Exp Clin Endocrinol Diabetes 2020; 128(06/07): 423-427
DOI: 10.1055/a-1032-8328
Mini-Review

Tissue-Specific Function of Thyroid Hormone Transporters: New Insights from Mouse Models

Eva Salveridou
1   Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
2   Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
,
Steffen Mayerl
1   Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
3   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
,
Sivaraj Mohana Sundaram
2   Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
4   Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
,
Boyka Markova
1   Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
2   Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
,
Heike Heuer
1   Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany
2   Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
› Author Affiliations

Abstract

Thyroid hormone (TH) transporters are required for cellular transmembrane passage of TH and are thus mandatory for proper TH metabolism and action. Consequently, inactivating mutations in TH transporters such as MCT8 or OATP1C1 can cause tissue- specific changes in TH homeostasis. As the most prominent example, patients with MCT8 mutations exhibit elevated serum T3 levels, whereas their CNS appear to be in a TH deficient state. Here, we will briefly summarize recent studies of mice lacking Mct8 alone or in combination with the TH transporters Mct10 or Oatp1c1 that shed light on many aspects and pathogenic events underlying global MCT8 deficiency and also underscore the contribution of Mct10 and Oatp1c1 in tissue-specific TH transport processes. Moreover, development of conditional knock-out mice that allow a cell-specific inactivation of TH transporters in distinct tissues, disclosed cell-specific changes in TH signaling, thereby highlighting the pathophysiological significance of local control of TH action.



Publication History

Received: 22 August 2019
Received: 14 October 2019

Accepted: 21 October 2019

Article published online:
13 November 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Friesema EC, Ganguly S, Abdalla A. et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278: 40128-40135
  • 2 Friesema EC, Grueters A, Biebermann H. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004; 364: 1435-1437
  • 3 Dumitrescu AM, Liao XH, Best TB. et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004; 74: 168-175
  • 4 Schwartz CE, May MM, Carpenter NJ. et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 2005; 77: 41-53
  • 5 Visser WE, Friesema EC, Visser TJ. Minireview: Thyroid hormone transporters: The knowns and the unknowns. Mol Endocrinol 2011; 25: 1-14
  • 6 Bernal J, Guadano-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol 2015; 11: 406-417
  • 7 Friesema EC, Jansen J, Heuer H. et al. Mechanisms of disease: Psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab 2006; 2: 512-523
  • 8 Lopez-Espindola D, Morales-Bastos C, Grijota-Martinez C. et al. Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab 2014; 99: E2799-E2804
  • 9 Dumitrescu AM, Liao XH, Weiss RE. et al. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology 2006; 147: 4036-4043
  • 10 Trajkovic M, Visser TJ, Mittag J. et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 2007; 117: 627-635
  • 11 Di Cosmo C, Liao XH, Ye H. et al. Mct8-deficient mice have increased energy expenditure and reduced fat mass that is abrogated by normalization of serum T3 levels. Endocrinology 2013; 154: 4885-4895
  • 12 Mayerl S, Schmidt M, Doycheva D. et al. Thyroid hormone transporters MCT8 and OATP1C1 control skeletal muscle regeneration. Stem Cell Reports 2018; 10: 1959-1974
  • 13 Muller J, Heuer H. Understanding the hypothalamus-pituitary-thyroid axis in mct8 deficiency. Eur Thyroid J 2012; 1: 72-79
  • 14 Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochim Biophys Acta 2013; 1830: 3974-3978
  • 15 Liao XH, Di Cosmo C, Dumitrescu AM. et al. Distinct roles of deiodinases on the phenotype of Mct8 defect: A comparison of eight different mouse genotypes. Endocrinology 2011; 152: 1180-1191
  • 16 Wemeau JL, Pigeyre M, Proust-Lemoine E. et al. Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab 2008; 93: 2084-2088
  • 17 Groeneweg S, Peeters RP, Visser TJ. et al. Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Mol Cell Endocrinol 2017; 458: 82-90
  • 18 Wirth EK, Rijntjes E, Meyer F. et al. High T-3, Low T-4 serum levels in mct8 deficiency are not caused by increased hepatic conversion through type i deiodinase. European Thyroid. Journal 2015; 4: 87-91
  • 19 Trajkovic-Arsic M, Visser TJ, Darras VM. et al. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice. Endocrinology 2010; 151: 802-809
  • 20 Trajkovic-Arsic M, Muller J, Darras VM. et al. Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice. Endocrinology 2010; 151: 5053-5062
  • 21 Di Cosmo C, Liao XH, Dumitrescu AM. et al. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 2010; 120: 3377-3388
  • 22 Wirth EK, Sheu SY, Chiu-Ugalde J. et al. Monocarboxylate transporter 8 deficiency: altered thyroid morphology and persistent high triiodothyronine/thyroxine ratio after thyroidectomy. Eur J Endocrinol 2011; 165: 555-561
  • 23 Muller J, Mayerl S, Visser TJ. et al. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 2014; 155: 315-325
  • 24 Weber J, McInnes J, Kizilirmak C. et al. Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland. Eur J Cell Biol 2017; 96: 440-456
  • 25 Friesema EC, Jansen J, Jachtenberg JW. et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol 2008; 22: 1357-1369
  • 26 Mariotta L, Ramadan T, Singer D. et al. T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol 2012; 590: 6413-6424
  • 27 Sharlin DS, Ng L, Verrey F. et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018; 8: 4403
  • 28 Wirth EK, Roth S, Blechschmidt C. et al. Neuronal 3’,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci 2009; 29: 9439-9449
  • 29 Ceballos A, Belinchon MM, Sanchez-Mendoza E. et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-L-thyronine. Endocrinology 2009; 150: 2491-2496
  • 30 Mayerl S, Muller J, Bauer R. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 2014; 124: 1987-1999
  • 31 Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 2004; 145: 4384-4391
  • 32 Muller J, Heuer H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol (Lausanne) 2014; 5: 92
  • 33 Roberts LM, Woodford K, Zhou M. et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 2008; 149: 6251-6261
  • 34 Mayerl S, Visser TJ, Darras VM. et al. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 2012; 153: 1528-1537
  • 35 Kersseboom S, Horn S, Visser WE. et al. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol 2014; 28: 1961-1970
  • 36 Groeneweg S, Peeters RP, Visser TJ. et al. Triiodothyroacetic acid in health and disease. J Endocrinol 2017; 234: R99-R121
  • 37 Barez-Lopez S, Grijota-Martinez C, Auso E. et al. Adult mice lacking Mct8 and Dio2 proteins present alterations in peripheral thyroid hromone levels and severe brain and motor skill impairments. Thyroid 2019; DOI: 10.1089/thy.2019.0068..
  • 38 Groeneweg S, Peeters RP, Moran C. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: An international, single-arm, open-label, phase 2 trial. The Lancet Diabetes and. Endocrinology 2019; 7: 695-706
  • 39 Schnell C, Shahmoradi A, Wichert SP. et al. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct 2015; 220: 193-203
  • 40 Lopez-Espindola D, Garcia-Aldea A, Gomez de la Riva I. et al. Thyroid hormone availability in the human fetal brain: Novel entry pathways and role of radial glia. Brain Struct Funct 2019; 224: 2103-2119
  • 41 Stromme P, Groeneweg S, Lima de Souza EC. et al. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and juvenile neurodegeneration. Thyroid 2018; 28: 1406-1415
  • 42 Pizzagalli F, Hagenbuch B, Stieger B. et al. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol 2002; 16: 2283-2296
  • 43 Ambrosio R, De Stefano MA, Di Girolamo D. et al. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol Cell Endocrinol 2017; 459: 79-83
  • 44 Leitch VD, Di Cosmo C, Liao XH. et al. An essential physiological role for MCT8 in bone in male mice. Endocrinology 2017; 158: 3055-3066
  • 45 Lademann F, Tsourdi E, Rijntjes E et al. Lack of the thyroid hormone transporter Mct8 in osteoblast and osteocalst progenitors both increases trabecular bone in male mice. submitted