B&G Bewegungstherapie und Gesundheitssport 2020; 36(03): 100-106
DOI: 10.1055/a-1152-3827
Wissenschaft

Blood Flow Restriction – Einsatz und Nutzen in der Rehabilitation

Blood Flow Restriction: Use and Benefits in Rehabilitation
Tom Behrendt
1   Lehrstuhl für Gesundheit und körperliche Aktivität, Fakultät für Humanwissenschaften, Institut III: Sportwissenschaft, Otto-von-Guericke-Universität Magdeburg
,
Robert Bielitzki
1   Lehrstuhl für Gesundheit und körperliche Aktivität, Fakultät für Humanwissenschaften, Institut III: Sportwissenschaft, Otto-von-Guericke-Universität Magdeburg
,
Lutz Schega
1   Lehrstuhl für Gesundheit und körperliche Aktivität, Fakultät für Humanwissenschaften, Institut III: Sportwissenschaft, Otto-von-Guericke-Universität Magdeburg
› Author Affiliations

Zusammenfassung

Das Primärziel muskuloskelettaler Rehabilitationsmaßnahmen orientiert auf die Wiederherstellung des prätraumatischen Leistungs- und Belastungsniveaus. Besonders infolge von orthopädischen Eingriffen oder nach Verletzungen sollte eine frühzeitige und progressive Rehabilitation erfolgen, um den Genesungsprozess optimal zu unterstützen und die körperliche Leistungsfähigkeit schnellstmöglich wiederherzustellen. In diesem Zusammenhang steht das Blood Flow Restriction-Training als vielversprechende Therapiemaßnahme im Fokus aktueller Forschung. Der vorliegende Übersichtsbeitrag stellt einen Einblick über die Funktionsweise und Wirkungsmechanismen des Blood Flow Restriction-Trainings sowie essenziellen Einsatzmöglichkeiten und Anwendungshinweise für die Praxis bereit.

Summary

The main objective of musculoskeletal rehabilitation measures is to restore pre-traumatic performance and levels of stress. Early and progressive rehabilitation should be carried out, especially as a result of orthopaedic procedures or after injuries, in order to optimally support the recovery process and to restore physical performance as quickly as possible. In this context, blood flow restriction training is the focus of current research as a promising therapy measure. This overview article provides an insight into the functioning and mechanisms of action of blood flow restriction training as well as essential applications and possibilities for practice.



Publication History

Received: 18 February 2020

Accepted: 03 March 2020

Article published online:
12 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport 2016; 19: 7-11.
  • 2 Fransen M, McConnell S, Harmer AR. et al. (2015) Exercise for osteoarthritis of the knee. The Cochrane database of systematic reviews. 2015 doi:10.1002/14651858.CD004376.pub3
  • 3 Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. The Physician and sportsmedicine 2011; 39: 100-110. doi:10.3810/psm.2011.09.1926
  • 4 Hunt MA, Charlton JM, Esculier J-F. Osteoarthritis year in review 2019: mechanics. Osteoarthritis and cartilage 2019; 28: 267-274 . doi: 10.1016/j.joca.2019.12.003
  • 5 American College of Sports Medicine. (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci sports Exerc 2009; 41: 687-708. DOI: 10.1249/MSS.0b013e3181915670.
  • 6 Hughes L, Rosenblatt B, Paton B, Patterson SD. Blood Flow Restriction Training in Rehabilitation Following Anterior Cruciate Ligament Reconstructive. Techniques in Orthopaedics 2018; 33: 106-113 . doi:10.1097/BTO.0000000000000265
  • 7 Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br J Sports Med 2017; 51: 1003-1011 . doi: 10.1136/bjsports-2016-097071
  • 8 Centner C, Wiegel P, Gollhofer A, König D. Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sports med 2018; 19: 669 . doi:10.1007/s40279-018-0994-1
  • 9 Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS. et al. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports med 2017; 48: 361-378. doi:10.1007/s40279-017-0795-y
  • 10 Farup J, Paoli F de, Bjerg K, Riis S, Ringgard S. et al. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports 2015; 25: 754-763. doi:10.1111/sms.12396
  • 11 Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport 2016; 19: 669-675 . doi:10.1016/j.jsams.2015.09.005
  • 12 Loenneke JP, Wilson JM, Marín PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: A meta-analysis. Eur J Appl Physiol 2012; 112: 1849-1859 . doi:10.1007/s00421-011-2167-x
  • 13 Loenneke JP, Fahs CA, Wilson JM, Bemben MG. Blood flow restriction: The metabolite / volume threshold theory. Med Hypotheses 2011; 77: 748-752. doi:10.1016/j.mehy.2011.07.029
  • 14 Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports med 2013; 43: 179-194. doi:0.1007 / s40279-013-0017-1
  • 15 Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports med 2015; 45: 187-200. DOI: 10.1007/s40279-014-0264-9.
  • 16 Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 2010; 24: 2857-2872 . doi:10.1519/JSC.0b013e3181e840f3
  • 17 Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol 2019; 126: 30-43 . doi:10.1152/japplphysiol.00685.2018
  • 18 Teixeira EL, Barroso R, Silva-Batista C, Laurentino GC, Loenneke JP. et al. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle & Nerve 2018; 57: 107-111 . doi:10.1002/mus.25616
  • 19 Suga T, Okita K, Morita N, Yokota T, Hirabayashi K. et al. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 2010; 108: 1563-1567. doi:10.1152/japplphysiol.00504.2009
  • 20 McLay KM, Gilbertson JE, Pogliaghi S, Paterson DH, Murias JM. Vascular responsiveness measured by tissue oxygen saturation reperfusion slope is sensitive to different occlusion durations and training status. Exp Physiol 2016; 101: 1309-1318 . doi:10.1113/EP085843
  • 21 Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med hypotheses 2012; 78: 151-154 . doi:10.1016/j.mehy.2011
  • 22 Yanagisawa O, Sanomura M. Effects of low-load resistance exercise with blood flow restriction on high-energy phosphate metabolism and oxygenation level in skeletal muscle. Interv Med Appl Sci 2017; 9: 67-75 . doi:10.1556/1646.9.2017.2.16
  • 23 Takano H, Morita T, Iida H, Asada K-i, Kato M. et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 2005; 95: 65-73.
  • 24 Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 2009; 37: 78-85 . doi:10.1097/JES.0b013e31819c2e5c
  • 25 Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow restriction. J Strength Cond Res 2013; 27: 2914-2926 . doi:10.1519/JSC.0b013e3182874721
  • 26 Jessee MB ,, Mattocks KT, Buckner SL, Dankel SJ, Mouser JG. et al. Mechanisms of Blood Flow Restriction. Techniques in Orthopaedics 2018; 33: 72-79 . doi:10.1097/BTO.0000000000000252
  • 27 Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG. et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 2012; 44: 406-412 . doi:10.1249/MSS.0b013e318233b4bc
  • 28 Lambert BS, Hedt C, Moreno M, Harris JD, McCulloch P. Blood Flow Restriction Therapy for Stimulating Skeletal Muscle Growth. Techniques in Orthopaedics 2018 33. 89-97. DOI: 10.1097/BTO.0000000000000275
  • 29 Mattocks KT, Jessee MB, Mouser JG, Dankel SJ, Buckner SL. et al. The Application of Blood Flow Restriction: Lessons From the Laboratory. Curr Sports Med Rep 2018; 17: 129-134 . doi:10.1249/JSR.0000000000000473
  • 30 Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Med 2014; 45: 313-325 . doi:10.1007/s40279-014-0288-1
  • 31 Brandner CR, May AK, Clarkson MJ, Warmington SA. Reported Side-effects and Safety Considerations for the Use of Blood Flow Restriction During Exercise in Practice and Research. Techniques in Orthopaedics 2018; 33: 114-121. doi:10.1097/BTO.0000000000000259
  • 32 Patterson SD, Brandner CR. The role of blood flow restriction training for applied practitioners: A questionnaire-based survey. J Sports Sci 2018; 36: 123-130. doi:10.1080/02640414.2017.1284341
  • 33 McEwen JA, Owens JG, Jeyasurya J. Why is it Crucial to Use Personalized Occlusion Pressures in Blood Flow Restriction (BFR) Rehabilitation?. J Med Biol Eng 2018; 99: 235 . doi:10.1007/s40846-018-0397-7
  • 34 Day B. Personalized Blood Flow Restriction Therapy: How, When and Where Can It Accelerate Rehabilitation After Surgery?. Arthroscopy 2018; 34: 2511-2513 . doi:10.1016/j.arthro.2018.06.022.
  • 35 Patterson SD, Hughes L, Warmington S, Burr J, Scott BR. et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2019; 10: 533 . doi:10.3389/fphys.2019.00533
  • 36 Fahs CA, Loenneke JP, Rossow LM, Tiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainology 2012; 1: 14-22. doi:10.17338/trainology.1.1_14
  • 37 Vanwye WR, Weatherholt AM, Mikesky AE. Blood Flow Restriction Training: Implementation into Clinical Practice. Int J Exerc Sci 2017; 10: 649-654 .
  • 38 Lixandrão ME, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY. et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol 2015; 115: 2471-2480 . doi:10.1007/s00421-015-3253-2
  • 39 Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T. et al. The influence of exercise load with and without different levels of blood flow restriction on acute changes in muscle thickness and lactate. Clin Physiol Funct Imaging 2017; 37: 734-740 . doi:10.1111/cpf.12367
  • 40 Loenneke JP, Thiebaud RS, Abe T, Bemben MG. Blood flow restriction pressure recommendations: the hormesis hypothesis. Med Hypotheses 2014; 82: 623-626 . doi: 10.1016/j.mehy.2014.02.023
  • 41 Nakajima T, Morita T, Sato Y. Key considerations when conducting KAATSU training. Int J KAATSU Ttaining Res 2011; 7: 1-6. doi:10.3806/ijktr.7.1
  • 42 Brown H, Binnie MJ, Dawson B, Bullock N, Scott BR. et al. Factors affecting occlusion pressure and ischemic preconditioning. Eur J Sport Sci 2018; 18: 387-396 . doi:10.1080/17461391.2017.1421712
  • 43 Hunt JEA, Stodart C, Ferguson RA. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction. Eur J appl Physiol 2016; 116: 1421-1432 . doi:10.1007/s00421-016-3399-6
  • 44 Törpel A, Herold F, Hamacher D, Müller N, Schega L. Strengthening the Brain—Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement?. JCM 2018; 7: 337. doi:10.3390/jcm7100337
  • 45 Karabulut M, McCarron J, Abe T, Sato Y, Bemben M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. J sports Sci 2011; 29: 951-958 . doi:10.1080/02640414.2011.572992.
  • 46 Sieljacks P, Knudsen L, Wernbom M, Vissing K. Body position influences arterial occlusion pressure: implications for the standardization of pressure during blood flow restricted exercise. Eur J Appl Physiol 2018; 118: 303-312 . doi:10.1007/s00421-017 3770-2
  • 47 Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T. et al. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med 2016; 46: 913-921 . doi:10.1007/s40279-016-0473-5
  • 48 Mouser JG, Dankel SJ, Jessee MB, Mattocks KT, Buckner SL. et al. A tale of three cuffs: The hemodynamics of blood flow restriction. Eur J Appl Physiol 2017; 117: 1493-1499 . doi:10.1007/s00421-017-3644-7
  • 49 Buckner SL, Dankel SJ, Counts BR, Jessee MB, Mouser JG. et al. Influence of cuff material on blood flow restriction stimulus in the upper body. J Physiol Sci 2017; 67: 207-215 . doi:10.1007/s12576-016-0457-0
  • 50 Younger ASE, McEwen JA, Inkpen K. Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet pressures. Clin Orthop Relat Res 2004; 286-293 .
  • 51 Loenneke JP, Allen KM, Mouser JG, Thiebaud RS, Kim D. et al. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol 2015; 115: 397-405 . doi:10.1007/s00421-014-3030-7
  • 52 Hughes L, Jeffries O, Waldron M, Rosenblatt B, Gissane C. et al. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ 2018; 6: e4697 . doi:10.7717/peerj.4697
  • 53 Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T. et al. Blood flow restriction: Effects of cuff type on fatigue and perceptual responses to resistance exercise. Acta Physiol Hung 2014; 101: 158-166 . doi:10.1556/APhysiol.101.2014.2.4
  • 54 Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T. et al. Effect of cuff type on arterial occlusion. Clin Physiol Funct Imaging 2013; 33: 325-327. doi:10.1111/cpf.12035
  • 55 Kacin a, Rosenblatt B, Grapar Zargi T, Biswas A. Safety considerations with blood flow restricted resistance training. Annales Kinesiologiae 2015; 3-25 .
  • 56 Bezerra de Morais AT, Santos Cerqueira M, Moreira Sales R, Rocha T, Galvão de Moura Filho A. Upper limbs total occlusion pressure assessment: Doppler ultrasound reproducibility and determination of predictive variables. Clin Physiol Funct Imaging 2017 37. 437-441. DOI: 10.1111/cpf.12330
  • 57 Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS. et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol 2012; 112: 2903-2912 . doi:10.1007/s00421-011-2266-8
  • 58 Karabulut M, Leal JA, Garcia SD, Cavazos C, Bemben M. Tissue oxygenation, strength and lactate response to different blood flow restrictive pressures. Clin Physiol Funct Imaging 2014; 34: 263-269.
  • 59 Weatherholt A, Beekley M, Greer S, Urtel M, Mikesky A. Modified Kaatsu training: Adaptations and subject perceptions. Med Sci Sports Exerc 2012; 45: 952-961. doi:10.1249/MSS.0b013e31827ddb1f
  • 60 Hughes L, Rosenblatt B, Gissane C, Paton B, Patterson SD. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports 2018; 28: 1757-1765. doi:10.1111/sms.13092
  • 61 Wilk M, Krzysztofik M, Gepfert M, Poprzecki S, Gołaś A. et al. Technical and Training Related Aspects of Resistance Training Using Blood Flow Restriction in Competitive Sport - A Review. J Human Kinet 2018; 65: 249-260 . doi:10.2478/hukin-2018-0101
  • 62 Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res 2013; 27: 3068-3075. doi:10.1519/JSC.0b013e31828a1ffa
  • 63 Brandner CR, Kidgell DJ, Warmington SA. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand J Med Sci Sports 2015; 25: 770-777. doi:10.1111/sms.12297
  • 64 Amano S, Ludin AFM, Clift R, Nakazawa M, Law TD. et al. Effectiveness of blood flow restricted exercise compared with standard exercise in patients with recurrent low back pain: study protocol for a randomized controlled trial. Trials 2016; 17: 81 . doi:10.1186/s13063-016-1214-7
  • 65 KAATSU Global Inc. KAATSU Equipment User Manual: Including KAATSU Protocols for Training, Recovery, Rehabilitation, Fitness, and Wellness (2017). Im Internet:. https://www.kaatsu-global.com/Ass-ets/Files/Presentations/KAATSU_User_Manual.pdf; Stand: 18. 03.2020
  • 66 Ladlow P, Coppack RJ, Dharm-Datta S, Conway D, Sellon E. et al. Low-Load Resistance Training With Blood Flow Restriction Improves Clinical Outcomes in Musculoskeletal Rehabilitation: A Single-Blind Randomized Controlled Trial. Front Physiol 2018; 9: 1269 . doi:10.3389/fphys.2018.01269
  • 67 Wilkinson BG, Donnenwerth JJ, Peterson AR. Use of Blood Flow Restriction Training for Postoperative Rehabilitation. ACSM 2019; 18 .
  • 68 Loenneke JP, Abe T, Wilson JM, Thiebaud RS, Fahs CA. et al. (2012) Blood flow restriction: an evidence based progressive model (Review). Acta Physiol Hung 2012; 99: 235-250. doi:10.1556/APhysiol.99.2012.3.1.
  • 69 Ishida T, Yarimizu K, Gute DC, Korthuis RJ. (1997) Mechanisms of ischemic preconditioning. Shock 1997; 8: 86-94.
  • 70 Patterson SD, Hughes L, Owens J. Early Postoperative Role of Blood Flow Restriction Therapy to Avoid Muscle Atrophy. In: Noyes FR, Barber-Westin S. (Hrsg). Return to Sport after ACL Reconstruction and other Knee Operations: Limiting the Risk of Reinjury and Maximizing Athletic Performance. Cham:: Springer International; 2019: 261-274.
  • 71 Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000; 32: 2035-2039.
  • 72 Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport 2011; 14: 95-99 . doi:10.1016/j.jsams.2010.08.007
  • 73 Barbalho M, Rocha AC, Seus TL, Raiol R, Del Vecchio FB. et al. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil 2019; 33: 233-240. doi:10.1177/0269215518801440
  • 74 Iversen E, Røstad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci 2016; 5: 115-118 . doi:10.1016/j.jshs.2014.12.005
  • 75 Jeffries O, Waldron M, Pattison JR, Patterson SD. Enhanced Local Skeletal Muscle Oxidative Capacity and Microvascular Blood Flow Following 7-Day Ischemic Preconditioning in Healthy Humans. Front Physiol 2018; 9: 463 . doi:10.3389/fphys.2018.00463
  • 76 Dirks ML, Wall BT, Snijders T, Ottenbros CLP, Verdijk LB. et al. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf.) 2014; 210: 628-641. doi:10.1111/apha.12200
  • 77 Natsume T, Ozaki H, Saito AI, Abe T, Naito H. Effects of Electrostimulation with Blood Flow Restriction on Muscle Size and Strength. Med Sci Sports Exerc 2015; 47: 2621-2627. doi:10.1249/MSS.0000000000000722
  • 78 Slysz JT, Burr JF. The Effects of Blood Flow Restricted Electrostimulation on Strength and Hypertrophy. J Sport Rehabil 2018; 27: 257-262. doi:10.1123/jsr.2017-0002
  • 79 Gorgey AS, Timmons MK, Dolbow DR, Bengel J, Fugate-Laus KC. et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol 2016; 116: 1231-1244 . doi:10.1007/s00421-016-3385-z
  • 80 Andrade SF, Skiba GH, Krueger E, Rodacki AF. Effects of Electrostimulation with Blood Flow Restriction on Muscle Thickness and Strength of the Soleus. J Exerc Physiol Online 2016; 19: 59-69.
  • 81 Clarkson MJ, Conway L, Warmington SA. Blood flow restriction walking and physical function in older adults: A randomized control trial. J Sci Med Sport 2017; : 1041-1046. DOI: 10.1016/j.jsams.2017.04.012.
  • 82 Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985) 2006 100. 1460-1466.
  • 83 Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H. et al. Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2 MAX in Young Men. J Sports Sci Med 2010; 9: 452-458.
  • 84 Conceição MS, Junior EMM, Telles GD, Libardi CA, Castro A. et al. Augmented Anabolic Responses after 8-wk Cycling with Blood Flow Restriction. Med Sci Sports Exerc 2019; 51: 84-93. doi:10.1249/MSS.0000000000001755
  • 85 Corvino RB, Rossiter HB, Loch T, Martins JC, Caputo F. Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol 2017; 117: 39-52. doi:10.1007/s00421-016-3497-5
  • 86 Barber-Westin S, Noyes FR. Blood Flow-Restricted Training for Lower Extremity Muscle Weakness due to Knee Pathology: A Systematic Review. Sports Health 2019; 11: 69-83. doi:10.1177/1941738118811337
  • 87 Korakakis V, Whiteley R, Epameinontidis K. Blood Flow Restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Ther Sport 2018; 32: 235-243. doi:10.1016/j.ptsp.2018.05.021
  • 88 Giles L, Webster KE, McClelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med 2017; 51: 1688-1694. doi:10.1136/bjsports-2016-096329
  • 89 Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. Mechanisms of exercise-induced hypoalgesia. J Pain 2014; 15: 1294-1304. doi:10.1016/j.jpain.2014.09.006
  • 90 Hughes L, Rosenblatt B, Haddad F, Gissane C, McCarthy D. et al. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med 2019; 49: 1787-1805. doi:10.1007/s40279-019-01137-2
  • 91 Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y. et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 2011; 111: 2525-2533. doi:10.1007/s00421-011-1873-8
  • 92 Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y. et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 2006; 22: 112-119.
  • 93 Madarame H, Ochi E, Tomioka Y, Nakazato K, Ishii N. Blood flow-restricted training does not improve jump performance in untrained young men. Acta Physiol Hung 2011; 98: 465-471. doi:10.1556/APhysiol.98.2011.4.10.
  • 94 Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ. et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011; 43: 1334-1359. doi:10.1249/MSS.0b013e318213fefb
  • 95 Minniti MC, Statkevich AP, Kelly RL, Rigsby VP, Exline MM. et al. The Safety of Blood Flow Restriction Training as a Therapeutic Intervention for Patients With Musculoskeletal Disorders: A Systematic Review. Am J Sports Med 2019; 11: 363546519882652 . doi:10.1177/0363546519882652
  • 96 Wong ML, Formiga MF, Owens J, Asken T, Cahalin LP. Safety of Blood Flow Restricted Exercise in Hypertension. Techniques in Orthopaedics 2018; 33: 80-88. doi:10.1097/BTO.0000000000000288
  • 97 Hughes L, Patterson SD, Haddad F, Rosenblatt B, Gissane C. et al. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health Service trial. Phys Ther Sports 2019; 39: 90-98. doi:10.1016/j.ptsp.2019.06.014
  • 98 Nakajima T, Kurano M, Iida H, Takano H, Oonuma H. et al. Use and safety of KAATSU training: Resultsof a national survey. Int J KAATSU Training Res 2006; 2: 5-13. doi:10.3806/ijktr.2.5
  • 99 Hackney KJ, Brown LWJTC, Stone KA, Tennent DJ. The Role of Blood Flow Restriction Training to Mitigate Sarcopenia, Dynapenia, and Enhance Clinical Recovery. Techniques in Orthopaedics 2018; 33: 98-105. doi:10.1097/BTO.0000000000000271
  • 100 Centner C, Ritzmann R, Gollhofer A, König D. Effects of Whole-Body Vibration Training and Blood Flow Restriction on Muscle Adaptations in Women: A Randomized Controlled Trial. J Strength Cond Res 2020; 34: 603 . doi:10.1519/JSC.0000000000003401
  • 101 Zong-Yan C, Wen-Yi W, Jia-De L, Wu C-M. Effects of whole body vibration training combined with blood flow restriction on muscle adaptation. Eur J Sport Sci 2020; 28: 1-9. doi: 10.1080/17461391.2020.1728389