Aktuelle Urol 2019; 50(01): 56-62
DOI: 10.1055/a-0761-3409
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Aktuelle Trends in der flexiblen Ureterorenoskopie – ein Update

Current trends in flexible ureteroscopy: an update
Simon Hein
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
,
Martin Schönthaler
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
,
Rodrigo Suarez-Ibarrola
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
,
Philippe-Fabian Müller
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
,
Dominik Schoeb
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
,
Arkadiusz Miernik
Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Dezember 2018 (online)

Zusammenfassung

Die flexible Ureterorenoskopie (fURS) kann als „urotechnologische“ Erfolgsgeschichte bezeichnet werden. Seit der Einführung der fURS in die Harnsteintherapie wurde diese immer weiter technisch verbessert, was zu exzellenten klinischen Ergebnissen bei niedrigen Komplikationsraten führte. In den letzten Jahren prägte insbesondere die Einweg-Ureterorenoskopie die Landschaft der urologischen Endoskopie. Bei genauerer Betrachtung ist diese Entwicklung jedoch keine genuine Innovation, sondern vielmehr eine weiterführende Optimierung, die primär zur Vereinfachung innerbetrieblicher Abläufe (keine Sterilisation, keine Reparaturen) sowie zur Verhinderung der Keimübertragung bei insuffizient aufbereiteten Arbeitskanälen führt. Neue Technologien wie eine automatisierte Laserlithotripsie, intrarenale Temperatur- und Druckmessung warten noch auf ihre Markteinführung und den Einsatz bei der fURS. Diese hätten das Potenzial die endoskopische Steintherapie einen weiteren entscheidenden Schritt voranzubringen.

Abstract

Flexible ureteroscopy (fURS) has become a success story in urology. Since its implementation into the treatment of urolithiasis, fURS has demonstrated excellent clinical performance and safety. In recent years, the spread of disposable ureteroscopes has shaped the field of endoscopic stone treatment. However, the primary advantage of these devices is that they improve the workflow in urology theatres (no sterilisation, no repair costs) and possibly minimise bacteria transfer in working channels rather than being a real technological “game changer”. Novel disruptive improvements such as automatic laser lithotripsy or intrarenal pressure and temperature control in real time are still waiting to enter the clinical routine. These innovations might take fURS to the next level and disruptively change endoscopic stone treatment.

 
  • Literatur

  • 1 Türk C, Petrik A, Sarica K. et al. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol. 2016; DOI: 10.1016/j.eururo.2015.07.041.
  • 2 Marshall VF. FIBER OPTICS IN UROLOGY. The Journal of urology 1964; 91: 110-114
  • 3 Takagi T, Go T, Takayasu H. et al. Fiberoptic pyeloureteroscope. Surgery 1971; 70: 661-663 passim
  • 4 Miernik A, Wilhelm K, Ardelt P. et al. [Modern urinary stone therapy: is the era of extracorporeal shock wave lithotripsy at an end?]. Der Urologe Ausg A 2012; 51: 372-378
  • 5 Schoenthaler M, Wilhelm K, Katzenwadel A. et al. Retrograde intrarenal surgery in treatment of nephrolithiasis: is a 100% stone-free rate achievable?. Journal of endourology / Endourological Society 2012; 26: 489-493
  • 6 Oberlin DT, Flum AS, Bachrach L. et al. Contemporary surgical trends in the management of upper tract calculi. The Journal of urology 2015; 193: 880-884
  • 7 Miernik A, Wilhelm K, Ardelt PU. et al. Standardized flexible ureteroscopic technique to improve stone-free rates. Urology 2012; 80: 1198-1202
  • 8 de la Rosette J, Denstedt J, Geavlete P. et al. The clinical research office of the endourological society ureteroscopy global study: indications, complications, and outcomes in 11,885 patients. Journal of endourology / Endourological Society 2014; 28: 131-139
  • 9 Kallidonis P, Amanatides L, Panagopoulos V. et al. Does the Heat Generation by the Thulium:Yttrium Aluminum Garnet Laser in the Irrigation Fluid Allow Its Use on the Upper Urinary Tract?. An Experimental Study. Journal of Endourology 2015; 30: 422-427
  • 10 Buttice S, Sener TE, Proietti S. et al. Temperature Changes Inside the Kidney: What Happens During Holmium:Yttrium-Aluminium-Garnet Laser Usage?. Journal of endourology / Endourological Society 2016; 30: 574-579
  • 11 Tokas T, Herrmann TRW, Skolarikos A. et al. Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World journal of urology 2018; DOI: 10.1007/s00345-018-2378-4.
  • 12 Tokas T, Skolarikos A, Herrmann TRW. et al. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World journal of urology 2018; DOI: 10.1007/s00345-018-2379-3.
  • 13 Srisubat A, Potisat S, Lojanapiwat B. et al. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. The Cochrane database of systematic reviews 2014; DOI: 10.1002/14651858.CD007044.pub3.
  • 14 Hein S, Miernik A, Wilhelm K. et al. Clinical significance of residual fragments in 2015: impact, detection, and how to avoid them. World journal of urology 2015; DOI: 10.1007/s00345-015-1713-2.
  • 15 Rassweiler JJ, Renner C, Chaussy C. et al. Treatment of renal stones by extracorporeal shockwave lithotripsy: an update. European urology 2001; 39: 187-199
  • 16 Bader MJ, Pongratz T, Khoder W. et al. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World journal of urology 2014; DOI: 10.1007/s00345-014-1429-8.
  • 17 Kronenberg P, Traxer O. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World journal of urology 2014; DOI: 10.1007/s00345-014-1395-1.
  • 18 Schatloff O, Lindner U, Ramon J. et al. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. The Journal of urology 2010; 183: 1031-1035
  • 19 Knoll T, Sieg M, Jessen J. et al. MP55-08 HOLMIUM LASER LITHOTRIPSY FOR URETERAL AND RENAL STONES: IS DUSTING EQUIVALENT TO FRAGMENTING?. The Journal of urology 2018; 199: e750-e751
  • 20 Humphreys MR, Shah OD, Monga M. et al. Dusting versus Basketing during Ureteroscopy-Which Technique is More Efficacious? A Prospective Multicenter Trial from the EDGE Research Consortium. The Journal of urology 2018; 199: 1272-1276
  • 21 Shin RH, Lipkin ME, Preminger GM. Disposable devices for RIRS: where do we stand in 2013? What do we need in the future?. World journal of urology 2015; 33: 241-246
  • 22 Tan YK, McLeroy SL, Faddegon S. et al. In vitro comparison of prototype magnetic tool with conventional nitinol basket for ureteroscopic retrieval of stone fragments rendered paramagnetic with iron oxide microparticles. The Journal of urology 2012; 188: 648-652
  • 23 Cloutier J, Cordeiro ER, Kamphuis GM. et al. The glue-clot technique: a new technique description for small calyceal stone fragments removal. Urolithiasis 2014; 42: 441-444
  • 24 Hein S, Schoenthaler M, Wilhelm K. et al. Novel Biocompatible Adhesive for Intrarenal Embedding and Endoscopic Removal of Small Residual Fragments after Minimally Invasive Stone Treatment in an Ex Vivo Porcine Kidney Model: Initial Evaluation of a Prototype. The Journal of urology 2016; 196: 1772-1777
  • 25 Schoeb DS, Schoenthaler M, Schlager D. et al. New for old–Coagulum lithotomy versus a novel bioadhesive for complete removal of stone fragments in a comparative study in an ex vivo porcine model. Journal of Endourology 2017; 31: 611-616
  • 26 Hein S, Schoenthaler M, Schoeb D. et al. Viability and biocompatibility of an adhesive system for intrarenal embedding and endoscopic removal of small residual fragments in minimally-invasive stone treatment in an in vivo pig model. European Urology Supplements 2017; 16: e395-e396
  • 27 Schutz J, Miernik A, Brandenburg A. et al. Experimental evaluation of human renal kidney stone spectra for intraoperative stone-tissue-instrument analysis using autofluorescence. The Journal of urology 2018; DOI: 10.1016/j.juro.2018.07.067.
  • 28 Miernik A, Eilers Y, Bolwien C. et al. Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application. The Journal of urology 2013; 190: 1895-1900
  • 29 Miernik A, Eilers Y, Nuese C. et al. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World journal of urology 2015; 33: 1593-1599
  • 30 Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in urology. World journal of urology 2007; 25: 221-225
  • 31 Vassar GJ, Chan KF, Teichman JM. et al. Holmium: YAG lithotripsy: photothermal mechanism. Journal of endourology / Endourological Society 1999; 13: 181-190
  • 32 Bauer KD, Henle KJ. Arrhenius Analysis of Heat Survival Curves from Normal and Thermotolerant CHO Cells. Radiation Research 1979; 78: 251-263
  • 33 Hardy LA, Wilson CR, Irby PB. et al. Kidney stone ablation times and peak saline temperatures during Holmium:YAG and Thulium fiber laser lithotripsy, in vitro, in a ureteral model. J Biomed Opt. 2014; DOI: 10.1117/1.JBO.19.12.128001.
  • 34 Molina WR, Silva IN, Donalisio da Silva R. et al. Influence of saline on temperature profile of laser lithotripsy activation. Journal of endourology / Endourological Society 2015; 29: 235-239
  • 35 Aldoukhi AH, Ghani KR, Hall TL. et al. Thermal Response to High-Power Holmium Laser Lithotripsy. Journal of endourology/Endourological Society 2017; 31: 1308-1312
  • 36 Hein S, Petzold R, Schoenthaler M. et al. Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World journal of urology 2018; DOI: 10.1007/s00345-018-2303-x.
  • 37 Kiil F. Pressure Recordings in the Upper Urinary Tract. Scandinavian Journal of Clinical and Laboratory Investigation 1953; 5: 383-384
  • 38 Huang J, Xie D, Xiong R. et al. The Application of Suctioning Flexible Ureteroscopy With Intelligent Pressure Control in Treating Upper Urinary Tract Calculi on Patients With a Solitary Kidney. Urology 2018; 111: 44-47
  • 39 Emiliani E, Traxer O. Single use and disposable flexible ureteroscopes. Current opinion in urology 2017; 27: 176-181
  • 40 Hennessey DB, Fojecki GL, Papa NP. et al. Single-use disposable digital flexible ureteroscopes: an ex vivo assessment and cost analysis. BJU international 2018; 121 (Suppl. 03) 55-61
  • 41 Chen TT, Wang C, Ferrandino MN. et al. Radiation Exposure during the Evaluation and Management of Nephrolithiasis. The Journal of urology 2015; 194: 878-885
  • 42 Hein S, Schoenthaler M, Wilhelm K. et al. Ultralow Radiation Exposure During Flexible Ureteroscopy in Patients With Nephrolithiasis-How Far Can We Go?. Urology 2017; 108: 34-39
  • 43 Weld LR, Nwoye UO, Knight RB. et al. Safety, minimization, and awareness radiation training reduces fluoroscopy time during unilateral ureteroscopy. Urology 2014; 84: 520-525
  • 44 Muller PF, Schlager D, Hein S. et al. Robotic stone surgery - Current state and future prospects: A systematic review. Arab journal of urology 2018; 16: 357-364
  • 45 Desai MM, Grover R, Aron M. et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. The Journal of urology 2011; 186: 563-568