Subscribe to RSS
DOI: 10.1055/a-1132-6223
Clinical and Molecular Genetics of Primary Hyperparathyroidism
Funding: The Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (ZIA DK043012–18) supported this research.

Abstract
Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.
Key words
tumor suppressor - oncogene - multiple endocrine neoplasia - MEN1 - MEN2A - jaw tumor syndrome - CDC73 - GCM2Publication History
Received: 09 December 2019
Accepted: 25 February 2020
Article published online:
30 March 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1
Bilezikian JP.
Primary hyperparathyroidism. J Clin Endocrinol Metab 2018; 103: 3993-4004
MissingFormLabel
- 2
Carafoli E,
Krebs J.
Why Calcium? How Calcium Became the Best Communicator. The Journal of Biological Chemistry
2016; 291: 20849-20857
MissingFormLabel
- 3
Sanchez S,
Tafforeau P,
Ahlberg PE.
The humerus of Eusthenopteron: a puzzling organization presaging the
establishment of tetrapod limb bone marrow. Proc Biol Sci 2014; 281: 20140299
MissingFormLabel
- 4
Bouillon R,
Suda T.
Vitamin D: calcium and bone homeostasis during evolution. Bonekey Rep 2014; 3: 480
MissingFormLabel
- 5
Lacey DL,
Timms E,
Tan HL.
et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation
and activation. Cell 1998; 93: 165-176
MissingFormLabel
- 6
Okabe M,
Graham A.
The origin of the parathyroid gland. Proc Natl Acad Sci USA 2004; 101: 17716-17719
MissingFormLabel
- 7
Zajac JD,
Danks JA.
The development of the parathyroid gland: from fish to human. Curr Opin Nephrol Hypertens
2008; 17: 353-356
MissingFormLabel
- 8
Loretz CA.
Extracellular calcium-sensing receptors in fishes. Comp Biochem Physiol A Mol Integr
Physiol 2008; 149: 225-245
MissingFormLabel
- 9
Brown EM.
Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract
Res Clin Endocrinol Metab 2013; 27: 333-343
MissingFormLabel
- 10
Zhang C,
Miller CL,
Gorkhali R.
et al. Molecular basis of the extracellular ligands mediated signaling by the calcium
sensing receptor. Front Physiol 2016; 7: 441
MissingFormLabel
- 11
Cantley LK,
Russell J,
Lettieri D.
et al. 1,25-Dihydroxyvitamin D3 suppresses parathyroid hormone secretion from bovine
parathyroid cells in tissue culture. Endocrinology 1985; 117: 2114-2119
MissingFormLabel
- 12
Russell J,
Lettieri D,
Sherwood LM.
Suppression by 1,25(OH)2D3 of transcription of the pre-proparathyroid hormone
gene. Endocrinology 1986; 119: 2864-2866
MissingFormLabel
- 13
Silver J,
Naveh-Many T,
Mayer H.
et al. Regulation by vitamin D metabolites of parathyroid hormone gene transcription
in
vivo in the rat. J Clin Invest 1986; 78: 1296-1301
MissingFormLabel
- 14
Silver J,
Russell J,
Sherwood LM.
Regulation by vitamin D metabolites of messenger ribonucleic acid for
preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci
USA 1985; 82: 4270-4273
MissingFormLabel
- 15
Bilezikian JP,
Cusano NE,
Khan AA.
et al. Primary hyperparathyroidism. Nat Rev Dis Primers 2016; 2: 16033
MissingFormLabel
- 16
Insogna KL.
Primary hyperparathyroidism. N Engl J Med 2018; 379: 1050-1059
MissingFormLabel
- 17
Marx SJ.
Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 2005;
5: 367-375
MissingFormLabel
- 18 Hyde SM, Rich TA, Waguespack SG et al CDC73-Related Disorders. In:
GeneReviews® [Internet]. Seattle (WA): University of Washington,
Seattle; 1993–2019 ; 2008 Dec 31 [Updated 2018 Apr 26]
MissingFormLabel
- 19
Simonds WF,
James-Newton LA,
Agarwal SK.
et al. Familial isolated hyperparathyroidism: Clinical and genetic characteristics
of
thirty-six kindreds. Medicine (Baltimore) 2002; 81: 1-26
MissingFormLabel
- 20
Guan B,
Welch JM,
Sapp JC.
et al. GCM2-activating mutations in familial isolated hyperparathyroidism. Am J Hum
Genet 2016; 99: 1034-1044
MissingFormLabel
- 21
Marx SJ,
Attie MF,
Levine MA.
et al. The hypocalciuric or benign variant of familial hypercalcemia: clinical and
biochemical features in fifteen kindreds. Medicine(Baltimore) 1981; 60: 397-412
MissingFormLabel
- 22
Harris TJ,
McCormick F.
The molecular pathology of cancer. Nat Rev Clin Oncol 2010; 7: 251-265
MissingFormLabel
- 23
Knudson AG.
Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;
68: 820-823
MissingFormLabel
- 24
Knudson AG.
Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001; 1: 157-162
MissingFormLabel
- 25 Arnold A, Agarwal SK, Thakker RV. Familial States of Primary
Hyperparathyroidism. In: Bilezikian JP, ed. Primer on the Metabolic
Bone Diseases and Disorders of Mineral Metabolism. 9th ed.
Washington, DC: American Society for Bone and Mineral Research;
2019: 629–638
MissingFormLabel
- 26
Schussheim DH,
Skarulis MC,
Agarwal SK.
et al. Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends
Endocrinol Metab 2001; 12: 173-178
MissingFormLabel
- 27
Chandrasekharappa SC,
Guru SC,
Manickam P.
et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science
1997; 276: 404-407
MissingFormLabel
- 28
Agarwal SK.
The future: genetics advances in MEN1 therapeutic approaches and management
strategies. Endocr Relat Cancer 2017; 24: T119-T134
MissingFormLabel
- 29
Lemos MC,
Thakker RV.
Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported
in the first decade following identification of the gene. Hum Mutat 2008; 29: 22-32
MissingFormLabel
- 30
Miedlich S,
Krohn K,
Lamesch P.
et al. Frequency of somatic MEN1 gene mutations in monoclonal parathyroid tumours
of
patients with primary hyperparathyroidism. Eur J Endocrinol 2000; 143: 47-54
MissingFormLabel
- 31
Uchino S,
Noguchi S,
Sato M.
et al. Screening of the Men1 gene and discovery of germ-line and somatic mutations
in
apparently sporadic parathyroid tumors. Cancer Res 2000; 60: 5553-5557
MissingFormLabel
- 32
Scarpelli D,
D'Aloiso L,
Arturi F.
et al. Novel somatic MEN1 gene alterations in sporadic primary hyperparathyroidism
and
correlation with clinical characteristics. J Endocrinol Invest 2004; 27: 1015-1021
MissingFormLabel
- 33
Vierimaa O,
Villablanca A,
Alimov A.
et al. Mutation analysis of MEN1, HRPT2, CASR, CDKN1B, and AIP genes in primary
hyperparathyroidism patients with features of genetic predisposition. J Endocrinol
Invest 2009; 32: 512-518
MissingFormLabel
- 34
Heppner C,
Kester MB,
Agarwal SK.
et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nature Genet 1997;
16: 375-378
MissingFormLabel
- 35
Cromer MK,
Starker LF,
Choi M.
et al. Identification of somatic mutations in parathyroid tumors using whole-exome
sequencing. J Clin Endocrinol Metab 2012; 97: E1774-E1781
MissingFormLabel
- 36
Newey PJ,
Nesbit MA,
Rimmer AJ.
et al. Whole-exome sequencing studies of nonhereditary (sporadic) parathyroid
adenomas. J Clin Endocrinol Metab 2012; 97: E1995-2005
MissingFormLabel
- 37
Di Meo G,
Sgaramella LI,
Ferraro V.
et al. Parathyroid carcinoma in multiple endocrine neoplasm type 1 syndrome: case
report and systematic literature review. Clin Exp Med 2018; 18: 585-593
MissingFormLabel
- 38
Costa-Guda J,
Imanishi Y,
Palanisamy N.
et al. Allelic imbalance in sporadic parathyroid carcinoma and evidence for its de
novo
origins. Endocrine 2013; 44: 489-495
MissingFormLabel
- 39
Yu W,
McPherson JR,
Stevenson M.
et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2
mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA
mutagenesis and mutational enrichment in kinases associated with cell migration
and invasion. J Clin Endocrinol Metab 2015; 100: E360-364
MissingFormLabel
- 40
Pandya C,
Uzilov AV,
Bellizzi J.
et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI
Insight 2017; 2: e92061
MissingFormLabel
- 41
Jackson CE,
Norum RA,
Boyd SB.
et al. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically
and genetically distinct syndrome. Surgery 1990; 108: 1006-1012
MissingFormLabel
- 42
Bradley KJ,
Hobbs MR,
Buley ID.
et al. Uterine tumours are a phenotypic manifestation of the hyperparathyroidism-jaw
tumour syndrome. J Intern Med 2005; 257: 18-26
MissingFormLabel
- 43
Chen JD,
Morrison C,
Zhang C.
et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003; 253: 634-642
MissingFormLabel
- 44
Mehta A,
Patel D,
Rosenberg A.
et al.
Hyperparathyroidism-jaw tumor syndrome: Results of operative management. Surgery 2014;
156: 1315-1324 discussion 1324–1315
MissingFormLabel
- 45
Carpten JD,
Robbins CM,
Villablanca A.
et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor
syndrome. Nat Genet 2002; 32: 676-680
MissingFormLabel
- 46
Newey PJ,
Bowl MR,
Thakker RV.
Parafibromin–functional insights. J Intern Med 2009; 266: 84-98
MissingFormLabel
- 47
Domingues R,
Tomaz RA,
Martins C.
et al. Identification of the first germline HRPT2 whole-gene deletion in a patient
with
primary hyperparathyroidism. Clin Endocrinol 2012; 76: 33-38
MissingFormLabel
- 48
Cascon A,
Huarte-Mendicoa CV,
Javier Leandro-Garcia L.
et al. Detection of the first gross CDC73 germline deletion in an HPT-JT syndrome
family. Gene Chromosome Cancer 2011; 50: 922-929
MissingFormLabel
- 49
Bricaire L,
Odou MF,
Cardot-Bauters C.
et al. Frequent large germline HRPT2 deletions in a French National cohort of patients
with primary hyperparathyroidism. J Clin Endocrinol Metab 2013; 98: E403-E408
MissingFormLabel
- 50
Guarnieri V,
Seaberg RM,
Kelly C.
et al. Large intragenic deletion of CDC73 (exons 4-10) in a three-generation
hyperparathyroidism-jaw tumor (HPT-JT) syndrome family. BMC Med Genet 2017; 18: 83
MissingFormLabel
- 51
Teh BT,
Farnebo F,
Kristoffersson U.
et al. Autosomal dominant primary hyperparathyroidism and jaw tumor syndrome associated
with renal hamartomas and cystic kidney disease: linkage to 1q21–q32 and
loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab 1996; 81:
4204-4211
MissingFormLabel
- 52
Vocke CD,
Ricketts CJ,
Ball MW.
et al. CDC73 Germline mutation in a family with mixed epithelial and stromal
tumors. Urology 2019; 124: 91-97
MissingFormLabel
- 53
Krebs LJ,
Shattuck TM,
Arnold A.
HRPT2 mutational analysis of typical sporadic parathyroid adenomas. J Clin Endocrinol
Metab 2005; 90: 5015-5017
MissingFormLabel
- 54
Howell VM,
Haven CJ,
Kahnoski K.
et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid
tumours. J Med Genet 2003; 40: 657-663
MissingFormLabel
- 55
Cetani F,
Pardi E,
Borsari S.
et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline
and
somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab
2004; 89: 5583-5591
MissingFormLabel
- 56
Shattuck TM,
Valimaki S,
Obara T.
et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid
carcinoma. N Engl J Med 2003; 349: 1722-1729
MissingFormLabel
- 57
Cetani F,
Pardi E,
Borsari S.
et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline
and
somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab
2004; 89: 5583-5591
MissingFormLabel
- 58
van der Tuin K,
Tops CMJ,
Adank MA.
et al. CDC73-related disorders: Clinical manifestations and case detection in primary
hyperparathyroidism. J Clin Endocrinol Metab 2017; 102: 4534-4540
MissingFormLabel
- 59
Pellegata NS,
Quintanilla-Martinez L,
Siggelkow H.
et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome
in
rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558-15563
MissingFormLabel
- 60
Alrezk R,
Hannah-Shmouni F.
Stratakis CAMEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat
Cancer 2017; 24: T195-T208
MissingFormLabel
- 61
Fritz A,
Walch A,
Piotrowska K.
et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the
rat. Cancer Res 2002; 62: 3048-3051
MissingFormLabel
- 62
Agarwal SK,
Mateo CM,
Marx SJ.
Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple
endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009; 94: 1826-1834
MissingFormLabel
- 63
Georgitsi M,
Raitila A,
Karhu A.
et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol
Metab 2007; 92: 3321-3325
MissingFormLabel
- 64
Molatore S,
Marinoni I,
Lee M.
et al. A novel germline CDKN1B mutation causing multiple endocrine tumors: clinical,
genetic and functional characterization. Hum Mutat 2010; 31: E1825-1835
MissingFormLabel
- 65
Malanga D,
De Gisi S,
Riccardi M.
et al. Functional characterization of a rare germline mutation in the gene encoding
the
cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with
multiple endocrine neoplasia-like phenotype. Eur J Endocrinol 2012; 166: 551-560
MissingFormLabel
- 66
Occhi G,
Regazzo D,
Trivellin G.
et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes
a
MEN4 phenotype. PLoS Genet 2013; 9: e1003350
MissingFormLabel
- 67
Tonelli F,
Giudici F,
Giusti F.
et al. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient
affected by MEN4 syndrome. Eur J Endocrinol 2014; 171: K7-K17
MissingFormLabel
- 68
Costa-Guda J,
Marinoni I,
Molatore S.
et al. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding
p27Kip1, in sporadic parathyroid adenomas. J Clin Endocrinol Metab 2011; 96: E701-E706
MissingFormLabel
- 69
Belar O,
De La Hoz C,
Perez-Nanclares G.
et al. Novel mutations in MEN1, CDKN1B and AIP genes in patients with multiple
endocrine neoplasia type 1 syndrome in Spain. Clinical endocrinology 2012; 76: 719-724
MissingFormLabel
- 70
Elston MS,
Meyer-Rochow GY,
Dray M.
et al. Early Onset Primary Hyperparathyroidism Associated with a Novel Germline
Mutation in CDKN1B. Case Rep Endocrinol. 2015 2015.
MissingFormLabel
- 71
Frederiksen A,
Rossing M,
Hermann P.
et al. Clinical Features of Multiple Endocrine Neoplasia Type 4 - Novel pathogenic
variant and review of published cases. J Clin Endocrinol Metab 2019; 104: 3637-3646
MissingFormLabel
- 72
Costa-Guda J,
Arnold A.
Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid
tumors. Mol Cell Endocrinol 2014; 386: 46-54
MissingFormLabel
- 73
Simonds WF,
Robbins CM,
Agarwal SK.
et al. Familial isolated hyperparathyroidism is rarely caused by germline mutation
in
HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol
Metab 2004; 89: 96-102
MissingFormLabel
- 74
Warner J,
Epstein M,
Sweet A.
et al. Genetic testing in familial isolated hyperparathyroidism: unexpected results
and
their implications. J Med Genet 2004; 41: 155-160
MissingFormLabel
- 75
Cetani F,
Pardi E,
Ambrogini E.
et al. Genetic analyses in familial isolated hyperparathyroidism: implication for
clinical assessment and surgical management. Clin Endocrinol 2006; 64: 146-152
MissingFormLabel
- 76
Pontikides N,
Karras S,
Kaprara A.
et al. Genetic basis of familial isolated hyperparathyroidism: a case series and a
narrative review of the literature. J Bone Miner Metab 2014; 32: 351-366
MissingFormLabel
- 77
Baumber L,
Tufarelli C,
Patel S.
et al. Identification of a novel mutation disrupting the DNA binding activity of GCM2
in autosomal recessive familial isolated hypoparathyroidism. J Med Genet 2005; 42:
443-448
MissingFormLabel
- 78
Canaff L,
Zhou X,
Mosesova I.
et al. Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene:
effect of a dominant-negative GCM2 mutant associated with autosomal dominant
hypoparathyroidism. Hum Mutat 2009; 30: 85-92
MissingFormLabel
- 79
Cetani F,
Pardi E,
Aretini P.
et al. Whole exome sequencing in familial isolated primary hyperparathyroidism. J
Endocrinol Invest 2019; 43: 231-245
MissingFormLabel
- 80
Riccardi A,
Aspir T,
Shen L.
et al. Analysis of activating GCM2 sequence variants in sporadic parathyroid
adenomas. J Clin Endocrinol Metab 2019; 104: 1948-1952
MissingFormLabel
- 81
Papadopoulou A,
Gole E,
Melachroinou K.
et al. Identification and functional characterization of a calcium-sensing receptor
mutation in an infant with familial hypocalciuric hypercalcemia. J Clin Res Pediatr
Endocrinol 2016; 8: 341-346
MissingFormLabel
- 82
Brown EM.
Familial hypocalciuric hypercalcemia and other disorders with resistance to
extracellular calcium. Endocrinol Metab Clin North Am 2000; 29: 503-522
MissingFormLabel
- 83
Brown EM.
Mutations in the calcium-sensing receptor and their clinical implications. HormRes
1997; 48: 199-208
MissingFormLabel
- 84
Corrado KR,
Andrade SC,
Bellizzi J.
et al. Polyclonality of parathyroid tumors in neonatal severe hyperparathyroidism.
J Bone Miner Res 2015; 30: 1797-1802
MissingFormLabel
- 85
Farnebo F,
Enberg U,
Grimelius L.
et al. Tumor-specific decreased expression of calcium sensing receptor messenger
ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab
1997; 82: 3481-3486
MissingFormLabel
- 86
Hosokawa Y,
Pollak MR,
Brown EM.
et al. Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in
human parathyroid tumors. J Clin Endocrinol Metab 1995; 80: 3107-3110
MissingFormLabel
- 87
Cetani F,
Pinchera A,
Pardi E.
et al. No evidence for mutations in the calcium-sensing receptor gene in sporadic
parathyroid adenomas. J Bone Miner Res 1999; 14: 878-882
MissingFormLabel
- 88
Nesbit MA,
Hannan FM,
Howles SA.
et al. Mutations affecting G-protein subunit alpha11 in hypercalcemia and
hypocalcemia. N Engl J Med 2013; 368: 2476-2486
MissingFormLabel
- 89
Gorvin CM,
Cranston T,
Hannan FM.
et al. A G-protein Subunit-alpha11 Loss-of-Function Mutation, Thr54Met, Causes Familial
Hypocalciuric Hypercalcemia Type 2 (FHH2). J Bone Miner Res 2016; 31: 1200-1206
MissingFormLabel
- 90
Nesbit MA,
Hannan FM,
Howles SA.
et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet
2013; 45: 93-97
MissingFormLabel
- 91
Hendy GN,
Canaff L,
Newfield RS.
et al. Codon Arg15 mutations of the AP2S1 gene: common occurrence in familial
hypocalciuric hypercalcemia cases negative for calcium-sensing receptor (CASR)
mutations. J Clin Endocrinol Metab 2014; 99: E1311-E1315
MissingFormLabel
- 92
Hannan FM,
Howles SA,
Rogers A.
et al. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric
hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon
bias and dominant-negative effects. Hum Mol Genet 2015; 24: 5079-5092
MissingFormLabel
- 93
Vargas-Poussou R,
Mansour-Hendili L,
Baron S.
et al. Familial hypocalciuric hypercalcemia types 1 and 3 and primary
hyperparathyroidism: Similarities and differences. J Clin Endocrinol Metab 2016; 101:
2185-2195
MissingFormLabel
- 94
Wells SA,
Santoro M.
Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009; 15: 7119-7123
MissingFormLabel
- 95
Frank-Raue K,
Raue F.
Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results
Cancer Res 2015; 204: 139-156
MissingFormLabel
- 96
Eng C,
Clayton D,
Schuffenecker I.
et al. The relationship between specific RET proto-oncogene mutations and disease
phenotype in multiple endocrine neoplasia type 2. International RET mutation
consortium analysis. JAMA 1996; 276: 1575-1579
MissingFormLabel
- 97
Arnold A,
Kim HG,
Gaz RD.
et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid
hormone gene in a parathyroid adenoma. J Clin Invest 1989; 83: 2034-2040
MissingFormLabel
- 98
Rosenberg CL,
Kim HG,
Shows TB.
et al. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome
11q13 in benign parathyroid tumors. Oncogene 1991; 6: 449-453
MissingFormLabel
- 99
Motokura T,
Bloom T,
Kim HG.
et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991; 350:
512-515
MissingFormLabel
- 100
Imanishi Y,
Hosokawa Y,
Yoshimoto K.
et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of
cyclin D1 in transgenic mice. J Clin Invest 2001; 107: 1093-1102
MissingFormLabel
- 101
Hsi ED,
Zukerberg LR,
Yang WI.
et al. Cyclin D1/PRAD1 expression in parathyroid adenomas: an
immunohistochemical study. J Clin Endocrinol Metab 1996; 81: 1736-1739
MissingFormLabel
- 102
Hemmer S,
Wasenius VM,
Haglund C.
et al. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in
parathyroid adenomas. Am J Pathol 2001; 158: 1355-1362
MissingFormLabel
- 103
Tominaga Y,
Tsuzuki T,
Uchida K.
et al. Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in
parathyroid hyperplasia caused by chronic renal failure versus primary
adenoma. Kidney Int 1999; 55: 1375-1383
MissingFormLabel
- 104
Vasef MA,
Brynes RK,
Sturm M.
et al. Expression of cyclin D1 in parathyroid carcinomas, adenomas, and hyperplasias:
a
paraffin immunohistochemical study. Mod Pathol 1999; 12: 412-416
MissingFormLabel
- 105
Hosokawa Y,
Tu T,
Tahara H.
et al. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and
parathyroid adenomas and identification of a new cyclin D1 gene
polymorphism. Cancer Lett 1995; 93: 165-170
MissingFormLabel
- 106
Wei Z,
Sun B,
Wang ZP.
et al. Whole-exome sequencing identifies novel recurrent somatic mutations in sporadic
parathyroid adenomas. Endocrinology 2018; 159: 3061-3068
MissingFormLabel
- 107
Yap DB,
Chu J,
Berg T.
et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively
altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117:
2451-2459
MissingFormLabel
- 108
Li Y,
Cui W,
Woodroof JM.
et al. Extranodal B cell lymphoma with prominent spindle cell features arising in
uterus and in maxillary sinus: Report of two cases and literature review. Ann Clin
Lab Sci 2016; 46: 213-218
MissingFormLabel
- 109
Sanpaolo E,
Miroballo M,
Corbetta S.
et al. EZH2 and ZFX oncogenes in malignant behaviour of parathyroid neoplasms. Endocrine
2016; 54: 55-59
MissingFormLabel
- 110
Soong CP,
Arnold A.
Recurrent ZFX mutations in human sporadic parathyroid adenomas. Oncoscience 2014;
1: 360-366
MissingFormLabel
- 111
Arnold A,
Soong CP.
New role for ZFX in oncogenesis. Cell Cycle 2014; 13: 3465-3466
MissingFormLabel
- 112
Palanisamy N,
Imanishi Y,
Rao PH.
et al. Novel chromosomal abnormalities identified by comparative genomic hybridization
in parathyroid adenomas. J Clin Endocrinol Metab 1998; 83: 1766-1770
MissingFormLabel
- 113
Agarwal SK,
Schrock E,
Kester MB.
et al. Comparative genomic hybridization analysis of human parathyroid tumors. Cancer
Genet Cytogenet 1998; 106: 30-36
MissingFormLabel
- 114
Farnebo F,
Kytölä S,
Teh BT.
et al. Alternative genetic pathways in parathyroid tumorigenesis. J Clin Endocrinol
Metab 1999; 84: 3775-3780
MissingFormLabel
- 115
Kytölä S,
Farnebo F,
Obara T.
et al. Patterns of chromosomal imbalances in parathyroid carcinomas. Am J Pathol 2000;
157: 579-586
MissingFormLabel
- 116
Garcia JL,
Tardio JC,
Gutierrez NC.
et al. Chromosomal imbalances identified by comparative genomic hybridization in
sporadic parathyroid adenomas. Eur J Endocrinol 2002; 146: 209-213
MissingFormLabel