Homeopathy 2016; 105(01): 109-118
DOI: 10.1016/j.homp.2015.08.007
Original Paper
Copyright © The Faculty of Homeopathy 2015

Inhalation therapy with M1 inhibits experimental melanoma development and metastases in mice

Lucas Ferrari de Andrade
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Brian Mozeleski
2   Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Département d'Immunologie, 25-28 rue du Docteur Roux, 75724, Paris, France
,
Aline Raquell Leck
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Gustavo Rossi
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Cleber Rafael Vieira da Costa
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Fernando de Souza Fonseca Guimarães
3   Queensland Institute of Medical Research, Immunology in Cancer and Infection, 300 Herston Rd, Brisbane, QLD, 4006, Australia
,
Rafael Zotz
4   Pontifícia Universidade Católica do Paraná, Biotério Central, 155, Imaculada Conceição, Bairro Prado Velho, Curitiba, PR, 80215-901, Brazil
,
Katia Fialho do Nascimento
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Carolina Camargo de Oliveira
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Dorly de Freitas Buchi
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
,
Edvaldo da Silva Trindade
1   Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Células Inflamatórias e Neoplásicas, Coronel Francisco Heráclito dos Santos, Curitiba, PR, 81530-900, Brazil
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received19 August 2014
revised17 July 2015

accepted13 August 2015

Publication Date:
23 December 2017 (online)

Background: M1 is a homeopathic medicine with immunostimulatory properties used mainly by cancer patients to complement current therapies. Metastatic melanoma is a skin-originated form of cancer without a single therapy able to produce high rate and sustained responses, which attracts the use of complementary therapies such as M1. However, M1's anti-melanoma effects remain to be pre-clinically demonstrated. Therefore in the present work, we utilized a pulmonary metastatic melanoma model and a subcutaneous melanoma growth model to investigate the potential benefits of treatment with M1.

Methods: C57BL/6 mice were injected intravenously or subcutaneously with B16F10 mouse melanoma cells. After 24 h, mice were treated with either M1 or vehicle (water) for 14 days, euthanized and harvested for multi-parameter pulmonary and tumor analyses.

Results: Mice treated with M1 had significantly lower tumor burden in the lungs and subcutaneous tissue than control mice. Furthermore, tumors were impaired in proliferation and tumor related angiogenesis by the inhibition of myeloid derived suppressor cells (MDSC) positive for angiotensin II type 1 receptor (AT1R).

Conclusion: Altogether these data suggest M1 is an efficient candidate for melanoma therapy to be considered for future clinic studies as this study is the first supporting the idea that melanoma patients may benefit with the treatment. The treatment with M1 provides advantages considering the highly-diluted properties and a cost effective alternative to costly chemotherapeutic approaches with, if any, lower toxicity.

 
  • References

  • 1 GLOBOCAN. IARC: 2012.
  • 2 Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics. CA Cancer J Clin 2014; 2014 (64) 9-29.
  • 3 Houghton A.N., Polsky D. Focus on melanoma. Cancer Cell 2002; 2: 275-278.
  • 4 Finn L., Markovic S.N., Joseph R.W. Therapy for metastatic melanoma: the past, present, and future. BMC Med 2012; 10: 23.
  • 5 Sapoznik S., Hammer O., Ortenberg R. et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms. Clin Dev Immunol 2012; 2012: 818214.
  • 6 Vesely M.D., Kershaw M.H., Schreiber R.D., Smyth M.J. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235-271.
  • 7 Schaer D., Lesokhin M., Wolchok J.D. Hiding the road signs that lead to tumor immunity. J Exp Med 2011; 208: 1937-1940.
  • 8 De Oliveira S.M., de Oliveira C.C., Abud A.P.R. et al. Mercurius solubilis: actions on macrophages. Homeopathy 2011; 100: 228-236.
  • 9 Cesar B., Abud A.P.R., De Oliveira C.C. et al. Treatment with at homeopathic complex medication modulates mononuclear bone marrow cell differentiation. Evid Based Complement Alternat Med 2011. 2011.
  • 10 Guimarães F.S.F., Abud A.P.R., Oliveira S.M. et al. Stimulation of lymphocyte anti-melanoma activity by co-cultured macrophages activated by complex homeopathic medication. BMC Cancer 2009; 9: 293.
  • 11 Sato D., Wal R., De Oliveira C. et al. Histopathological and immunophenotyping studies on normal and sarcoma 180-bearing mice treated with a complex homeopathic medication. Homeopathy 2005; 94: 26-32.
  • 12 Oliveira C.C., Abud A.P.R., de Oliveira S.M. et al. Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers. BMC Complement Altern Med 2011; 11: 101.
  • 13 Molassiotis A., Fernadez-Ortega P., Pud D. et al. Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 2005; 16: 655-663.
  • 14 Ott P., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 2013; 19: 5300-5309.
  • 15 Guimarães F.S.F., Andrade L.F., Martins S.T. et al. In vitro and in vivo anticancer properties of a Calcarea carbonica derivative complex (M8 ) treatment in a murine melanoma model. BMC Cancer 2010; 10: 113.
  • 16 Brasil. Farmacopeia Homeopática Brasileira, 3th edn, Comissão da Farmacopeia Brasileira, 2011, 1–364.
  • 17 Chow M.T., Sceneay J., Paget C. et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res 2012; 72: 5721-5732.
  • 18 Bishop J., Nelson A.M., Merz W.G., Askin F.B., Riedel S. Evaluation of the detection of melanin by the Fontana-Masson silver stain in tissue with a wide range of organisms including Cryptococcus. Hum Pathol 2012; 43: 898-903.
  • 19 Avwioro G. Histochemical uses of haematoxylin – a review. 2011; 1 June 24-34.
  • 20 Nakamura K., Yoshikawa N., Yamaguchi Y., Kagota S., Shinozuka K., Kunitomo M. Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci 2002; 70: 791-798.
  • 21 De Andrade B.A.B., León J.E., Carlos R., Delgado-Azañero W., Mosqueda-Taylor A., de Almeida O.P. Expression of minichromosome maintenance 2, Ki-67, and geminin in oral nevi and melanoma. Ann Diagn Pathol 2013; 17: 32-36.
  • 22 Chien A.J., Moore E.C., Lonsdorf A.S. et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A 2009; 106: 1193-1198.
  • 23 Snigdha S., Smith E.D., Prieto G.A., Cotman C.W. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 2012; 28: 14-24.
  • 24 Stevens T. Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc 2011; 8: 453-457.
  • 25 Lennon F.E., Singleton P.A. Hyaluronan regulation of vascular integrity. Am J Cardiovasc Dis 2011; 1: 200-213.
  • 26 Dolcetti L., Peranzoni E., Ugel S. et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010; 40: 22-35.
  • 27 Cortez-Retamozo V., Etzrodt M., Newton A. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 2013; 38: 296-308.
  • 28 Egami K., Murohara T., Shimada T. et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. 2003; 112: 67-75.
  • 29 Welch D.R. Technical considerations for studying cancer metastasis in vivo. 1997; 15: 272-306.
  • 30 Youn J.-I., Nagaraj S., Collazo M., Gabrilovich D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181: 5791-5802.
  • 31 Bunt S.K., Yang L., Sinha P., Clements V.K., Leips J., Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007; 67: 10019-10026.
  • 32 Schilling B., Sucker A., Griewank K. et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J cancer 2013; 133: 1653-1663.
  • 33 Cuadra A.E., Shan Z., Sumners C., Raizada M.K. A current view of brain renin-angiotensin system: is the (pro)renin receptor the missing link?. Pharmacol Ther 2010; 125: 27-38.
  • 34 Fujimoto Y., Sasaki T., Tsuchida A., Chayama K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 2001.
  • 35 Miyajima A., Kosaka T., Asano T., Asano T., Seta K., Kawai T. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis advances in brief angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer 2002; 62: 4176-4179.
  • 36 Choi C.H., Park Y.-A., Choi J.-J. Angiotensin II type I receptor and miR-155 in endometrial cancers: synergistic antiproliferative effects of anti-miR-155 and losartan on endometrial cancer cells. Gynecol Oncol 2012; 1-8.
  • 37 Fujita M., Hayashi I., Yamashina S., Itoman M., Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 2002; 294: 441-447.
  • 38 Arrieta O., Guevara P., Escobar E., García-Navarrete R., Pineda B., Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 2005; 92: 1247-1252.
  • 39 Otake A.H., Mattar A.L., Freitas H.C. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother Pharmacol 2010; 66: 79-87.
  • 40 Zaki K.A., Basu B., Corrie P. The role of angiogenesis inhibitors in the management of melanoma. Curr Top Med Chem 2012; 12: 32-49.