium polium L. total extract and essential oil in mouse writhing test. Pharmacol Res 2003; 48: 31-35
  • 340 Abbas G, Albroumi MA, Rehman N, Hussain H, Al Harrasi AS. Evaluation of essential oils from Boswellia sacra and Teucrium mascatense against acetyl cholinesterase enzyme and urease enzyme. Int J Phytomed 2016; 8: 500-505
  • 341 Ben Sghaier M, Boubaker J, Neffati A, Limem I, Skandrani I, Bhouri W, Bouhlel I, Kilani S, Chekir-Ghedira L, Ghedira K. Antimutagenic and antioxidant potentials of Teucrium ramosissimum essential oil. Chem Biodivers 2010; 7: 1754-1763
  • 342 Bigham M, Hosseininaveh V, Nabavi B, Talebi K, Esmaeilzadeh N. Effects of essential oil from Teucrium polium on some digestive enzyme activities of Musca domestica . Entomol Res 2010; 40: 37-45
  • 343 Shahriari M, Sahebzadeh N, Zibaee A. Effect of Teucrium polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia kuehniella (Lepidoptera: Pyralidae). Invertebrate Surviv J 2017; 14: 182-189
  • 344 Ebadollahi A, Sendi JJ, Aliakbar A, Razmjou J. Acaricidal activities of essential oils from Satureja hortensis (L.) and Teucrium polium (L.) against the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt J Biol Pest Control 2015; 25: 171-176

Correspondence

Prof. Sergio Rosselli
Department of Agricultural
Food and Forest Sciences (SAAF)
University of Palermo
Viale delle Scienze Ed. 4, Parco dʼOrleans II
90128 Palermo
Italy   
Phone: + 39 0 91 23 89 75 47   

Publication History

Received: 23 June 2020

Accepted after revision: 17 October 2020

Article published online:
09 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Tutin G, Wood D. Teucrium. In: Tutin G, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA. eds. Flora Europaea 3. Cambridge: Cambridge University Press; 1972: 129-135
  • 2 Royal Botanic Gardens, Kew and Missouri Botanical Garden. The Plant List. Accessed March 25, 2020 at: http://www.theplantlist.org
  • 3 McClintock E, Epling C. A revision of Teucrium in the new world, with observations on its variation, geographical distribution and history. Brittonia 1946; 5: 491-510
  • 4 Dinç M, Doğu S. Teucrium pruinosum var. aksarayense var. nov. (Lamiaceae) from Central Anatolia, Turkey. Mod Phytomorphol 2016; 9: 13-17
  • 5 Navarro T, El Oualidi J, Trigo MM. Pollen morphology of Teucrium (Labiatae) and its taxonomic value. Belg J Bot 2004; 137: 70-84
  • 6 Melnikov D. The system of the genus Teucrium L. (Lamiaceae). In: Tzvelev N. ed. Novitates systematicae plantarum vascularium, Tomus 45. Petropoli, Russia: Institutum Botanicum nomine V. L. Komarovii; 2014: 63-68
  • 7 Hollis S, Brummitt RK. World geographical Scheme for recording Plant Distributions. Pittsburgh: Hunt Institute for Botanical Documentation; 1992
  • 8 Mesuel H, Jäger E, Rauschert S, Wienert E. Veirleichende Chronologie der Zentraleuropäiscen Flora, Vol. 2. Jena: VEB Gustav Fisher; 1978
  • 9 Piozzi F. The diterpenoids of Teucrium species. Heterocycles 1981; 15: 1489-1503
  • 10 Piozzi F, Rodriguez B, Savona G. Advances in the chemistry of the furanoditerpenoids from Teucrium species. Heterocycles 1987; 25: 807-841
  • 11 Piozzi F. Further research on the furoclerodaness from Teucrium species. Heterocycles 1994; 37: 603-626
  • 12 Piozzi F, Bruno M, Rosselli S. Further furoneoclerodanes from Teucrium genus. Heterocycles 1998; 48: 2185-2203
  • 13 Piozzi F, Bruno M, Rosselli S, Maggio A. Advances in the chemistry of furano-diterpenoids from Teucrium genus. Heterocycles 2005; 65: 1221-1234
  • 14 Ulubelen A, Topçu G, Sönmez U. Chemical and biological evaluation of genus Teucrium . Stud Nat Prod Chem 2000; 23: 591-648
  • 15 Navarro T, El Oualidi J. Flower and life strategy diversity in Teucrium L. (Lamiaceae). Acta Botanica Malacitana 1999; 24: 63-75
  • 16 Juan R, Pastor J, Millan F, Alaiz M, Vioque J. Amino acids composition of Teucrium nutlet proteins and their systematic significance. Ann Bot 2004; 94: 615-621
  • 17 Marin P, Petković B, Duletić S. Nutlet sculpturing of selected Teucrium species (Lamiaceae): a character of taxonomic significance. Plant Syst Evol 1994; 192: 199-214
  • 18 Marzouk RI, El-Darier SM, Askar ABS. Pollen morphology of Teucrium L. (Lamiaceae, Ajugoideae) in Libya. Bangladesh J Plant Taxon 2017; 24: 219-226
  • 19 Oybak E, İnceoğlu Ö. Pollen morphology of some Teucrium L. (Labiatae) species. Commun Fac Sci Univ Ank Serie C 1988; 6: 133-146
  • 20 Navarro T, El Oualidi J. Trichome morphology in Teucrium L. (Labiatae). A taxonomic review. Annales Jardin Botanico de Madrid 2000; 57: 277-296
  • 21 Codd LE. The South African species of Teucrium (Lamiaceae). Bothalia 1977; 12: 177-179
  • 22 Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018; 9: 32305-32320
  • 23 Guesmi F, Prasad S, Tyagi AK, Landoulsi A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed Pharmacother 2017; 95: 1876-1885
  • 24 Ruiters AK, Tilney PM, Van Vuuren SF, Viljoen AM, Kamatou GPP, Van Wyk BE. The anatomy, ethnobotany, antimicrobial activity and essential oil composition of southern African species of Teucrium (Lamiaceae). S Afr J Bot 2016; 102: 175-185
  • 25 Kartaha B, Harhar H, Elmonfaloutia H, Gharbya S, Guillaume D, Charroufa Z. Chemical composition of the essential oil of Teucrium antiatlanticum (Lamiaceae). Der Pharma Chem 2015; 7: 23-25
  • 26 Agiel N, Mericli F. A survey on the aromatic plants of Libya. Indian J Pharm Educ 2017; 51: S304-S308
  • 27 Redžić SS. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll Antropol 2007; 31: 869-890
  • 28 Šarić-Kundalić B, Dobeš C, Klatte-Asselmeyer V, Saukel J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J Ethnopharmacol 2010; 131: 33-55
  • 29 Rivera D, Obón C. The ethnopharmacology of Madeira and Porto Santo Islands, a review. J Ethnopharmacol 1995; 46: 73-93
  • 30 Handong S, Xingliang C, Tianen W, Lutai P, Zhongwen L, Deyuant C. A neo-clerodane diterpenoid from Teucrium bidentatum . Phytochemistry 1991; 30: 1721-1723
  • 31 Fernandez Puntero B, Iglesias Peinado I, Villar de Fresno AM. Anti-inflammatory and antiulcer activity of Teucrium buxifolium . J Ethnopharmacol 1995; 55: 93-98
  • 32 Foster S, Duke JA. A Field Guide to medicinal Plants and Herbs of Eastern and Central North America. Boston: Houghton Mifflin Co.; 2000
  • 33 Bown D. Encyclopaedia of Herbs and their Uses. London: Dorling Kindersley; 1995
  • 34 Chiej R. Encyclopaedia of medicinal Plants. London: MacDonald; 1984
  • 35 Nencini C, Galluzzi P, Pippi F, Menchiari A, Micheli L. Hepatotoxicity of Teucrium chamaedrys L. decoction: role of difference in the harvesting area and preparation method. Indian J Pharmacol 2014; 46: 181-184
  • 36 Zdraveva P, Pavlova D, Krasteva I, Pencheva I. Phytochemical analysis on populations of Teucrium chamaedrys from serpentine sites in Bulgaria. CR Acad Bul Sci 2018; 71: 185-192
  • 37 Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin MM, Stefanescu R, Bild V, Melnic S, Tamba BI. Medicinal plants of the family lamiaceae in pain therapy: A review. Pain Res Manag 2018; 2018: 7801543
  • 38 Said O, Khalil K, Fulder S, Azaizeh H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol 2002; 83: 251-265
  • 39 Zargari A. Pharmaceutical Plants. Iran: Tehran University Publications; 1993: 127-130
  • 40 Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol 2000; 73: 221-232
  • 41 Vujanović M, Zengin G, Đurović S, Mašković P, Cvetanović A, Radojković M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. S Afr J Bo 2019; 120: 213-218
  • 42 Nastić N, Švarc-Gajić J, Delerue-Matos C, Barroso MF, Soares C, Moreira MM, Morais S, Mašković P, Gaurina Srček V, Slivac I, Radošević K, Radojković M. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind Crops Prod 2018; 111: 579-589
  • 43 Jarić S, Mačukanović-Jocić M, Djurdjević L, Mitrović M, Kostić O, Karadžić B, Pavlović P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J Ethnopharmacol 2015; 175: 93-108
  • 44 Gras A, Garnatje T, Ibáñez N, López-Pujol J, Nualart N, Vallès J. Medicinal plant uses and names from the herbarium of Francesc Bolòs (1773–1844). J Ethnopharmacol 2017; 204: 142-168
  • 45 Erbay MŞ, Sarı A. Plants used in traditional treatment against hemorrhoids in Turkey. Marmara Pharm J 2018; 22: 110-132
  • 46 Polat R, Satil F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balikesir-Turkey). J Ethnopharmacol 2012; 139: 626-641
  • 47 Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J Ethnopharmacol 2001; 75: 95-115
  • 48 Uysal I, Gücel S, Tütenocakli T, Öztürk M. Studies on the medicinal plants of Ayvacik-Çanakkale in Turkey. Pak J Bot 2012; 44: 239-244
  • 49 Bulut G, Tuzlaci E. An ethnobotanical study of medicinal plants in Bayramiç (Canakkale-Turkey). Marmara Pharm J 2015; 19: 268-282
  • 50 Bulut G, Haznedaroğlu MZ, Doğan A, Koyu H, Tuzlacı E. An ethnobotanical study of medicinal plants in Acipayam (Denizli-Turkey). J Herb Med 2017; 10: 64-81
  • 51 Ünsal Ç, Vural H, Sariyar G, Özbek B, Ötük G. Traditional medicine in Bi̇leci̇k province (Turkey) and antimicrobial activities of selected species. Turk J Pharm Sci 2010; 7: 139-150
  • 52 Kültür S. Medicinal plants used in Kirklareli Province (Turkey). J Ethnopharmacol 2007; 111: 341-364
  • 53 Paksoy MY, Selvi S, Savran A. Ethnopharmacological survey of medicinal plants in UlukIşla (Niğde-Turkey). J Herb Med 2016; 6: 42-48
  • 54 Husein AI, Ali-Shtayeh MS, Jondi WJ, Zatar NAA, Abu-Reidah IM, Jamous RM. In vitro antioxidant and antitumor activities of six selected plants used in the Traditional Arabic Palestinian herbal medicine. Pharm Biol 2014; 52: 1249-1255
  • 55 Hernandez-Galicia E, Aguilar-Contreras A, Aguilar-Santamaria L, Roman-Ramos R, Chavez-Miranda AA, Garcia-Vega LM, Flores-Saenz JL, Alarcon-Aguilar FJ. Studies on hypoglycemic activity of Mexican medicinal plants. Proc West Pharmacol Soc 2002; 45: 118-124
  • 56 Vera-Ku M, Méndez-González M, Moo-Puc R, Rosado-Vallado M, Simá-Polanco P, Cedillo-Rivera R, Peraza-Sánchez SR. Medicinal potions used against infectious bowel diseases in Mayan traditional medicine. J Ethnopharmacol 2010; 132: 303-308
  • 57 Jacobo-Salcedo MDR, Alonso-Castro AJ, Salazar-Olivo LA, Carranza-Alvarez C, Gonzaĺez-Espińdola LA, Domińguez F, Maciel-Torres SP, Garciá-Lujan C, Gonzaĺez-Martińez MDR, Gomez-Sańchez M, Estrada-Castilloń E, Zapata-Bustos R, Medellin-Milań P, Garciá-Carrancá A. Antimicrobial and cytotoxic effects of Mexican medicinal plants. Nat Prod Commun 2011; 6: 1925-1928
  • 58 Arnold N, Bellomaria B, Valentini G, Rafaiani SM. Comparative study on essential oil of some Teucrium species from Cyprus. J Ethnopharmacol 1991; 35: 105-113
  • 59 Meikle RD. Flora of Cyprus, Vol. 2. Hilversum, Holland: Bentham Maxon Trust; 1985: 1332-1342
  • 60 Gürdal B, Kültür Ş. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J Ethnopharmacol 2013; 146: 113-126
  • 61 Formisano C, Napolitano F, Rigano D, Arnold NA, Piozzi F, Senatore F. Essential oil composition of Teucrium divaricatum Sieb. ssp. villosum (Celak.) Rech. fil. growing wild in Lebanon. J Med Food 2010; 13: 1281-1285
  • 62 Bellomaria B, Arnold N, Valentini G. Essential oil of Teucrium flavum subsp. hellenicum from Greece. J Essent Oil Res 1998; 10: 131-133
  • 63 DallʼAcqua S, Cervellati R, Loi MC, Innocenti G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: Investigation of the high antioxidant capacity of Rubus ulmifolius . Food Chem 2008; 106: 745-749
  • 64 Sanna C, Ballero M, Maxia A. Le piante medicinali utilizzate contro le patologie epidermiche in Ogliastra (Sardegna centro-orientale). Atti Soc Tosc Sci Nat Mem Serie B 2006; 113: 73-82
  • 65 Camarda I. Ricerche etnobotaniche nel comune di Dorgali, Sardegna centro orientale. Boll Soc Sarda Sci Nat 1990; 27: 147-204
  • 66 Maccioni S, Guazzi E, Tomei PE. Le piante nella medicina popolare del Grossetano. I, Le colline fra lʼOmbrone e lʼAlbegna (Toscana). Atti Mus Stor Nat Maremma 1997; 16: 25-46
  • 67 Tuttolomondo T, Licata M, Leto C, Gargano ML, Venturella G, La Bella S. Plant genetic resources and traditional knowledge on medicinal use of wild shrub and herbaceous plant species in the Etna Regional Park (Eastern Sicily, Italy). J Ethnopharmacol 2014; 155: 1362-1381
  • 68 Formisano C, Rigano D, Senatore F, Al-Hillo MRY, Piozzi F, Rosselli S. Analysis of essential oil from Teucrium maghrebinum Greuter et Burdet growing wild in Algeria. Nat Prod Commun 2009; 4: 411-414
  • 69 Grieve M. A Modern Herbal. New York: Dover Publications Inc.; 1972
  • 70 Chevallier A. The Encyclopaedia of medicinal Plants. London: Dorling Kindersley; 1996
  • 71 Hisham A, Pathare N, Al-Saidi S, Al-Salmi A. The composition and antimicrobial activity of leaf essential oil of Teucrium mascatenses Boiss. from Oman. J Essent Oil Res 2006; 18: 465-468
  • 72 Ghazanfar SA, Al-Sabahi AMA. Medicinal plants of Northern and Central Oman (Arabia). Econ Bot 1993; 47: 89-98
  • 73 Zarshenas M, Zargaran A, Maüller J, Mohagheghzadeh A. Nasal drug delivery in traditional Persian medicine. Jundishapur J Nat Pharm Prod 2013; 8: 144-148
  • 74 Jančić R, Stošić D, Mimica-Dukić N, Lakušić B. The aromatic Plants from Serbia. In: Gajić V. ed. NIP Dečije novine. Serbia & Montenegro: Gornji Milanovac; 1995
  • 75 Zlatković BK, Bogosavljević SS, Radivojević AR, Pavlović MA. Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): ethnobotanical evaluation and comparison. J Ethnopharmacol 2014; 151: 704-713
  • 76 Ajabnoor MA, Al-Yahya MA, Tariq M, Jayyab AA. Antidiabetic activity of Teucrium oliverianum . Fitoterapia 1984; 55: 227-230
  • 77 Safaa B, Chalak L, Dalleh H, Arnold N. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. J Ethnopharmacol 2015; 173: 139-156
  • 78 Bahmani M, Saki K, Shahsavari S, Rafieian-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pac J Trop Bio 2015; 5: 858-864
  • 79 Bahmani M, Rafieian-Kopaei M, Saki K, Majlesi M, Bahmani F, Bahmani F, Sharifi A, Rasouli S, Sepahvand R, Abdollahi R, Moghimi-Monfared O, Baharvand S. Identification of medical plants acting on reproductive system disorders: An ethnobotanical study in Urmia, Northwest of Iran. J Chem Pharm Res 2015; 7: 493-502
  • 80 Miri A, Monsef-Esfahani HR, Amini M, Amanzadeh Y, Hadjiakhoondi A, Hajiaghaee R, Ebrahimi A. Comparative chemical composition and antioxidant properties of the essential oils and aromatic water from Teucrium persicum Boiss. Iran J Pharm Res 2012; 11: 573-581
  • 81 Pieroni A, Dibra B, Grishaj G, Grishaj I, Maçai SG. Traditional phytotherapy of the Albanians of Lepushe, Northern Albanian Alps. Fitoterapia 2005; 76: 379-399
  • 82 Ait Chaouche FS, Mouhouche F, Hazzit M. Antioxidant capacity and total phenol and flavonoid contents of Teucrium polium L. grown in Algeria. Med J Nutrition Met 2018; 11: 135-144
  • 83 Bouabdelli F, Djelloul A, Kaid-Omar Z, Semmoud A, Addou A. Antimicrobial activity of 22 plants used in urolithiasis medicine in Western Algeria. Asian Pac J Trop Dis 2012; 2 (Suppl. 01) S530-S535
  • 84 Galstyan HM. Standardization of felty germander (Teucrium polium L.) by natural phytoestrogens: phenylpropanoid and flavonoid glycosides. New Armen Med J 2014; 8: 53-58
  • 85 Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J Ethnopharmacol 2012; 141: 80-95
  • 86 Shojaii A, Ghods R, Fard MA. Medicinal herbs in Iranian traditional medicine for learning and memory. Afr J Tradit Complem 2016; 13: 199-209
  • 87 Feiz Haddad MH, Mahbodfar H, Zamani Z, Ramazani A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. Iran J Basic Med Sci 2017; 20: 415-422
  • 88 Bahramikia S, Ardestani A, Yazdanparast R. Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chem 2009; 115: 37-42
  • 89 Asadi-Samani M, Moradi MT, Mahmoodnia L, Alaei S, Asadi-Samani F, Luther T. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J Nephropathol 2017; 6: 118-125
  • 90 Tajallaie-Asl F, Mardani M, Shahsavari S, Abbaszadeh S. Menstruation phytotherapy according to Iran ethnobotanical sources. J Pharm Sci Res 2017; 9: 986-990
  • 91 Sadrizadeh N, Khezri S, Dehghan P, Mahmoudi R. Antibacterial effect of Teucrium polium essential oil and Lactobacillus casei probiotic on Escherichia coli O157:H7 in Kishk. Appl Food Biotechnol 2018; 5: 131-140
  • 92 Mikaili P, Shayegh J, Asghari MH. Review on the indigenous use and ethnopharmacology of hot and cold natures of phytomedicines in the Iranian traditional medicine. Asian Pac J Trop Bio 2012; 2 (Suppl. 02) S1189-S1193
  • 93 Haghighi M, Mozafariyan M. The introduction of extinct endemic vegetables of Iran. J Med Plant Res 2011; 5: 7085-7107
  • 94 Sadeghi Z, Kuhestani K, Abdollahi V, Mahmood A. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. J Ethnopharmacol 2014; 153: 111-118
  • 95 Fallah Huseini H, Abdolghaffari AH, Ahwazi M, Jasemi E, Yaghoobi M, Ziaee M. Topical application of Teucrium polium can improve wound healing in diabetic rats. Int J Low Extrem Wounds 2020; 19: 132-138
  • 96 Azaizeh H, Saad B, Khalil K, Said O. The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: a review. Evid Based Complement Alternat Med 2006; 3: 229-235
  • 97 Abu-Rish EY, Kasabri V, Hudaib MM, Mashalla SH, AlAlawi LH, Tawaha K, Mohammad MK, Mohamed YS, Bustanji Y. Evaluation of antiproliferative activity of some traditional anticancer herbal remedies from Jordan. Trop J Pharm Res 2016; 15: 469-474
  • 98 Nawash O, Shudiefat M, Al-Tabini R, Al-Khalidi K. Ethnobotanical study of medicinal plants commonly used by local bedouins in the badia region of Jordan. J Ethnopharmacol 2013; 148: 921-925
  • 99 Talib WH, Mahasneh AM. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 2010; 78: 33-45
  • 100 Dababneh BF. Antimicrobial activity of selected Jordanian medicinal plant extracts against pathogenic microorganisms. J Food Agric Environ 2008; 6: 134-139
  • 101 Alzweiri M, Sarhan AA, Mansi K, Hudaib M, Aburjai T. Ethnopharmacological survey of medicinal herbs in Jordan, the Northern Badia region. J Ethnopharmacol 2011; 137: 27-35
  • 102 El-Mokasabi FM, Al-Sanousi AF, El-Mabrouk RM. Taxonomy and ethnobotany of medicinal plants in eastern region of Libya. J Environ Sci Toxicol Food Technol 2018; 12: 14-23
  • 103 El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Taleb M, Abdellaoui A. Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today Proc 2019; 13: 777-783
  • 104 El Amrani F, Rhallab A, Alaoui T, El Badaoui K, Chakir S. Ethnopharmacological survey of some plants used for the treatment of diabetes in the region of Meknès-Tafilalet (Morocco). Phytotherapie 2010; 8: 161-165
  • 105 Fakchich J, Elachouri M. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J Ethnopharmacol 2014; 154: 76-87
  • 106 Ali-Shtayeh MS, Jamous RM, Jamous RM. Traditional Arabic Palestinian ethnoveterinary practices in animal health care: A field survey in the West Bank (Palestine). J Ethnopharmacol 2016; 182: 35-49
  • 107 Jaradat NA, Ayesh OI, Anderson C. Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. J Ethnopharmacol 2016; 182: 57-66
  • 108 Suleiman MS, Abdul-Ghani AS, Al-Khalil S, Amin R. Effect of Teucrium polium boiled leaf extract on intestinal motility and blood pressure. J Ethnopharmacol 1988; 22: 111-116
  • 109 Khader M, Bresgen N, Eckl PM. Antimutagenic effects of ethanolic extracts from selected Palestinian medicinal plants. J Ethnopharmacol 2010; 127: 319-324
  • 110 Qabaha KI. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants. Afr J Tradit Complement Altern Med 2013; 10: 101-108
  • 111 Harlev E, Nevo E, Mirsky N, Ofir R. Antidiabetic attributes of desert and steppic plants: a review. Planta Med 2013; 79: 425-436
  • 112 Hammiche V, Maiza K. Traditional medicine in Central Sahara: pharmacopoeia of Tassili Nʼajjer. J Ethnopharmacol 2006; 105: 358-367
  • 113 Mossa JS, Al-Yahya MA, Al-Meshal IA. Medicinal Plants of Saudi Arabia. Riyadh: King Saud University Press; 2000
  • 114 Rahman MA, Mossa JS, Al-Said MS, Al-Yahya MA. Medicinal plant diversity in the flora of Saudi Arabia: a report on seven plant families. Fitoterapia 2004; 75: 149-161
  • 115 Alachkar A, Jaddouh A, Elsheikh MS, Bilia AR, Vincieri FF. Traditional medicine in Syria: folk medicine in Aleppo governorate. Nat Prod Commun 2011; 6: 79-84
  • 116 Bulut G, Doğan A, Şenkardeş İ, Avci R, Tuzlaci E. The medicinal and wild food plants of Batman City and Kozluk District (Batman-Turkey). Agric Conspec Sci 2019; 84: 29-36
  • 117 Demirci S, Özhatay N. An ethnobotanical study in Kahramanmaraş (Turkey); wild plants used for medicinal purpose in Andirin, Kahramanmaraş. Turk J Pharm Sci 2012; 9: 75-92
  • 118 Güneş S, Savran A, Paksoy MY, Koşar M, Çakılcıoğlu U. Ethnopharmacological survey of medicinal plants in Karaisalı and its surrounding (Adana-Turkey). J Herb Med 2017; 8: 68-75
  • 119 Cakilcioglu U, Khatun S, Turkoglu I, Hayta S. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 2011; 137: 469-486
  • 120 Çakilcioğlu U, Şengün MT, Türkoğlu I. An ethnobotanical survey of medicinal plants of Yazikonak and Yurtbaşi districts of Elaziğ province, Turkey. J Med Plants Res 2010; 4: 567-572
  • 121 Akgul A, Akgul A, Senol SG, Yildirim H, Secmen O, Dogan Y. An ethnobotanical study in Midyat (Turkey), a city on the silk road where cultures meet. J Ethnobiol Ethnomed 2018; 14: 12
  • 122 Akin M, Oguz D, Saracoglu H. Antibacterial activity of essential oil from Thymbra spicata var. spicata L. and Teucrium polium (Stapf Brig.). Interventions 2010; 8: 53-58
  • 123 Polat R, Cakilcioglu U, Satil F. Traditional uses of medicinal plants in Solhan (Bingöl – Turkey). J Ethnopharmacol 2013; 148: 951-963
  • 124 Le Flocʼh E. Contribution a une etude ethnobotanique de la flore tunisienne, vol 2. Tunis: Publications Scientifiques Tunisiennes; 1983
  • 125 Facciola S. Cornucopia – A Source Book of edible Plants. California, USA: Kampong Publications; 1990
  • 126 Jamous RM, Ali-Shtayeh MS, Abu-Zaitoun SY, Markovics A, Azaizeh H. Effects of selected Palestinian plants on the in vitro exsheathment of the third stage larvae of gastrointestinal nematodes. BMC Vete Res 2017; 13: 308
  • 127 Ali-Shtayeh MS, Jamous RM, Jamous RM. Complementary and alternative medicine use amongst Palestinian diabetic patients. Complement Ther Clin 2012; 18: 16-21
  • 128 Meguellati H, Ouafi S, Saad S, Djemouai N. Evaluation of acute, subacute oral toxicity and wound healing activity of mother plant and callus of Teucrium polium L. subsp. geyrii Maire from Algeria. S Afr J Bot 2019; 127: 25-34
  • 129 Meguellati H, Ouafi S, Saad S. Callogenesis and analgesic evaluation of adult plant extracts and callus in Teucrium polium L. subsp. geyrii Maire. J Biol Sci 2018; 18: 192-200
  • 130 Liu XC, Liu SL, Liu ZL. GC-MS Analysis of the Essential Oil and Insecticidal Activity of Teucrium quadrifarium Buch.-Ham. (Lamiaceae) Aerial Parts against Liposcelis bostrychophil . J Essent Oil Bear Pl 2019; 19: 1794-1800
  • 131 Ben Sghaier M, Chraief I, Skandrani I, Bouhlel I, Boubaker J, Kilani S, Neffati A, Mahmoud A, Hammami M, Chekir-Ghedira L, Ghedira K. Chemical composition and antimicrobial activity of the essential oil of Teucrium ramosissimum (Lamiaceae). Chem Biodivers 2007; 4: 1480-1486
  • 132 Henchiri H, Bodo B, Deville A, Dubost L, Zourgui L, Raies A, Grellier P, Mambu L. Sesquiterpenoids from Teucrium ramosissimum . Phytochemistry 2009; 70: 1435-1441
  • 133 Srivastava DK, Saggoo MIS. Few medicinal plants of family Labiatae and Scrophulariaceae in the high altitude cold desert areas of Lahaul-Spiti and its adjoining areas of Himachal Pradesh (India). Insight Int J Sci 2015; 2: 75-81
  • 134 Ahmed MJ, Akhtar T. Indigenous knowledge of the use of medicinal plants in Bheri, Muzaffarabad, Azad Kashmir, Pakistan. Eur J Integr Med 2016; 8: 560-569
  • 135 Aksoy-Sagirli P, Ozsoy N, Ecevit-Genc G, Melikoglu G. In vitro antioxidant activity, cyclooxygenase-2, thioredoxin reductase inhibition and DNA protection properties of Teucrium sandrasicum L. Ind Crops Prod 2015; 74: 545-550
  • 136 Chemli R, Elaissi A, Ben Salah M, Marzouk Z, Mahmoud A. Enquête Ethnobotanique en Tunisie. Tunis: Secrétariat dʼétat de la recherche scientifique de Tunisie; 1993
  • 137 Allen ED, Hatfield G. Medicinal Plants in Folk Medicine: an Ethonobotany of Britain & Ireland. Portland, Oregon, USA: Timber Press Inc.; 2004
  • 138 Zargari A. Medicinal Plants, Vol. 4. Tehran: Tehran University Publications; 1993: 132-133
  • 139 Lans C, Turner N, Khan T, Brauer G, Boepple W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J Ethnobiol Ethnomed 2007; 3: 11
  • 140 Gastaldo P. Compendio della flora officinale italiana. Padova: Piccin Editor; 1987
  • 141 Pardo-de-Santayana M. Salud y tradición popular. Guía de las plantas medicinales de Cantabria. Santander: Librería Estudio; 2004
  • 142 Hisham A, Pathare N, Al-Saidi S. The composition and antimicrobial activity of the essential oil of Teucrium stocksianum subsp. stocksianum leaf from Oman. Nat Prod Commun 2006; 1: 195-199
  • 143 Migahid AM. Flora of Saudi Arabia, II. Saudi Arabia: Riyadh University Press; 1978: 463
  • 144 Sonboli A, Bahadori MB, Dehghan H, Aarabi L, Savehdroudi P, Nekuei M, Pournaghi N, Mirzania F. Chemotaxonomic importance of the essential-oil composition in two subspecies of Teucrium stocksianum Boiss. from Iran. Chem Biodivers 2013; 10: 687-694
  • 145 Ahmad L, Semotiuk A, Zafar M, Ahmad M, Sultana S, Liu QR, Zada MP, Abidin SZU, Yaseen G. Ethnopharmacological documentation of medicinal plants used for hypertension among the local communities of DIR Lower, Pakistan. J Ethnopharmacol 2015; 175: 138-146
  • 146 Rehman K, Mashwani ZUR, Khan MA, Ullah Z, Chaudhary HJ. An ethno botanical perspective of traditional medicinal plants from the Khattak tribe of Chonthra Karak, Pakistan. J Ethnopharmacol 2015; 165: 251-259
  • 147 Ullah R, Hussain Z, Iqbal Z, Hussain J, Khan FU, Khan N, Muhammad Z, Ayaz S, Ahmad S, Rehman NU, Hussain I. Traditional uses of medicinal plants in Darra Adam Khel NWFP Pakistan. J Med Plants Res 2010; 4: 1815-1821
  • 148 Rahim G, Qureshi R, Arshad M, Gulfraz M. Phytochemical analysis and antioxidant properties of Teucrium stocksianum flower from Malakand Division, Pakistan. Int J Agr Biol 2013; 15: 377-381
  • 149 Rahim G, Qureshi R, Gulfraz M, Arshad M, Rahim S. Preliminary phytochemical screening and ethnomedicinal uses of Teucrium stocksianum from Malakand Division. J Med Plants Res 2012; 6: 704-707
  • 150 Uddin G, Rauf A, Siddiqui BS, Khan H, Barkatullah. Ullah R. Antinociceptive, antioxidant and phytochemical studies of Pakistani medicinal plants. Pak J Pharm Sci 2016; 29: 929-933
  • 151 Ibrar M, Hussain F. Ethnobotanical studies of plants of Charkotli hills, Batkhela district, Malakand, Pakistan. Front Biol China 2009; 4: 539-548
  • 152 Hao X, Zhang J, Zhan G, Xue Y, Luo Z, Yao G, Zhang Y. Chemical constituents from Teucrium viscidum . Biochem Syst Ecol 2013; 51: 78-82
  • 153 Srithi K, Trisonthi C, Wangpakapattanawong P, Balslev H. Medicinal plants used in Hmong womenʼs healthcare in northern Thailand. J Ethnopharmacol 2012; 139: 119-135
  • 154 Tounekti T, Mahdhi M, Khemira H. Ethnobotanical study of indigenous medicinal plants of Jazan region, Saudi Arabia. Evid Based Complement Alternat Med 2019; 2019: 3190670
  • 155 Mothana R, Gruenert R, Bednarski PJ, Lindequist U. Evaluation of the in vitro anticancer, antimicrobial and antioxidant activities of some Yemeni plants used in folk medicine. Pharmazie 2009; 64: 260-268
  • 156 Ali NAA, Wurster M, Arnold N, Lindequist U, Wessjohann L. Chemical composition of the essential oil of Teucrium yemense Deflers. Rec Nat Prod 2008; 2: 25-32
  • 157 Charters ML. California Plant Names: Latin and Greek Meanings and Derivations. A Dictionary of Botanical and Biographical Etymology. Accessed June 17, 2020 at: http://www.calflora.net/botanicalnames/pageT.html
  • 158 Navarro T, El Oualidi J. Sinopsis of Teucrium L. (Lamiaceae) in the Mediterranean region and surrounding areas. Flora Med 2000; 10: 349-363
  • 159 Bahramikia S, Yazdanparast R. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae). Phytother Res 2012; 26: 1581-1593
  • 160 Stanković MS, Zlatić MN. Ethnobotany of Teucrium species. In: Martinez JL, Muñoz-Acevedo A, Rai M. eds. Ethnobotany: Local Knowledge and Traditions. Boca Raton, USA: CRC Press, Taylor & Francis Group; 2019: 214-231
  • 161 de Boer YS, Sherker AH. Herbal and dietary supplement-induced liver injury. Clin Liver Dis 2017; 21: 135-149
  • 162 Arnold N. Contribution à la connaissance ethnobotanique et médicinale de la flore de Chypre. Tome III. Paris: Université René Descartes; 1985: 1203-1210
  • 163 Muselli A, Desjobert JM, Paolini J, Bernardini AF, Costa J, Rosa A, Dessi MA. Chemical composition of the essential oils of Teucrium chamaedrys L. from Corsica and Sardinia. J Essent Oil Res 2009; 21: 138-143
  • 164 Djabou N, Lorenzi V, Guinoiseau E, Andreani S, Giuliani MC, Desjobert JM, Bolla JM, Costa J, Berti L, Luciani A, Muselli A. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 2013; 30: 354-363
  • 165 Bezić N, Vuko E, Dunkić V, Ruščić M, Blažević I, Burčul F. Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules 2011; 16: 8119-8129
  • 166 Morteza-Semnani K, Akbarzadeh M, Rostami B. The essential oil composition of Teucrium chamaedrys L. from Iran. Flavour Frag J 2005; 20: 544-546
  • 167 Kazemizadeh Z, Basiri A, Habibi Z. Chemical composition of the essential oil of Teucrium hyrcanicum and T. chamaedrys L. subsp. chamaedrys from Iran. Chem Nat Comp 2008; 44: 651-653
  • 168 Hajdari A, Mustafa B, Hyseni L, Bajrami A, Mustafa G, Quave CL, Nebija D. Phytochemical study of eight medicinal plants of the lamiaceae family traditionally used as tea in the Sharri Mountains region of the Balkans. Sci World J 2020; 2020: 4182064
  • 169 Kovacevic NN, Lakusic BS, Ristic MS. Composition of the essential oils of seven Teucrium species from Serbia and Montenegro. J Essent Oil Res 2001; 13: 163-165
  • 170 Özel MZ, Göğüş F, Lewis AC. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 2006; 1114: 164-169
  • 171 Bagci E, Yazgin A, Hayta S, Cakilcioglu U. Composition of the essential oil of Teucrium chamaedrys L. (Lamiaceae) from Turkey. J Med Plants Res 2010; 4: 2588-2590
  • 172 Küçük M, Güleç C, Yaşar A, Üçüncü O, Yayli N, Coşkunçelebi K, Terzioğlu S, Yayli N. Chemical composition and antimicrobial activities of the essential oils of Teucrium chamaedrys subsp. chamaedrys, T. orientale var. puberulens, and T. chamaedrys subsp. lydium . Pharm Biol 2006; 44: 592-599
  • 173 Kaya A, Demirci B, Başer KHC. Compositions of essential oils and trichomes of Teucrium chamaedrys L. subsp. trapezunticum Rech. fil. and subsp. syspirense (C. Koch) Rech. fil. Chem Biodivers 2009; 6: 96-104
  • 174 Sajjadi SE, Shookohinia Y. Composition of the essential oil of Teucrium chamaedrys L. subsp. syspirense (C. Koch) rech. fil. growing wild in Iran. J Esset Oil Bear Pl 2010; 13: 175-180
  • 175 Tzakou O, Roussis V, Loukis A, Harvala C, Galati EM, Germanò MP. Essential oil analysis of Teucrium divaricatum Heldr. ssp. divaricatum growing in Greece. Flavour Fragr J 1997; 12: 113-115
  • 176 Stanic G, Petricic J, Blazevic N, Plazibat M. Essential oil of Teucrium flavum L. from Croatia. J Essent Oil Res 1993; 5: 625-627
  • 177 Menichini F, Conforti F, Rigano D, Formisano C, Piozzi F, Senatore F. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem 2009; 115: 679-686
  • 178 Baher ZF, Mirza M. Volatile constituents of Teucrium flavum L. from Iran. J Essent Oil Res 2003; 15: 106-107
  • 179 Presti ML, Crupi ML, Costa R, Dugo G, Mondello L, Ragusa S, Santi L. Seasonal variations of Teucrium flavum L. essential oil. J Essent Oil Res 2010; 22: 211-216
  • 180 Sagratini G, Maggi F, Blek T, Papa F, Vittori S. Analysis of the volatile compounds of Teucrium flavum L. subsp. flavum (Lamiaceae) by headspace solid-phase microextraction coupled to gas chromatography with flame ionisation and mass spectrometric detection. Nat Prod Res 2012; 26: 1339-1347
  • 181 Maggi F, Bilek T, Cristalli G, Papa F, Sagratini G, Vittori S. Comparison of the characterization of the fruit-like aroma of Teucrium flavum L. subsp. flavum by hydrodistillation and solid-phase micro-extraction. J Sci Food Agric 2009; 89: 2505-2518
  • 182 Flamini G, Cioni PL, Baldini R, Maccioni S, Bedini G. Composition of the essential oil of two populations of Teucrium flavum L. subsp. flavum, collected on calcareous soil (Caprione – Eastern Liguria) and on ophiolitic soil (Leghorn Hills). Atti Soc Tosc Sci Nat Mem, Serie B 2011; 118: 15-21
  • 183 Formisano C, Rigano D, Senatore F, Bruno M, Maggio A, Piozzi F. Chemical composition of the essential oil of Teucrium flavum ssp. flavum from Zakynthos, Greece. Rec Nat Prod 2012; 6: 306-310
  • 184 Djabou N, Battesti MJ, Allali H, Desjobert JM, Varesi L, Costa J, Muselli A. Chemical and genetic differentiation of Corsican subspecies of Teucrium flavum L. Phytochemistry 2011; 72: 1390-1399
  • 185 Hammami S, El Mokni R, Faidi K, Falconieric D, Piras A, Procedda S, Mighria Z, El Aouni MH. Chemical composition and antioxidant activity of essential oil from aerial parts of Teucrium flavum L. subsp. flavum growing spontaneously in Tunisia. Nat Prod Res 2015; 29: 2336-2340
  • 186 Djabou N, Andreani S, Varesi L, Tomi F, Costa J, Muselli A. Analysis of the volatile fraction of Teucrium marum L. Flavour Fragr J 2013; 28: 14-24
  • 187 Sanz J, Mus M, Rossello JA. Volatile components variation in the Teucrium marum complex (Lamiaceae) from the Balearic Islands. Bot J Linn Soc 2000; 132: 253-261
  • 188 Ricci D, Fraternale D, Giamperi L, Bucchini A, Epifano F, Burini G, Curini M. Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). J Ethnopharmacol 2005; 98: 195-200
  • 189 Kaya A, Demirci B, Dinç M, Dogu S, Baser HC. Compositions of the essential oils of Teucrium cavernarum and Teucrium paederotoides, two endemic species from Turkey. J Essent Oil Bear Pl 2013; 16: 588-594
  • 190 De Martino L, Formisano C, Mancini E, De Feo V, Piozzi F, Rigano D, Senatore F. Chemical composition and phytotoxic effects of essential oils from four Teucrium species. Nat Prod Commun 2010; 5: 1969-1976
  • 191 Javidnia K, Miri R, Khosravi AR. Composition of the Essential Oil of Teucrium persicum Boiss. From Iran. J Essent Oil Res 2007; 19: 430-432
  • 192 Masoudi S, Aghajani Z, Rustaiyan A, Feizbakhsh A, Kakhky AM. Volatile constituents of Teucrium persicum Boiss., Thymus caucasicus Willd. ex Ronniger subsp. grossheimii (Ronniger) Jalas. and Marrubium crassidens Boiss. three labiatae herbs growing wild in Iran. J Essent Oil Res 2009; 21: 5-7
  • 193 Cavaleiro C, Salgueiro LR, Miguel MG, Proença da Cunha A. Analysis by gas chromatography-mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis . J Chromatogr A 2004; 1033: 187-190
  • 194 Hachicha SF, Skanji T, Barrek S, Zarrouk H, Ghrabi ZG. Chemical composition of Teucrium alopecurus essential oil from Tunisia. J Essent Oil Res 2007; 19: 413-415
  • 195 Baser KHC, Demirci B, Duman H, Aytaç Z. Composition of the essential oil of Teucrium antitauricum T. Ekim. J Essent Oil Res 1999; 11: 61-62
  • 196 Elabbara FA, Habel AM, Bozkeh NMA, El-Tuonsi ATM, Awin TM. The essential oil composition of Teucrium apollinis (Lamiaceae) from Libya. Der Chemica Sinica 2014; 5: 26-27
  • 197 Pérez I, Blázquez MA, Boira H. Chemotaxonomic value of the essential oil compounds in species of Teucrium pumilum aggregate. Phytochemistry 2000; 55: 397-401
  • 198 Palá-Paúl J, Pérez-Alonso MJ, Velasco-Negueruela A, García-Jiménez N, Jiménez RG, Vargas L. Composition of the essential oil of Teucrium carolipaui Pau grown in Spain. J Essent Oil Res 2001; 13: 452-453
  • 199 Pérez-Alonso MJ, Velasco-Negueruela A, López-Sáez JA. The essential oils of two Iberian Teucrium species. J Essent Oil Res 1994; 5: 397-402
  • 200 Gaspar H, Brito Palma FMS, de La Torre MC, Rodríguez B, Barroso JG, Figueiredo AC. Composition of the essential oil of Teucrium haenseleri Boiss. Flavour Fragr J 1997; 12: 355-357
  • 201 El-Shazly AM, Hussein KT. Chemical analysis and biological activities of the essential oil of Teucrium leucocladum Boiss. (Lamiaceae). Biochem Syst Ecol 2004; 32: 665-674
  • 202 Blázquez MA, Pérez I, Boira H. Essential oil analysis of Teucrium libanitis and T. turredanum by GC and GC-MS. Flavour Fragr J 2003; 18: 497-501
  • 203 Velasco-Nagueruela A, Perez Alonzo MJ. Volatile oils of Teucria species endemic to Spain. I. Teucium lusitanicum subsp. aureiformis . Anal Bromatol 1989; 21: 241-248
  • 204 Al Oraimi MM, Al-Sabahi JN, Weli AM, Selim D, Akhtar MS, Al-Riyami Q, Al-Khanjari S. Chemical composition of essential oil of Tecurium mascatenses Bois grown in Oman. J Essent Oil Bear Pl 2012; 15: 822-826
  • 205 Baser KHC, Demirçakmak B, Duman H. Composition of the essential oils of three Teucrium species from Turkey. J Essent Oil Res 1997; 9: 545-549
  • 206 Vuković N, Milošević T, Sukdolak S, Solujić S. The chemical composition of the essential oil and the antibacterial activities of the essential oil and methanol extract of Teucrium montanum . J Serbian Chem Soc 2008; 73: 299-305
  • 207 Vukovic N, Milosevi T, Sukdolak S, Solujic S. Antimicrobial activities of essential oil and methanol extract of Teucrium montanum . Evid Based Complement Alternat Med 2007; 4 (Suppl. 01) 17-20
  • 208 Radulović N, Dekić M, Joksović M, Vukićević R. Chemotaxonomy of Serbian Teucrium species inferred from essential oil chemical composition: the case of Teucrium scordium L. ssp. scordioides . Chem Biodivers 2012; 9: 106-122
  • 209 Pavela R, Benelli G, Canale A, Maggi F, Mártonfi P. Exploring essential oils of Slovak medicinal plants for insecticidal activity: The case of Thymus alternans and Teucrium montanum subsp. jailae . Food Chem Toxicol 2020; 138: 111203
  • 210 Bendif H, Lazali M, Souilah N, Miara MD, Kazernavičiūtė R, Baranauskienė R, Venskutonis PR, Maggi F. Supercritical CO2 extracts and essential oils from Teucrium polium L. growing in Algeria: chemical composition and antioxidant activity. J Essent Oil Res 2018; 30: 488-497
  • 211 Bendjabeur S, Benchabane O, Bensouici C, Hazzit M, Baaliouamer A, Bitam A. Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. J Food Meas Charact 2018; 12: 2278-2288
  • 212 Djabou N, Muselli A, Allali H, Dib MEA, Tabti B, Varesi L, Costa J. Chemical and genetic diversity of two Mediterranean subspecies of Teucrium polium L. Phytochemistry 2012; 83: 51-62
  • 213 Fertout-Mouri N, Latrèche A, Mehdadi Z, Toumi-Bénali F, Khaled MB. Chemical composition and antibacterial activity of the essential oil of Teucrium polium L. of Tessala Mount (Western Algeria). Phytothérapie 2017; 15: 346-353
  • 214 Belmekki N, Bendimerad N, Bekhechi C, Fernandez X. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Western Algeria. J Med Plants Res 2013; 7: 897-902
  • 215 Lograda T, Ramdani M, Chalard P, Figueredo G, Deghar A. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Eastern Algeria. Am J Adv Drug Deliv 2014; 2: 697-710
  • 216 Zouaoui N, Chenchouni H, Bouguerra A, Massouras T, Barkat M. Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS J 2020; 18: 19-28
  • 217 Maizi Y, Meddah B, Meddah ATT, Hernandez JAG. Seasonal variation in essential oil content, chemical composition and antioxidant activity of Teucrium polium L. growing in Mascara (North West of Algeria). J Appl Biotechnol Rep 2019; 6: 151-157
  • 218 Chizzola R. Volatile compounds from some wild growing aromatic herbs of the Lamiaceae from southern France. Plant Biosyst 2006; 140: 206-210
  • 219 Vokou D, Bessiere JM. Volatile constituents of Teucrium polium . J Nat Prod 1985; 48: 498-499
  • 220 Eikani MH, Goodarznia I, Mirza M. Comparison between the essential oil and supercritical carbon dioxide extract of Teucrium polium L. J Essent Oil Res 1999; 11: 470-472
  • 221 Ashnagar A, Gharib Naseri N, Foroozanfar S. Isolation and identification of the major chemical components found in the upper parts of Teucrium polium plants grown in Khuzestan Province of Iran. Chin J Chem 2007; 25: 1171-1173
  • 222 Vahdani M, Faridi P, Zarshenas MM, Javadpour S, Abolhassanzadeh Z, Moradi N, Bakzadeh Z, Karmostaji A, Mohagheghzadeh A, Ghasemi Y. Major compounds and antimicrobial activity of essential oils from five Iranian endemic medicinal plants. Pharmacognosy Journal 2011; 3: 48-53
  • 223 Zare P, Mahmoudi R, Ehsani A. Biochemical and antibacterial properties of essential oil from Teucrium polium using resazurin as the indicator of bacterial cell growth. Pharm Sci 2011; 17: 183-188
  • 224 Gholivand MB, Piryaei M, Abolghasemi MM, Maassoumi SM. Rapid analysis of volatile components from Teucrium polium L. by nanoporous silica-polyaniline solid phase microextraction fibre. Phytochem Anal 2013; 24: 69-74
  • 225 Sadeghi H, Jamalpoor S, Shirzadi MH. Variability in essential oil of Teucrium polium L. of different latitudinal populations. Ind Crops Prod 2014; 54: 130-134
  • 226 Mahmoudi R, Nosratpour S. Teucrium polium L. essential oil: phytochemiacl component and antioxidant properties. Int Food Res J 2013; 20: 1697-1701
  • 227 Mahmoudi R, Zare P, Hassanzadeh P, Nosratpour S. Effect of Teucrium polium essential oil on the physicochemical and sensory properties of probiotic yoghurt. J Food Process Pres 2014; 38: 880-888
  • 228 Mahmoudi R, Zare P, Nosratpour S. Application of Teucrium polium essential oil and Lactobacillus casei in yoghurt. J Essent Oil Bear Pl 2015; 18: 477-481
  • 229 Raei F, Ashoori N, Eftekhar F, Yousefzadi M. Chemical composition and antibacterial activity of Teucrium polium essential oil against urinary isolates of Klebsiella pneumoniae . J Essent Oil Res 2014; 26: 65-69
  • 230 Keykavousi M, Tarzi BG, Mahmoudi R, Bahhoda H, Kabudari A, Mahalleh SFRP. Study of antibacterial effects of Teucrium polium essential oil on Bacillus cereus in cultural laboratory and commercial soup. Carpath J Food Sci Technol 2016; 8: 176-183
  • 231 Sabzeghabaie A, Asgarpanah J. Essential oil composition of Teucrium polium L. fruits. J Essent Oil Res 2015; 28: 77-80
  • 232 Sayyad R, Farahmandfar R. Influence of Teucrium polium L. essential oil on the oxidative stability of canola oil during storage. J Food Sci Technol 2017; 54: 3073-3081
  • 233 Boroomand N, Sadat-Hosseini M, Moghbeli M, Farajpour M. Phytochemical components, total phenol and mineral contents and antioxidant activity of six major medicinal plants from Rayen, Iran. Nat Prod Res 2018; 32: 564-567
  • 234 Nikpour H, Mousavi M, Asadollahzadeh H. Qualitative and quantitative analysis of Teucrium polium essential oil components by GC-MS coupled with MCR and PARAFAC methods. Phytochem Anal 2018; 29: 590-600
  • 235 Masoudi S. Volatile constituents from different parts of three Lamiaceae herbs from Iran. Iran J Pharm Res 2018; 17: 365-376
  • 236 Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of Teucrium polium L. essential oil against red flour beetle (Tribolium castaneum Herbst) using response surface methodology. Inf Process Agric 2020; 7: 286-293
  • 237 Moghtader M. Chemical composition of the essential oil of Teucrium polium L. from Iran. American-Eurasian J Agric Environ Sci 2009; 5: 843-846
  • 238 Rowshan V, Najafian S. Comparison of volatile compounds in Teucrium polium L. by headspace and hydrodistillation techniques. Int J Appl Biol Pharm 2012; 3: 151-157
  • 239 Purnavab S, Ketabchi S, Rowshan V. Chemical composition and antibacterial activity of methanolic extract and essential oil of Iranian Teucrium polium against some of phytobacteria. Nat Prod Res 2015; 29: 1376-1379
  • 240 Heydarzade A, Moravvej G. Contact toxicity and persistence of essential oils from Foeniculum vulgare, Teucrium polium and Satureja hortensis against Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) adults. Turk Entomol Derg 2012; 36: 507-518
  • 241 Aburjai T, Hudaib M, Cavrini V. Composition of the essential oil from Jordanian germander (Teucrium polium L.). J Essent Oil Res 2006; 18: 97-99
  • 242 Afifi FU, Abu-Irmaileh BE, Al-Noubani RA. Comparative analysis of the essential oils of Teucrium polium L. grown in different arid and semiarid habitats in Jordan. Jordan J Pharma Sci 2009; 2: 42-52
  • 243 Al-Qudah TS, Shibli RA, Alali FQ. In vitro propagation and secondary metabolites production in wild germander (Teucrium polium L.). In Vitro Cell Dev Biol Plant 2011; 47: 496-505
  • 244 Popović A, Šućur J, Orčić D, Štrbac P. Effects of essential oil formulations on the adult insect Tribolium castaneum (Herbst) (Col., Tenebrionidae). J Cent Eur Agric 2013; 14: 181-193
  • 245 El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Oumokhtar B, Abdellaoui A. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab J Chem 2020; 13: 3866-3874
  • 246 Hussain J, Rehman NU, Al-Harrasi A, Ali L, Khan AL, Albroumi MA. Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman. Asian Pac J Trop Dis 2013; 3: 421-428
  • 247 Rudakova Y, Popova O. Chemical composition of the essential oil of the Teucrium polium L. Clin Pharmacol 2016; 11: 425-428
  • 248 Hassan MMA, Muhtadi FJ, Al-Badr AA. GLC-mass spectrometry of Teucrium polium oil. J Pharm Sci 1979; 68: 800-801
  • 249 Ibrahim SR, Abdallah HM, Mohamed GA, Farag MA, Alshali KZ, Alsherif EA, Ross SA. Volatile oil profile of some Lamiaceous plants growing in Saudi Arabia and their biological activities. Z Naturforsch C J Biosci 2017; 72: 35-41
  • 250 Basudan N, Abu-Gabal NS. Phytochemistry and biological properties investigation of Teucrium polium L. Int J Pharm Biol Sci 2018; 8: 660-670
  • 251 Guetata A, Al-Ghamdia FA. Analysis of the essential oil of the germander (Teucrium polium L.) aerial parts from the northern region of Saudi Arabia. Int J Appl Biol Pharm 2014; 5: 128-135
  • 252 Al-Sarar AS, Hussein HI, Abobakr Y, Al-Zabib AAS, Bazeyad AY. Mosquitocidal and repellent activities of essential oils against Culex pipiens L. Entomol Res 2020; 50: 182-188
  • 253 Skouti E, Kattah A, Alachkar A, Ben Hedda J, Vincieri F. Biochemical, antinociceptive and hepatotoxic effects of the chronic administration of Teucrium polium essential oil in rats. Int J Pharm Pharm Sci 2012; 4 (Suppl. 03) 193-197
  • 254 Boulila A, Béjaoui A, Messaoud C, Boussaid M. Variation of volatiles in Tunisian populations of Teucrium polium L. (Lamiaceae). Chem Biodivers 2008; 5: 1389-1400
  • 255 Bakari S, Ncir M, Felhi S, Hajlaoui H, Saoudi M, Gharsallah N, Kadri A. Chemical composition and in vitro evaluation of total phenolic, flavonoid, and antioxidant properties of essential oil and solvent extract from the aerial parts of Teucrium polium grown in Tunisia. Food Sci Biotechnol 2015; 24: 1943-1949
  • 256 Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, Aoun K, Limam F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod 2015; 77: 795-802
  • 257 Çakir A, Duru ME, Harmandar M, Ciriminna R, Passannanti S. Volatile constituents of Teucrium polium L. from Turkey. J Essent Oil Res 1998; 10: 113-115
  • 258 Sevindik E, Abacı ZT, Yamaner C, Ayvaz M. Determination of the chemical composition and antimicrobial activity of the essential oils of Teucrium polium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnol Biotechnol Equip 2016; 30: 375-380
  • 259 Hayta S, Yazgin A, Bagci E. Constituents of the volatile oils of two Teucrium species from Turkey. Bitlis Eren Univ J Sci Technol 2017; 7: 140-144
  • 260 Kamel A, Sandra P. Gas chromatography-mass spectrometry analysis of the volatile oils of two Teucrium polium varieties. Biochem Syst Ecol 1994; 22: 529-532
  • 261 Kabouche A, Kabouche Z, Ghannadi A, Sajjadi SE. Analysis of the essential oil of Teucrium polium ssp. aurasiacum from Algeria. J Essent Oil Res 2007; 19: 44-46
  • 262 Kabouche Z, Boutaghane N, Laggoune S, Kabouche A, Ait-Kaki Z, Benlabed K. Comparative antibacterial activity of five Lamiaceae essential oils from Algeria. Int J Aromather 2005; 15: 129-133
  • 263 Bencheikh SE, Ladjel S, Goudjil MB, Mehani M, Zighmi S. Chemical analysis, antimicrobial and antioxidant activity of the essential oil of Teucrium polium ssp. aurasianum Labiatae. Der Pharma Chem 2015; 7: 308-314
  • 264 Kerbouche L, Hazzit M, Ferhat MA, Baaliouamer A, Miguel MG. Biological activities of essential oils and ethanol extracts of Teucrium polium subsp. capitatum (L.) Briq. and Origanum floribundum Munby. J Essent Oil Bear Pl 2015; 18: 1197-1208
  • 265 Mitić V, Jovanović O, Stankov-Jovanović V, Zlatkovic B, Stojanovic G. Analysis of the essential oil of Teucrium polium ssp. capitatum from the Balkan Peninsula. Nat Prod Commun 2012; 7: 83-86
  • 266 Cozzani S, Muselli A, Desjobert JM, Bernardini AF, Tomi F, Casanova J. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr J 2005; 20: 436-441
  • 267 Koutsaviti A, Antonopoulou V, Vlassi A, Antonatos S, Michaelakis A, Papachristos DP, Tzakou O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J Pest Sci 2018; 91: 873-886
  • 268 Fanourioua E, Kalivasb D, Dafererac D, Tarantilisc P, Trigasd P, Vahamidisa P, Economoua G. Hippocratic medicinal flora on the Greek Island of Kos: Spatial distribution, assessment of soil conditions, essential oil content and chemotype analysis. J Appl Res Med Aromat Plants 2018; 9: 97-109
  • 269 Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med 2014; 7: 956-961
  • 270 El Amri J, El Badaoui K, Haloui Z. The chemical composition and the antimicrobial properties of the essential oil extracted from the leaves of Teucrium capitatum L. Asian J Pharm Clin Res 2017; 10: 112-115
  • 271 Antunes T, Sevinate-Pinto I, Barroso JG, Cavaleiro C, Salgueiro LR. Micromorphology of trichomes and composition of essential oil of Teucrium capitatum . Flavour Fragr J 2004; 19: 336-340
  • 272 Othman MB, Bel Hadj Salah-Fatnassi K, Ncibi S, Elaissi A, Zourgui L. Antimicrobial activity of essential oil and aqueous and ethanol extracts of Teucrium polium L. subsp. gabesianum (L.H.) from Tunisia. Physiol Mol Biol Plants 2017; 23: 723-729
  • 273 Roukia H, Mahfoud HM, Didi OEM. Chemical composition and antioxidant and antimicrobial activities of the essential oil from Teucrium polium geyrii (Labiatae). J Med Plants Res 2013; 7: 1506-1510
  • 274 Allain P, El Oualidi J, Puech S, Pellecuer J. La variabilité chimique de lʼhuile essentielle chez Teucrium puechiae Greuter et Burdet sur le littoral Languedocien (France). Biochem Syst Ecol 1994; 22: 239-248
  • 275 Lahmar A, Bedoui A, Mokdad-Bzeouich I, Dhaouifi Z, Kalboussi Z, Cheraif I, Ghedira K, Chekir-Ghedira L. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb Pathog 2017; 106: 50-59
  • 276 Ghazouani N, Abderrabba M, Bouajila J. Teucrium ramosissimum (Lamiaceae): volatile composition, seasonal variation, and pharmaceutical activity. Anal Lett 2015; 49: 1258-1271
  • 277 Ghazouani N, Sifaoui I, Bachrouch O, Abderrabba M, Pinero JE, Lorenzo-Morales J. Essential oil composition and anti Acanthamoeba studies of Teucrium ramosissimum . Exp Parasitol 2017; 183: 207-211
  • 278 Lahmar A, Morcuende D, Andrade MJ, Chekir-Ghedira L, Estévez M. Prolonging shelf life of lamb cutlets packed under high-oxygen modified atmosphere by spraying essential oils from North-African plants. Meat Sci 2018; 139: 56-64
  • 279 Salah KBH, Mahjoub MA, Chaumont JP, Michel L, Millet-Clerc J, Chraeif I, Ammar S, Mighri Z, Aouni M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat Prod Res 2006; 20: 1089-1097
  • 280 Al Yousuf MH, Bashir AK, Dobos Á, Veres K, Nagy G, Máthé I, Blunden G. The composition of the essential oil of Teucrium stocksianum from the United Arab Emirate. J Essent Oil Res 2002; 14: 47-48
  • 281 Bakhtiari M, Asgarpanah J. Volatile constituents of Teucrium stocksianum Boiss. fruits from South of Iran. J Essent Oil Bear Pl 2015; 18: 1174-1179
  • 282 Shah SMM, Ali Khan F, Ali M, Shah SMS, Afridi MS, Ullah N. Molecular profiling of the essential oil of Teucrium stocksianum collected at three different stages. Am-Eurasian J Toxicol Sci 2015; 7: 279-285
  • 283 Shah SMM, Khan S, Shah SMH, Shah SMS. Antimicrobial and cytotoxic potential of the essential oil of Teucrium stocksianum Boiss. Am-Eurasian J Toxicol Sci 2016; 8: 42-46
  • 284 Shah SMM, Ullah F, Shah SMH, Zahoor M, Sadiq A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium stocksianum Bioss collected from the North West of Pakistan. BMC Complement Altern Med 2012; 12: 244
  • 285 Jaimand K, Rezaee MB, Soltanipoor MA, Mozaffarian V. Volatile constituents of Teucrium stocksianum Boiss. ssp. stocksianum from Iran. J Essent Oil Res 2006; 18: 476-477
  • 286 Mojab F, Javidnia K, Yazdani D, Rustaiyan A. Essential oil of the aerial parts of Teucrium stocksianum Boiss. subsp. stocksianum (Lamiaceae) from Iran. Faslnamah-i Giyahan-i Daruyi 2003; 2: 49-53 60
  • 287 Ali NAA, Ali NAA, Shari K, Chhetri BK, Dosoky NS, Setzer WN, Al-Fahad AJA, Wessjohann L. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines (Basel, Switzerland) 2017; 4: 17
  • 288 Abdelshafeek KA, Elgattar AA, Zarkoon AH, Alwahash MA, Shahat AA. Investigation of the volatile oils, lipid constituents and biological activity of Ballota andreuzziana, Teucrium zanonii and Verbena tenuisecta in Libya. Asian Pac J Trop Med 2010; 3: 594-601
  • 289 Mohan L, Pant CC, Melkani AB, Dev V. Terpenoid composition of the essential oils of Teucrium royleanum and T. quadrifarium . Nat Prod Commun 2010; 5: 939-942
  • 290 Tandon S, Mittal AK. Insecticidal and growth inhibitory activity of essential oils of Boenninghausenia albiflora and Teucrium quadrifarium against Spilarctia obliqua . Biochem Syst Ecol 2018; 81: 70-73
  • 291 Ahmadi L, Mirza M, Shahmir F. Essential oil of Teucrium melissoides Boiss. et Hausskn. ex Boiss. J Essent Oil Res 2002; 14: 355-356
  • 292 Morteza-Semnani K, Saeedi M, Akbarzadeh M. Essential oil composition of Teucrium scordium L. Acta Pharm 2007; 57: 499-504
  • 293 Sharififar F, Mahdavi Z, Mirtajaldini M, Purhematy A. Volatile constituents of aerial parts of Teucrium scordium L. from Iran. J Essent Oil Res 2010; 22: 202-204
  • 294 Gagliano Candela R, Ilardi V, Badalamenti N, Bruno M, Rosselli S, Maggi F. Essential oil compositions of Teucrium fruticans, T. scordium subsp. scordioides and T. siculum growing in Sicily and Malta. Nat Prod Res 2020; DOI: 10.1080/14786419.2019.1709193.
  • 295 Velasco-Negueruela A, Pérez-Alonso MJ. The volatiles of six Teucrium species from the Iberian Peninsula and the Balearic Islands. Phytochemistry 1990; 29: 1165-1169
  • 296 Lawrence BM, Hogg JW, Terhune SJ, Morton JK, Gill LS. Terpenoid composition of some Canadian Labiatae. Phytochemistry 1972; 11: 2636-2638
  • 297 Djabou N, Paolini J, Desjobert JM, Allali H, Baldovini N, Costa J, Muselli A. Qualitative and quantitative analysis of volatile components of Teucrium massiliense L. – identification of 6-methyl-3-heptyl acetate as a new natural product. Flavour Fragr J 2010; 25: 475-487
  • 298 Giamperi L, Bucchini A, Fraternale D, Cara P, Ricci D, Epifano F, Genovese S, Curini M. Chemical composition and antioxidant activity of the essential oil of Teucrium massiliense L. J Essent Oil Res 2008; 20: 446-449
  • 299 Tahoum N, Arakrak A, Bakkali M, Jatunov SS, Franconetti AG, Guillen MG, Escribano FC, Laglaoui A. Chemical composition of essential oil of Teucrium pseudoscorodonia subsp. baeticum, endemic plant of north of Morocco. Int J Adv Res 2017; 5: 914-919
  • 300 Saroglou V, Arfan M, Shabir A, Hadjipavlou-Litina D, Skaltsa H. Composition and antioxidant activity of the essential oil of Teucrium royleanum Wall. ex Benth growing in Pakistan. Flavour Fragr J 2007; 22: 154-157
  • 301 Cavaleiro C, Salgueiro LR, Antunes T, Sevinate-Pinto I, Barroso JG. Composition of the essential oil and micromorphology of trichomes of Teucrium salviastrum, an endemic species from Portugal. Flavour Fragr J 2002; 17: 287-291
  • 302 Servettaz O, Pinetti A, Bellesia F, Bini Malec L. Micromorphological and phytochemical research on Teucrium scorodonia and Teucrium siculum from the Italian Flora. Bot Acta 1994; 107: 416-421
  • 303 Djabou N, Allali H, Battesti MJ, Tabti B, Cost J, Muselli A, Varesi L. Chemical and genetic differentiation of two Mediterranean subspecies of Teucrium scorodonia L. Phytochemistry 2012; 74: 123-132
  • 304 Maccioni S, Baldini R, Tebano M, Cioni PL, Flamini G. Essential oil of Teucrium scorodonia L. ssp. scorodonia from Italy. Food Chem 2007; 104: 1393-1395
  • 305 Makowczynska J, Sliwinska E, Kalemba D, Piatczak E, Wysokinska H. In vitro propagation, DNA content and essential oil composition of Teucrium scorodonia L. ssp. scorodonia. Plant Cell Tiss Organ Cult 2016; 127: 1-13
  • 306 Blazevic N, Kalodera Z, Petricic J, Plazibat M. Essential oil content and composition of Teucrium arduini L. J Essent Oil Res 1993; 4: 223-225
  • 307 Dunkić V, Bezić N, Vuko E. Antiphytoviral activity of essential oil from endemic species Teucrium arduini . Nat Prod Commun 2011; 6: 1385-1388
  • 308 Kremer D, Müller ID, Dunkić V, Vitali D, Stabentheiner E, Oberländer A, Bezić N, Kosalec I. Chemical traits and antimicrobial activity of endemic Teucrium arduini L. from Mt Biokovo (Croatia). Cent Eur J Biol 2012; 7: 941-947
  • 309 Kremer D, Kosir IJ, Kosalec I, Koncic MZ, Potocnik T, Cerenak A, Bezic N, Srecec S, Dunkic V. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L. (Lamiaceae). Curr Drug Targets 2013; 14: 1006-1014
  • 310 Vukovic N, Sukdolak S, Solujic S, Mihailovic V, Mladenovic M, Stojanovic J, Stankovic MS. Chemical composition and antimicrobial activity of Teucrium arduini essential oil and cirsimarin from Montenegro. J Med Plants Res 2011; 5: 1244-1250
  • 311 Kremer D, Bolarić S, Ballian D, Bogunić F, Stesević D, Karlović K, Kosalec I, Vokurka A, Vuković Rodriguez J, Randić M, Bezić N, Dunkić V. Morphological, genetic and phytochemical variation of the endemic Teucrium arduini L. (Lamiaceae). Phytochemistry 2015; 116: 111-119
  • 312 Kazemizadeh Z, Habibi Z, Moradi A. Chemical composition of the essential oils of two populations Teucrium hyrcanicum L. in two different localities. J Med Plants 2008; 7: 87-93
  • 313 Mohammad AR, Vahideh N, Seyed AA, Fatemeh S. Variation in essential oil composition of Teucrium hyrcanicum L. from Iran-A rich source of (E)-α-bergamotene. Nat Prod Res 2018; 33: 1227-1232
  • 314 Morteza-Semnani K, Saeedi M, Akbarzadeh M. Chemical composition and antimicrobial activity of essential oil of Teucrium hyrcanicum L. J Essent Oil Bear Pl 2011; 14: 770-775
  • 315 Doğu S, Dinç M, Kaya A, Demirci B. Taxonomic status of the subspecies of Teucrium lamiifolium in Turkey: reevaluation based on macro- and micro-morphology, anatomy and chemistry. Nord J Bot 2013; 31: 198-207
  • 316 Barroso JG, Pedro LG, Figueiredo AC, Antunes T, Sevinate-Pinto I, Scheffer JJC. The essential oils of two endemic Teucrium species from Madeira: T. abutiloides LʼHér. and T. betonicum LʼHér. Flavour Fragr J 1993; 8: 277-280
  • 317 Barroso JG, Figueiredo AC, Pedro LG, Antunes T, Sevinate-Pinto I, Fontinha SS, Scheffer JJC. Composition of the essential oil of Teucrium heteropbyllum LʼHér. grown on Madeira. Flavour Fragr J 1996; 11: 129-132
  • 318 Velasco-Negueruela A, Pérez-Alonso MJ, Palá-Paul J, Ramos-Vázquez P, De Páz PLP, Vallejo MCG. Composition of the essential oil of Teucrium heterophyllum lʼHér. grown in the Canary Islands. J Essent Oil Res 1999; 11: 553-555
  • 319 Semiz G, Çelik G, Gönen E, Semiz A. Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res 2016; 30: 2225-2229
  • 320 Valentini G, Bellomaria B, Arnold N. Essential oil of Teucrium creticum L. from Cyprus. J Essent Oil Res 1997; 9: 649-652
  • 321 Flamini G, Cioni PL, Morelli I, Maccioni S, Monti G. Composition of the essential oil of Teucrium fruticans L. from the Maremma Regional Park (Tuscany, Italy). Flavour Fragr J 2001; 16: 367-369
  • 322 Polat T, Özer H, Öztürk E, Çakir A, Kandemir A, Demir Y. Chemical composition of the essential oil of Teucrium multicaule Montbret et Aucher ex Bentham from Turkey. J Essent Oil Res 2010; 22: 443-445
  • 323 Aberumand M, Asgarpanah J. Essential oil composition of Teucrium orientale subsp. glabrescens from Iran. Chem Nat Comp 2017; 53: 381-382
  • 324 Özek G, Özek T, Dinç M, Doğu S, Başera KHC. Chemical diversity of volatiles of Teucrium orientale L. var. orientale, var. puberulens, and var. glabrescens determined by simultaneous GC-FID and GC/MS techniques. Chem Biodivers 2012; 9: 1144-1154
  • 325 Yildirmis S, Aliyaziciogl R, Eyupoglu OE, Ozgen U, Alpay Karaoglu S. Biological activity and characterization of volatile compounds of Teucrium orientale var. glabrescens by SPME and GC-FID/MS. J Food Biochem 2017; 41: e12284
  • 326 Javidnia K, Miri R. Composition of the essential oil of Teucrium orientate L. ssp. orientate from Iran. J Essent Oil Res 2003; 15: 118-119
  • 327 Yildirim A, Cakir A, Mavi A, Yalcin M, Fauler G, Taskesenligil Y. The variation of antioxidant activities and chemical composition of essential oils of Teucrium orientale L. var. orientale during harvesting stages. Flavour Fragr J 2004; 19: 367-372
  • 328 Kucukbay FZ, Yildiz B, Kuyumcu E, Gunal S. Chemical composition and antimicrobial activities of the essential oils of Teucrium orientale var. orientale and Teucrium orientale var. puberulens . Chem Nat Comp 2011; 47: 833-836
  • 329 Amiri H. Antioxidant activity of the essential oil and methanolic extract of Teucrium orientale (L.) subsp. taylori (Boiss.) Rech. F. Iran J Pharm Res 2010; 9: 417-423
  • 330 Amiri H. Chemical composition of essential oil of Teucrium orientate L. subsp. taylori (Boiss.) Rech. f. J Med Plants 2008; 7: 100-104
  • 331 Bagci E, Hayta S, Yazgin A, Dogan G. Composition of the essential oil of Teucrium parviflorum L. (Lamiaceae) from Turkey. J Med Plants Res 2011; 5: 3457-3460
  • 332 Jaradat N, Al-lahham S, Abualhasan MN, Bakri A, Zaide H, Hammad J, Hussein F, Issa L, Mousa A, Speih R. Chemical constituents, antioxidant, cyclooxygenase inhibitor, and cytotoxic activities of Teucrium pruinosum Boiss. essential oil. Biomed Res Int 2018; 2018: 4034689
  • 333 Hammami S, Jmii H, El Mokni R, Khmiri A, Faidi K, Dhaouadi H, El Aouni MH, Aouni M, Joshi RK. Essential oil composition, antioxidant, cytotoxic and antiviral activities of Teucrium pseudochamaepitys growing spontaneously in Tunisia. Molecules 2015; 20: 20426-20433
  • 334 Kabouche A, Touafek O, Nacer A, Kabouche Z, Bruneau C. Volatile oil constituents of Teucrium atratum Pomel from Algeria. J Essent Oil Res 2006; 18: 175-177
  • 335 Ruberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2000; 69: 167-174
  • 336 Smahane B, Mounyr B, Faisl B, Stephane M, Sghir TM, Dalila B. Antimicrobial activities of essential oil of five plant species from Morocco against some microbial strains. Int J Res Phytochem Pharmacol 2016; 8: 1901-1906
  • 337 NIH National Library of Medicine. PubChem. Accessed March 30, 2020 at: https://pubchem.ncbi.nlm.nih.gov/
  • 338 Kani K, Momota Y, Harada H, Yamamura Y, Aota K, Yamanoi T, Takano H, Motegi K, Azuma M. γ-Tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int J Oncol 2013; 42: 75-82
  • 339 Abdollahi M, Karimpour H, Monsef-Esfehani HR. Antinociceptive effects of Teucrium polium L. total extract and essential oil in mouse writhing test. Pharmacol Res 2003; 48: 31-35
  • 340 Abbas G, Albroumi MA, Rehman N, Hussain H, Al Harrasi AS. Evaluation of essential oils from Boswellia sacra and Teucrium mascatense against acetyl cholinesterase enzyme and urease enzyme. Int J Phytomed 2016; 8: 500-505
  • 341 Ben Sghaier M, Boubaker J, Neffati A, Limem I, Skandrani I, Bhouri W, Bouhlel I, Kilani S, Chekir-Ghedira L, Ghedira K. Antimutagenic and antioxidant potentials of Teucrium ramosissimum essential oil. Chem Biodivers 2010; 7: 1754-1763
  • 342 Bigham M, Hosseininaveh V, Nabavi B, Talebi K, Esmaeilzadeh N. Effects of essential oil from Teucrium polium on some digestive enzyme activities of Musca domestica . Entomol Res 2010; 40: 37-45
  • 343 Shahriari M, Sahebzadeh N, Zibaee A. Effect of Teucrium polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia kuehniella (Lepidoptera: Pyralidae). Invertebrate Surviv J 2017; 14: 182-189
  • 344 Ebadollahi A, Sendi JJ, Aliakbar A, Razmjou J. Acaricidal activities of essential oils from Satureja hortensis (L.) and Teucrium polium (L.) against the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt J Biol Pest Control 2015; 25: 171-176