Der Klinikarzt 2020; 49(07/08): 326-334
DOI: 10.1055/a-1208-3350
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Praxisempfehlungen: Labordiagnostik bei akutem Koronarsyndrom

Klinische Anwendung von Troponin-basierten Diagnosealgorithmen bei vermutetem Myokardinfarkt
Paul M. Haller
1   Abteilung für Kardiologie, Universitäres Herz und Gefäßzentrum UKE Hamburg
,
Stefan Blankenberg
1   Abteilung für Kardiologie, Universitäres Herz und Gefäßzentrum UKE Hamburg
› Author Affiliations
Further Information

Publication History

Publication Date:
28 August 2020 (online)

ZUSAMMENFASSUNG

Die rasche Triagierung von Patienten mit Verdacht eines akuten Koronarsyndroms ist essenziell. Der zeitnahe Ausschluss eines akuten Myokardinfarktes kann Wartezeiten und Kapazitäten in den Notaufnahmen reduzierten. Eine rasche und präzise Identifikation von Patienten mit akutem Myokardinfarkt ist zur zeitgerechten Einleitung einer Therapie obligat. Vor allem nach Ausschluss eines akuten ST-Hebungsinfarktes mittels Elektrokardiogramm wird das weitere Vorgehen maßgeblich durch die Labordiagnostik bestimmt. Die Erfassung des myokardspezifischen Proteins Troponin mittels hoch-sensitiven Assays stellt als direkter Nachweis eines Myokardschadens den Goldstandard dar. Mithilfe Troponin-basierter Diagnosealgorithmen werden Patienten in Abhängigkeit ihres Risikos an einem akuten Myokardinfarkt zu leiden stratifiziert. Die vorliegende Übersichtsarbeit fasst die aktuell verfügbare Literatur zur Labordiagnostik beim akuten Koronarsyndrom zusammen. Schwerpunkt hierbei ist die klinische Anwendung von (hoch-sensitiven) Troponin-Assays, der Einfluss von Begleiterkrankungen auf die Diagnostik sowie mögliche individuelle Anwendungskonzepte in der Diagnostik und Risikoprädiktion.

 
  • Literatur

  • 1 Statistisches Bundesamt DESTATIS „Gestorbene: Deutschland, Jahre, Todesursachen, Geschlecht”. 2020 Im Internet https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/Tabellen/gestorbene_anzahl.html
  • 2 Neumann JT, Goßling A, Sörensen NA. et al Temporal trends in incidence and outcome of acute coronary syndrome. Clin Res Cardiol 2020 doi: 10.1007/s00392-020-01612-1. Online ahead of print
  • 3 Niska R, Bhuiya F, Xu J. National Hospital Ambulatory Medical Care Survey: 2007 emergency department summary. Natl Health Stat Report 2010; 26: 1-31
  • 4 Roffi M, Patrono C, Collet JP. et al 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 267-315
  • 5 Goodacre S, Thokala P, Carroll C. et al Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess 2013; 17 v–vi 1-188
  • 6 Westermann D, Neumann JT, Sörensen NA. et al High-sensitivity assays for troponin in patients with cardiac disease. Nature Reviews Cardiology 2017; 14: 472-483
  • 7 Keller T, Zeller T, Peetz D. et al Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 2009; 361: 868-877
  • 8 Parmacek MS, Solaro RJ. Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 2004; 47: 159-176
  • 9 Anderson PA, Malouf NN, Oakeley AE. et al Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991; 69: 1226-1233
  • 10 Jaffe AS, Vasile VC, Milone M. et al Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 2011; 58: 1819-1824
  • 11 Zeller T, Tunstall-Pedoe H, Saarela O. et al High population prevalence of cardiac troponin I measured by a high-sensitivity assay and cardiovascular risk estimation: the MORGAM Biomarker Project Scottish Cohort. Eur Heart J 2014; 35: 271-281
  • 12 Zeller T, Ojeda F, Brunner FJ. et al High-sensitivity cardiac troponin I in the general population – defining reference populations for the determination of the 99th percentile in the Gutenberg Health Study. Clin Chem Lab Med 2015; 53: 699-706
  • 13 Apple FS, Sandoval Y, Jaffe AS. et al Cardiac Troponin Assays: Guide to Understanding Analytical Characteristics and Their Impact on Clinical Care. Clin Chem 2017; 63: 73-81
  • 14 Thygesen K, Alpert JS, Jaffe AS. et al Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019; 40: 237-269
  • 15 Neumann JT, Sorensen NA, Rubsamen N. et al Discrimination of patients with type 2 myocardial infarction. Eur Heart J 2017; 38: 3514-3520
  • 16 Katus HA, Remppis A, Neumann FJ. et al Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991; 83: 902-912
  • 17 Bassand J-P, Hamm CW, Ardissino D. et al Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: The Task Force for the Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J 2007; 28: 1598-1660
  • 18 Keller T, Zeller T, Ojeda F. et al Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 2011; 306: 2684-2693
  • 19 Neumann JT, Sorensen NA, Schwemer T. et al Diagnosis of Myocardial Infarction Using a High-Sensitivity Troponin I 1-Hour Algorithm. JAMA Cardiol 2016; 1: 397-404
  • 20 Neumann JT, Sorensen NA, Ojeda F. et al Immediate Rule-Out of Acute Myocardial Infarction Using Electrocardiogram and Baseline High-Sensitivity Troponin I. Clin Chem 2017; 63: 394-402
  • 21 Sorensen NA, Neumann JT, Ojeda F. et al Challenging the 99th percentile: A lower troponin cutoff leads to low mortality of chest pain patients. Int J Cardiol 2017; 232: 289-293
  • 22 Rubini Gimenez M, Twerenbold R, Jaeger C. et al One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med 2015; 128: 861-870 e864
  • 23 Twerenbold R, Wildi K, Jaeger C. et al Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients With Renal Dysfunction. Circulation 2015; 131: 2041-2050
  • 24 Sörensen NA, Ludwig S, Makarova N. et al Prognostic Value of a Novel and Established High-Sensitivity Troponin I Assay in Patients Presenting with Suspected Myocardial Infarction. Biomolecules 2019; 9: 469
  • 25 Neumann JT, Sorensen NA, Rubsamen N. et al Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int J Cardiol 2019; 283: 35-40
  • 26 Morrow DA, Cannon CP, Jesse RL. et al National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem 2007; 53: 552-574
  • 27 Thygesen K, Mair J, Giannitsis E. et al How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012; 33: 2252-2257
  • 28 Mueller M, Biener M, Vafaie M. et al Absolute and relative kinetic changes of high-sensitivity cardiac troponin T in acute coronary syndrome and in patients with increased troponin in the absence of acute coronary syndrome. Clin Chem 2012; 58: 209-218
  • 29 Reichlin T, Irfan A, Twerenbold R. et al Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011; 124: 136-145
  • 30 Twerenbold R, Costabel JP, Nestelberger T. et al Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. J Am Coll Cardiol 2019; 74: 483-494
  • 31 Shah ASV, Anand A, Strachan FE. et al High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018; 392: 919-928
  • 32 Blankenberg S, Neumann JT, Westermann D. Diagnosing myocardial infarction: a highly sensitive issue. Lancet 2018; 392: 893-894
  • 33 Boeddinghaus J, Nestelberger T, Twerenbold R. et al Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. Eur Heart J 2018; 39: 3780-3794
  • 34 Haller PM, Boeddinghaus J, Neumann JT. et al Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes. Diabetes Care 2020; 43: 460-467
  • 35 Twerenbold R, Badertscher P, Boeddinghaus J. et al 0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation 2018; 137: 436-451
  • 36 Koechlin L, Boeddinghaus J, Nestelberger T. et al Early Diagnosis of Myocardial Infarction in Patients With a History of Coronary Artery Bypass Grafting. J Am Coll Cardiol 2019; 74: 587-589
  • 37 Neumann JT, Twerenbold R, Ojeda F. et al Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. N Engl J Med 2019; 380: 2529-2540
  • 38 Blankenberg S, Salomaa V, Makarova N. et al Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 2016; 37: 2428-2437 doi:10.1093/eurheartj/ehw172
  • 39 Twerenbold R, Neumann JT, Sorensen NA. et al Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. J Am Coll Cardiol 2018; 72: 620-632
  • 40 Hartikainen TS, Sorensen NA, Haller PM. et al Clinical application of the 4th Universal Definition of Myocardial Infarction. Eur Heart J 2020; 41: 2209-2216
  • 41 Amundson BE, Apple FS. Cardiac troponin assays: a review of quantitative point-of-care devices and their efficacy in the diagnosis of myocardial infarction. Clin Chem Lab Med 2015; 53: 665-676
  • 42 Sorensen NA, Neumann JT, Ojeda F. et al Diagnostic Evaluation of a High-Sensitivity Troponin I Point-of-Care Assay. Clin Chem 2019; 65: 1592-1601
  • 43 Boeddinghaus J, Nestelberger T, Koechlin L. et al Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. J Am Coll Cardiol 2020; 75: 1111-1124
  • 44 Dohi T, Maehara A, Brener SJ. et al Utility of peak creatine kinase-MB measurements in predicting myocardial infarct size, left ventricular dysfunction, and outcome after first anterior wall acute myocardial infarction (from the INFUSE-AMI trial). Am J Cardiol 2015; 115: 563-570
  • 45 Vargas KG, Kassem M, Mueller C. et al Copeptin for the early rule-out of non-ST-elevation myocardial infarction. Int J Cardiol 2016; 223: 797-804
  • 46 Keller T, Tzikas S, Zeller T. et al Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 2010; 55: 2096-2106
  • 47 Maisel A, Mueller C, Neath SX. et al Copeptin helps in the early detection of patients with acute myocardial infarction: primary results of the CHOPIN trial (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction). J Am Coll Cardiol 2013; 62: 150-160
  • 48 Mockel M, Searle J, Hamm C. et al Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study. Eur Heart J 2015; 36: 369-376
  • 49 Mueller-Hennessen M, Lindahl B, Giannitsis E. et al Combined testing of copeptin and high-sensitivity cardiac troponin T at presentation in comparison to other algorithms for rapid rule-out of acute myocardial infarction. Int J Cardiol 2019; 276: 261-267
  • 50 Giannitsis E, Mair J, Christersson C. et al How to use D-dimer in acute cardiovascular care. Eur Heart J Acute Cardiovasc Care 2017; 6: 69-80
  • 51 Magnussen C, Blankenberg S. Biomarkers for heart failure: small molecules with high clinical relevance. J Intern Med 2018; 283: 530-543
  • 52 Boeddinghaus J, Twerenbold R, Nestelberger T. et al Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clin Chem 2018; 64: 1347-1360