Diabetologie und Stoffwechsel 2020; 15(S 01): S65-S92
DOI: 10.1055/a-1193-3793
DDG-Praxisempfehlung

Therapie des Typ-2-Diabetes

Rüdiger Landgraf
1   Deutsche Diabetes Stiftung, Düsseldorf
,
Jens Aberle
2   Sektion Endokrinologie und Diabetologie, Universitäres Adipositas-Zentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf
,
Andreas L. Birkenfeld
3   Deutsches Zentrum für Diabetesforschung (DZD e. V.), Neuherberg
4   Medizinische Klinik IV, Diabetologie, Endokrinologie, Nephrologie, Universitätsklinikum Tübingen
,
Baptist Gallwitz
4   Medizinische Klinik IV, Diabetologie, Endokrinologie, Nephrologie, Universitätsklinikum Tübingen
,
Monika Kellerer
5   Zentrum für Innere Medizin I, Marienhospital Stuttgart
,
Harald H. Klein
6   Medizinische Klinik I, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
Dirk Müller-Wieland
7   Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Aachen
,
Michael A. Nauck
8   Diabeteszentrum Bochum-Hattingen, St.-Josef-Hospital, Ruhr-Universität, Bochum
,
Hans-Martin Reuter
9   Diabetologische Schwerpunktpraxis, Jena
,
Erhard Siegel
10   Abteilung für Innere Medizin – Gastroenterologie, Diabetologie/Endokrinologie und Ernährungsmedizin, St. Josefkrankenhaus Heidelberg GmbH, Heidelberg
› Author Affiliations

Die Praxisempfehlungen der Deutschen Diabetes Gesellschaft (DDG) zusammen mit der Deutschen Gesellschaft für Innere Medizin (DGIM) lehnen sich an die Inhalte der Nationalen VersorgungsLeitlinie (NVL) „Typ-2-Diabetes“ an [1]. Die in den vorliegenden Praxisempfehlungen der DDG vorgenommenen Modifikationen in der Therapie und deren Begründungen wurden auf der Basis neuer randomisierter, kontrollierter Studien (RCTs) und Metaanalysen aktualisiert und von der DDG und der DGIM konsentiert.



Publication History

Article published online:
05 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Nationale VersorgungsLeitlinien. www.leitlinien.de/nvl/diabetes
  • 2 Alberti KGMM, Eckel RH, Grundy SM. et al. Harmonizing the Metabolic Syndrome. Circulation 2009; 120: 1640-1645
  • 3 Elwyn G, Vermunt NPCA. Goal-based shared decision-making: developing an integrated model. Journal of Patient Experience 2019; 1-9 DOI: 10.1177/2374373519878604.
  • 4 Heinemann L, Kaiser P, Freckmann G. et al. HbA1c-Messung in Deutschland: Ist die Qualität ausreichend für Verlaufskontrolle und Diagnose?. Diabetologie 2018; 13: 46-53
  • 5 Landgraf R, Nauck M, Freckmann G. et al. Fallstricke bei der Diabetesdiagnostik: Wird zu lax mit Laborwerten umgegangen?. Dtsch Med Wochenschr 2018; 143: 1549-1555
  • 6 Nauck M, Gerdes C, Petersmann A. et al Definition, Klassifikation und Diagnostik des Diabetes mellitus. Update 2020. Diabetologie 2020; 15 (Suppl. 01) S9-S17
  • 7 Zhang Y, Pan XF, Chen J. et al. Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Diabetologia 2020; 63: 21-33
  • 8 Nationale VersorgungsLeitlinie (NVL) Diabetes – Strukturierte Schulungsprogramme. 2018 www.leitlinien.de/nvl/diabetes/schulungsprogramme
  • 9 Wang R, Song Y, Yan Y. et al. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016; 254: 193-199
  • 10 Parhofer KG, Birkenfeld AL, Krone W. et al. Lipidtherapie bei Patienten mit Diabetes mellitus. Diabetologie 2020; 15 (Suppl. 01) S160-S165
  • 11 The Task Force for the management of arterial hypertension of the European Society of cardiology (ESC) and the European Society of Hypertension (ESH). 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-3104
  • 12 Forouhi NG, Misra A, Mohan V. et al. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018; 361: k2234
  • 13 Serra-Majem L, Román-Viñas B, Sanchez-Villegas A. et al. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67: 1-55
  • 14 Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019; DOI: S2213-8587(19)30076-2.
  • 15 Evert AB, Dennison M, Gardner CD. et al. Nutrition therapy for adults with Diabetes or prediabetes: a consensus report. Diabetes Care 2019; 42 (05) 731-754
  • 16 Chester B, Babu JR, Greene MW. et al. The effects of popular diets on type 2 diabetes management. Diabetes Metab Res Rev 2019; 35: e3188
  • 17 Kempf K, Altpeter B, Berger J. et al. Efficacy of the telemedical lifestyle intervention program TeLiPro in advanced stages of type 2 diabetes: A randomized controlled trial. Diabetes Care 2017; 40 (07) 863-871
  • 18 Lean MEJ, Leslie WS, Barnes AC. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomized trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
  • 19 Adipositas – Prävention und Therapie. AWMF Register Nr. 050-001.
  • 20 Lawall H, Huppert P, Rümenapf G. et al. Periphere arterielle Verschlusskrankheit (PAVK), Diagnostik, Therapie und Nachsorge. AWMF Register Nr. 065-003 2015.
  • 21 Nationale VersorgungsLeitlinie Neuropathie bei Diabetes im Erwachsenenalter. 2016 www.leitlinien.de/mdb/downloads/nvl/diabetesmellitus/dm-neuropathie
  • 22 Nationale VersorgungsLeitlinie Prävention und Therapie von Netzhautkomplikationen bei Diabetes. 2016 www.leitlinien.de/nvl/html/netz.hautkomplikationen
  • 23 Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes Präventions- und Behandlungsstrategien für Fußkomplikationen. 2018 www.leitlinien.de/nvl/diabetes/fusskomplikationen
  • 24 Roeb E, Steffen HM, Bantel H. et al. S2k-Leitlinie: Nicht-alkoholische Fettlebererkrankungen. AWMF Register Nr. 021-025 2015.
  • 25 Nationale VersorgungsLeitlinie Nierenerkrankungen bei Diabetes im Erwachsenenalter. 2018 www.leitlinien.de/nvl/diabetes/nierenerkrankungen
  • 26 Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz. 2020 https://www.leitlinien.de/nvl/html/nvl-chronische-herzinsuffizienz
  • 27 Nationale VersorgungsLeitlinie Chronische Koronare Herzerkrankung (KHK). 2019 https://www.leitlinien.de/mdb/downloads/nvl/khk/,www.leitlinien.de/nvl/html/nvl-chronische-khk
  • 28 Piercy KL, Richard P, Troiano RP. et al. The physical activity guidelines for Americans. JAMA 2018; 320 (19) 2020-2028
  • 29 Jabardo-Camprubí G, Donat-Roca R, Sitjà-Rabert M. et al. Drop-out ratio between moderate to high-intensity physical exercise treatment by patients with, or at risk of, type 2 diabetes mellitus: A systematic review and meta-analysis. Physiol Behav 2020; 215: 112786
  • 30 The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 31 Unick JL, Gaussoin SA, Hill JO. et al. Objectively assessed physical activity and weight loss maintenance among individuals enrolled in a lifestyle intervention. Obesity (Silver Spring) 2017; 25 (11) 1903-1909
  • 32 The Look AHEAD Research Group. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomized clinical trial. Lancet Diabetes Endocrinol 2016; 4: 913-921
  • 33 Gregg EW, Lin J, Bardenheier B. et al. Impact of Intensive Lifestyle Intervention on Disability-Free Life Expectancy: The Look AHEAD Study. Diabetes Care 2018; 41: 1040-1048
  • 34 Chao AM, Wadden TA, Berkowitz RI. Look AHEAD Research Group. et al. Weight change 2 years after termination of the intensive lifestyle intervention in the Look AHEAD Study. Obesity 2020; 28: 893-890
  • 35 Yang D, Yang Y, Li Y. et al. Physical exercise as therapy for type 2 diabetes mellitus: from mechanism to orientation. Ann Nutr Metab 2019; 74 (04) 313-321
  • 36 Tarp J, Støle AP, Blond K. et al. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: a systematic review and metaanalysis. Diabetologia 2019; 62: 1129-1142
  • 37 Liu Y, Ye W, Chen Q. et al. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Int J Environ Res Public Health 2019; 16 (01) E140
  • 38 Pan A, Yeli Wang Y, Talaei M. et al. Relation of active, passive, and quitting smoking with incident diabetes: a meta-analysis and systematic review. Lancet Diabetes Endocrinol 2015; 3 (12) 958-996
  • 39 Kar D, Gillies C, Nath M. et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetologica 2019; 56: 839-850
  • 40 www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/m-r/metformin.html
  • 41 Lazarus B, Wu A, Shin JI. et al. Association of metformin use with risk of lactic acidosis across the range of kidney function. A community-based cohort study. JAMA Intern Med 2018; 178 (07) 903-910
  • 42 Griffin SJ, Leaver JK, Irving GJ. et al. Impact of metformin on cardiovascular disease: a meta-analysis of randomized trails among people with type 2 diabetes. Diabetologia 2017; 60: 1620-1629
  • 43 Palmer SC, Mavridis D, Nicolucci A. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes. A meta-analysis. JAMA 2016; 316 (03) 313-324
  • 44 Madsen KS, Kähler P, Kähler LKA. et al. Metformin and second- or third generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2019; 4: CD012368
  • 45 Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract 2018; 143: 409-419
  • 46 Thakur S, Daley B, Klubo-Gwiezdzinska J. The role of the antidiabetic drug metformin in the treatment of endocrine tumors. J Mol Endocrinol 2019; DOI: JME-19-0083.R1.
  • 47 De A, Kuppusamy G. Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2019; DOI: S0147-0272(19)30047-9.
  • 48 Rahmani J, Manzari N, Thompson J. et al. The effect of metformin on biomarkers associated with breast cancer outcomes: a systematic review, meta-analysis, and dose-response of randomized clinical trials. Clin Transl Oncol 2019; DOI: 10.1007/s12094-019-02108-9.
  • 49 Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; DOI: 10.1007/s00018-019-03134-0.
  • 50 Aljofan M, Riethmacher D. Anticancer activity of metformin: a systematic review of the literature. Future Sci OA 2019; 5 (08) FSO410
  • 51 Feng Z, Zhou X, Liu N. et al. Metformin use and prostate cancer risk: A meta-analysis of cohort studies. Medicine (Baltimore) 2019; 98 (12) e14955
  • 52 Oshima M, Jun M, Ohkuma T. et al. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes: the ADVANCE-ON study. Diabetologia 2019; 62: 1988-1997
  • 53 The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
  • 54 Rosenstock J, Kahn SE, Johansen OE. on behalf of the CAROLINA Investigators. et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: The CAROLINA randomized clinical trial. JAMA 2019; 322 (12) 1155-1166
  • 55 Rados DV, Pinto LC, Remonti LR. et al. The association between sulfonylurea use and all-cause and cardiovascular mortality: A meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med 2016; 13 (06) e1002091
  • 56 Azoulay L, Suissa S. Sulfonylureas and the risks of cardiovascular events and death: A methodological meta-regression analysis of the observational studies. Diabetes Care 2017; 40: 706-714
  • 57 Bain S, Druyts E, Balijepalli C. et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19 (03) 329-335
  • 58 Zhuang XD, He X, Yang DY. et al. Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: a comprehensive network meta-analysis of 166371 participants from170 randomized controlled trials. Cardiovasc Diabetol 2018; 17 (01) 79
  • 59 Powell WR, Christiansen CL, Miller DR. Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Ther 2018; 9 (04) 1431-1440
  • 60 Simpson SH, Lee J, Choi S. et al. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol 2015; 3 (01) 43-5134
  • 61 Hemmingsen B, Schroll JB, Lund SS. et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; 4: CD009008
  • 62 Hemmingsen B, Schroll JB, Jorn Wetterslev J. et al. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2 (03) E162-E175
  • 63 Vaccaro O, Masulli M, Nicolucci M. et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomized, multicenter trial. Lancet Diabetes Endocrinol 2017; 5: 887-897
  • 64 Chen K, Kang D, Yu M. et al. Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 2018; 20: 1029-1033
  • 65 Patorno E, Schneeweiss S, Gopalakrishnan C. et al. Using real-world data to predict findings of an ongoing phase IV cardiovascular outcome trial: Cardiovascular safety of linagliptin versus glimepiride. Diabetes Care 2019; 42: 2204-2210
  • 66 Scirica BM, Bhatt DL, Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369 (14) 1317-1326
  • 67 White WB, Cannon CP, Heller SR. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369 (14) 1327-1335
  • 68 Green JB, Bethel MA, Armstrong PW. et al. TECOS Study Group. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373 (03) 232-242
  • 69 Rosenstock J, Perkovic V, Johansen OE. et al. Effect of linagliptin vs placebo on major cardiovasculareEvents in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321 (01) 69-79
  • 70 Monami M, Ahrén B, Dicembrini I. et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 112-120
  • 71 Xu S, Zhang X, Tang L. et al. Cardiovascular effects of dipeptidylpeptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review. Postgrad Med 2017; 129: 205-215
  • 72 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319 (15) 1580-1591
  • 73 Ling J, Cheng P, Ge L. et al. The efficacy and safety of dipeptidyl peptidase- 4 inhibitors for type 2 diabetes: a Bayesian network meta-analysis of 58 randomized controlled trials. Acta Diabetologica 2019; 56: 249-272
  • 74 Li L, Li S, Deng K. et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies. BMJ 2016; 352: i610
  • 75 Guo WQ, Li L, Su Q. et al. Effect of dipeptidylpeptidase-4 inhibitors on heart failure: A network meta-analysis. Value Health 2017; 20: 1427-1430
  • 76 Nauck MA, Meier JJ, Cavender MA. et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017; 136 (09) 849-870
  • 77 Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019; 150: 8-16
  • 78 Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 2017; 40: 284-286
  • 79 Pinto LC, Rados DV, Barkann SS. et al. Dipeptidyl peptidase-4 inhibitors, pancreatic cancer and acute pancreatitis: A meta-analysis with trial sequential analysis. Sci Rep 2018; 8 (01) 782
  • 80 Overbeek JA, Bakker M, van der Heijden AAWA. et al. Risk of dipeptidyl peptidase‐4 (DPP‐4) inhibitors on site specific cancer: A systematic review and meta‐analysis. Diabetes Metab Res Rev 2018; 34: e3004
  • 81 Abrahami D, Douros A, Yin H. et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. BMJ 2018; 360: k872
  • 82 Li G, Crowley MJ, Tang H. et al. Dipeptidyl peptidase 4 inhibitors and risk of inflammatory bowel disease among patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Care 2019; 42 (07) e119-e121
  • 83 Storgaard H, Gluud LL, Bennett C. et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS One 2016; 11 (11) e0166125
  • 84 Monami M, Liistro F, Scatena A. et al. Short and medium-term efficacy of sodium glucose co-transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized clinical trials. Diabetes Obes Metab 2018; 20 (05) 1213-1222
  • 85 Usman MS, Siddiqi TJ, Memon MM. et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25 (05) 495-502
  • 86 Mishriky BM, Tanenberg RJ, Sewell KA. et al. Comparing SGLT-2 inhibitors to DPP-4 inhibitors as an add-on therapy to metformin in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab 2018; 44 (02) 112-120
  • 87 Seidu S, Kunutsor SK, Cos X. et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care Diabetes 2018; 12 (03) 265-283
  • 88 Rådholm K, Wu JH, Wong MG. et al. Effects of sodium-glucose cotransporter- 2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes – A systematic review. Diabetes Res Clin Pract 2018; 140: 118-128
  • 89 Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019; 150: 8-16
  • 90 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: A Systematic Review and Meta-analysis. JAMA 2018; 319 (15) 1580-1591
  • 91 Aronson R, Frias J, Goldman A. et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018; 20: 1453-1460
  • 92 Hollander P, Hill J, Johnson J. et al. Results of VERTIS SU extension study: safety and efficacy of ertugliflozin treatment over 104 weeks compared to glimepiride in patients with type 2 diabetes mellitus inadequately controlled on Metformin. Curr Med Res Opin 2019; 35 (08) 1335-1343
  • 93 Puckrin R, Saltiel MP, Reynier P. et al. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018; 55 (05) 503-514
  • 94 Lega IC, Bronskill SE, Campitelli MA. et al Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes Metab 2019; DOI: 10.1111/dom.13820. . [Epub ahead of print]
  • 95 Dave CV, Schneeweiss S, Patorno E. Comparative risk of genital infections associated with sodium glucose co-transporter-2 inhibitors. Diabetes Obes Metab 2019; 21: 434-438
  • 96 Lega IC, Bronskill SE, Campitelli MA. et al. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes Metab 2019; 21: 2394-2404
  • 97 McGovern AP, Hogg M, Shields BM. et al. Risk factors for genital infections in people initiating SGLT2 inhibitors and their impact on discontinuation. BMJ Open Diab Res Care 2020; 8: e001238
  • 98 Yang JY, Wang T, Pate V. et al. Real-world evidence on sodium-glucose cotransporter-2 inhibitor use and risk of Fournier’s gangrene. BMJ Open Diab Res Care 2020; 8: e000985
  • 99 Silverii GA, Dicembrini I, Monami M. et al. Fournier’s gangrene and sodium-glucose co-transporter-2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22: 272-275
  • 100 www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/SGLT2_inhibitors_(previously_Canagliflozin)/human_referral_prac_000059.jsp&mid=WC0b01ac05805c5
  • 101 Neal B, Perkovic V, Mahaffey KW. et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-657
  • 102 Scheen AJ. Does lower limb amputation concern all SGLT2 inhibitors?. Nat Rev Endocrinol 2018; 14 (06) 326-328
  • 103 Fioretto P, Del Prato S, Buse JB. et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (CKD Stage 3A): The DERIVE Study). Diabetes Obes Metab 2018; DOI: 10.1111/dom.13413.
  • 104 Inzucchi SE, Iliev H, Pfarr E. et al. Empagliflozin and assessment of lower limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 2018; 41: e4-e5
  • 105 Zhou Z, Jardine M, Perkovic V. et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia 2019; 62 (10) 1854-1867
  • 106 Perkovic V, Jardine MJ, Neal N. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380: 2295-2306
  • 107 Mahaffey KW, Jardine MJ, Bompoint S. et al. Canagliflozin and cardiovascular and renal outcomes in type 2 diabetes mellitus and chronic kidney disease in primary and secondary cardiovascular prevention groups. Circulation 2019; 140: 739-750
  • 108 Kohler S, Kaspers S, Salsali A. et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride. Diabetes Care 2018; 41 (08) 1809-1816
  • 109 Ruanpeng D, Ungprasert P, Sangtian J. et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev 2017; DOI: 10.1002/dmrr.2903.
  • 110 Tang HL, Li DD, Zhang JJ. et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016; 18 (12) 1199-1206
  • 111 Li X, Li T, Cheng Y. et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta‐analysis. Diabetes Metab Res Rev 2019; 35: e3170
  • 112 Hidayat K, Du X, Shi BM. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos Int 2019; 30: 1923-1940
  • 113 Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 2017; 376: 2300-2303
  • 114 Monami M, Nreu B, Zannoni S. et al. Effects of SGLT2 inhibitors on diabetic ketoacidosis: A meta-analysis of randomised controlled trials. Diabetes Res Clin Pract 2017; 130: 53-60
  • 115 Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 2017; 60: 1385-1389
  • 116 Thiruvenkatarajan V, Meyer EJ, Nanjappa N. et al. Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. Br J Anaesth 2019; 123 (01) 27e36
  • 117 Milder DA, Milder TY, Kam PCA. Sodium-glucose co-transporter type-2 inhibitors: pharmacology and perioperative considerations. Anaesthesia 2018; 73: 1008-1018
  • 118 Donnan K, Segar L. SGLT2 inhibitors and metformin: Dual antihyperglycemic therapy and the risk of metabolic acidosis in type 2 diabetes. Eur J Pharmacol 2019; 846: 23-29
  • 119 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-2128
  • 120 Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375: 323-334
  • 121 Cherney DZI, Zinman B, Inzucchi SE. et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017; 5: 610-621
  • 122 Verma S, Mazer CD, Fitchett D. et al. Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: sub-analysis of the EMPA-REG OUTCOME® randomized trial. Diabetologia 2018; 61: 1712-1723
  • 123 Zou CY, Liu XK, Sang YQ. et al. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes. A meta-analysis. Medicine (Baltimore) 2019; 98 (49) e18245
  • 124 Sattar N, McLaren J, Kristensen SL. et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms?. Diabetologia 2016; 59: 1333-1339
  • 125 Ferrannini E, Mark M, Mayoux E. et al. CV Protection in the EMPA-REG OUTCOME Trial: A “thrifty substrate” hypothesis. Diabetes Care 2016; 39: 1108-1114
  • 126 https://www.gba.de/downloads/40-268-4342/2017-04-20_DMPARL_Aenderung-Anlage-1_DMP-Diabetes-mellitus_TrG.pdf
  • 127 Wiviott SD, Raz I, Bonaca MP. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380 (04) 347-357
  • 128 Mosenzon O, Wiviott SD, Cahn A. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019; 7 (08) 606-617
  • 129 Furtado RHM, Bonaca MP, Raz I. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and Previous Myocardial Infarction. Circulation 2019; 139 (22) 2516-2527
  • 130 Kato ET, Silverman MG, Mosenzon O. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019; 139 (22) 2528-2536
  • 131 McMurray JJV, Solomon SD, Inzucchi SE. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008
  • 132 Neuen BL, Young T, Heerspink HJL. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7: 845-854
  • 133 Cannon CP, McGuire DK, Pratley R. et al. VERTIS-CV Investigators. Design and baseline characteristics of the evaluation of ertugliflozin efficacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am Heart J 2018; 206: 11-23
  • 134 Cannon CP. et al at the American Diabetes Association Virtual Scientific Sessions, June 16, 2020. www.acc.org/education-and-meetings/image-and-slide-gallery/media-detail?id=307A7E103BC04A588A3370709253FC35 (aufgerufen am 08.08.2020)
  • 135 Levin PA, Nguyen H, Wittbrodt ET. et al. Glucagon-like peptide-1 receptor agonists: a systematic review of comparative effectiveness research. Diabetes Metab Syndr Obes 2017; 10: 123-139
  • 136 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
  • 137 Verma S, Bhatt DL, Bain SC. et al. Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease. Circulation 2018; 137 (20) 2179-2183
  • 138 Marso SP, Nauck MA, Monk Fries T. et al. Myocardial infarction subtypes in patients with type 2 diabetes mellitus and the effect of liraglutide therapy (from the LEADER Trial). Am J Cardiol 2018; 121: 1467-1470
  • 139 Duan CM, Wan TF, Wang Y. et al. Cardiovascular outcomes of liraglutide in patients with type 2 diabetes. A systematic review and meta-analysis. Medicine 2019; 98: 46 (e17860)
  • 140 Mann JFE, Ørsted DD, Buse JB. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 2017; 377: 839-848
  • 141 Kristensen SL, Rørth R, Jhund PS. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7 (10) 776-785
  • 142 Liu J, Li L, Deng K. et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 2017; 357: j2499
  • 143 Pasternak B, Wintzell V, Eliasson B. et al. Use of glucagon like peptide 1 receptor agonists and risk of serious renal events: Scandinavian cohort study. Diabetes Care 2020; 43: 1326-1335
  • 144 Mac Isaac RJ. Dulaglutide and Insulin: How can the AWARD studies help guide clinical practice?. Diabetes Ther 2020; 11: 1627-1638
  • 145 Gerstein HC, Colhoun HM, Dagenais GR. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394: 121-130
  • 146 Gerstein HC, Colhoun HM, Dagenais GR. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomized, placebo-controlled trial. Lancet 2019; 394: 131-138
  • 147 Home PD, Ahrén B, Reusch JEB. et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Longterm efficacy with or without rescue therapy. Diabetes Res Clin Pract 2017; 131: 49-60
  • 148 Ahrén B, Carr MC, Murphy K. et al. Albiglutide for the treatment of type 2 diabetes mellitus: An integrated safety analysis of the HARMONY phase 3 trials. Diabetes Res Clin Pract 2017; 126: 230-239
  • 149 Hernandez AF, Green JB, Janmohamed S. et al. Harmony outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomized placebo-controlled trial. Lancet 2018; 392: 1519-1529
  • 150 Holman RR, Bethel MA, Mentz RJ. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377 (13) 1228-1239
  • 151 Fudim M, White J, Pagidipati NJ. et al. Effect of Once-weekly exenatide in patients with type 2 diabetes mellitus with and without heart failure and heart failure–related outcomes. Insights from the EXSCEL trial. Circulation 2019; 140: 1613-1622
  • 152 Bonora BM, Avogaro A, Fadini GP. Effects of exenatide long-acting release on cardiovascular events and mortality in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2019; 56: 1051-1060
  • 153 Bethel MA, Patel RA, Merrill P. et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018; 6: 105-113
  • 154 Mishriky BM, Cummings DM, Powell JR. et al. Comparing once-weekly semaglutide to incretin-based therapies in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab 2019; 45: 102-109
  • 155 Marso SP, Bain SC, Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375 (19) 1834-1844
  • 156 Leiter LA, Bain SC, Hramiak I. et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc Diabetol 2019; 18: 73
  • 157 Husain M, Birkenfeld AL, Donsmark M, PIONEER 6 Investigators et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; DOI: 10.1056.
  • 158 Avgerinos I, Michailidis T, Liakos A. et al. Oral semaglutide for type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2020; 22: 335-345
  • 159 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319 (15) 1580-1591
  • 160 Dicembrini I, Nreu B, Scatena A. et al. Microvascular effects of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol 2017; 54: 933-941
  • 161 Vilsbøll T, Bain SC, Leiter LA. et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab 2018; 20: 889-897
  • 162 Monami M, Nreu B, Scatena A. et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19 (09) 1233-1241
  • 163 Abd El Aziz M, Cahyadi O, Meier JJ. et al. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials. Diabetes Obes Metab 2020; 22: 699-704
  • 164 Azoulay L, Filion KB, Platt RW. et al. Association between incretin-based drugs and the risk of acute pancreatitis. JAMA Intern Med 2016; 176 (10) 1464-1473
  • 165 Wang T, Wang F, Gou Z. et al. Using real-world data to evaluate the association of incretin-based therapies with risk of acute pancreatitis: a meta-analysis of 1324515 patients from observational studies. Diabetes Obes Metab 2015; 17: 32-41
  • 166 Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine 2019; 66: 157-165
  • 167 Russell-Jones D, Pouwer F, Khunti K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes Metab 2018; 20: 488-496
  • 168 Marso SP, McGuire DK, Zinman B. et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. New Engl J Med 2017; 377 (08) 723-732
  • 169 Pieber TR, Marso SP, McGuire DK. et al. DEVOTE 3: temporal relationships between severe hypoglycaemia, cardiovascular outcomes and mortality. Diabetologia 2018; 61: 58-65
  • 170 Lau IT, Lee KF, So WY. et al. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2017; 10: 273-284
  • 171 Ritzel R, Roussel R, Giaccari A. et al. Better glycaemic control and less hypoglycaemia with insulin glargine 300 U/mL vs glargine 100 U/mL: 1-year patient-level meta-analysis of the EDITION clinical studies in people with type 2 diabetes. Diabetes Obes Metab 2018; 20: 541-548
  • 172 Bonadonna RC, Renard E, Cheng A. et al. Switching to insulin glargine 300 U/mL: Is duration of prior basal insulin therapy important?. Diabetes Res Clin Pract 2018; 142: 19-25
  • 173 Linnebjerg H, Lam EC, Seger ME. et al. Comparison of the pharmacokinetics and pharmacodynamics of LY2963 016 insulin glargine and EU and US-approved versions of lantus insulin glargine in healthy subjects: Three randomized euglycemic clamp studies. Diabetes Care 2015; 38: 2226-2233
  • 174 Rosenstock J, Hollander P, Bhargava A. et al. Similar efficacy and safety of LY2963 016 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (ELEMENT 2 study). Diabetes Obes Metabol 2015; 17: 734-741
  • 175 Yamada T, Kamata R, Ishinohachi K. et al. Biosimilar vs originator insulins: Systematic review and meta-analysis. Diabetes Obes Metab 2018; 20: 1787-1792
  • 176 But A, De Bruin ML, Bazelier MT. et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia 2017; 60: 1691-1703
  • 177 Maiorino MI, Chiodini P, Bellastella G. et al. Insulin and glucagon-like peptide1 receptor agonist combination therapy in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2017; 40: 614-624
  • 178 Guja C, Frías JP, Somogyi A. et al. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: The DURATION-7 randomized study. Diabetes Obes Metab 2018; 20: 1602-1161
  • 179 Rodbard HW, Lingvay I, Reed J. et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): A randomized, controlled trial. J Clin Endocrinol Metab 2018; 103 (06) 2291-2301
  • 180 Gentile S, Fusco A, Colarusso S. et al. A randomized, open-label, comparative, crossover trial on preference, efficacy, and safety profiles of lispro insulin U-100 versus concentrated lispro insulin U-200 in patients with type 2 diabetes mellitus: a possible contribution to greater treatment adherence. Expert Opin Drug Saf 2018; 17 (05) 445-450
  • 181 Heise T, Hövelmann U, Brøndsted L. et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metab 2015; 17: 682-688
  • 182 Bowering K, Case C, Harvey J. et al. Faster aspart versus insulin aspart as part of a basal-bolus regimen in inadequately controlled type 2 diabetes: The ONSET 2 trial. Diabetes Care 2017; 40 (07) 951-957
  • 183 Leohr J, Dellva MA, Coutant DE. et al Pharmacokinetics and glucodynamics of ultra rapid lispro (URLi) versus Humalog(®) (lispro) in patients with type 2 diabetes mellitus: A phase I randomized, crossover study. Clin Pharmacokinet 2020 May 29
  • 184 The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015; 373: 2103-2116
  • 185 Düsing R. Therapieziele bei der Hypertoniebehandlung. Dtsch Med Wochenschr 2017; 142: 1420-1429
  • 186 Banegas JR, Ruilope LM, de la Sierra A. et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 2018; 378: 1509-1520
  • 187 Khunti K, Gomes MB, Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab 2018; 20: 427-437
  • 188 Gough SC, Bode B, Woo V. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabet Endocrinol 2014; 2 (11) 885-893
  • 189 Diamant M, Nauck MA, Shaginian R. et al. Glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes. Diabetes Care 2014; 37 (10) 2763-2773
  • 190 Ahmann A, Rodbard HW, Rosenstock J. et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo controlled trial. Diabetes Obes Metab 2015; 17: 1056-1064
  • 191 Montvida O, Klein K, Kumar S. et al. Addition of or switch to insulin therapy in people treated with glucagon-like peptide-1 receptor agonists: A real-world study in 66 583 patients. Diabetes Obes Metab 2017; 19 (01) 108-117
  • 192 Billings LK, Doshi A, Gouet D. et al. Efficacy and safety of IDegLira versus basal-bolus insulin therapy in patients with type 2 diabetes uncontrolled on metformin and basal insulin: The DUAL VII randomized clinical trial. Diabetes Care 2018; 41 (05) 1009-1016
  • 193 Mach F, Baigent C, Catapano AL. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41 (01) 111-188
  • 194 Parhofer KG, Birkenfeld AL, Krone W. et al. Positionspapier zur Lipidtherapie bei Patienten mit Diabetes mellitus. Diabetologie 2018; 13 (02) S209-S213