Homeopathy 2015; 104(02): 83-89
DOI: 10.1016/j.homp.2015.01.001
 
Copyright © The Faculty of Homeopathy 2015

Historical foundations of hormesis

Edward J. Calabrese

Subject Editor:
Further Information

Publication History

Received22 August 2014
revised19 November 2014

accepted27 January 2015

Publication Date:
23 December 2017 (online)

The present paper provides an historical assessment of the concept of hormesis and its relationship to homeopathy and modern medicine. It is argued that the dose–response concept was profoundly influenced by the conflict between homeopathy and traditional medicine and that decisions on which dose–response model to adopt were not based on “science” but rater on historical antipathies. While the historical dispute between homeopathy and traditional medicine has long since subsided, their impact upon the field has been enduring and generally unappreciated, profoundly adversely affecting current drug development, therapeutic strategies and environmental risk assessment strategies and policies.

 
  • References

  • 1 Calabrese E.J. Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol 2005; 51: 643-654.
  • 2 Calabrese E.J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exper Toxicol 2010; 29: 249-261.
  • 3 Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 2008; 27: 1451-1474.
  • 4 Calabrese E.J. Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 2011; 30: 2658-2673.
  • 5 Calabrese E.J. How the US National Academy of Sciences misled the world community on cancer risk assessment: new findings challenge historical foundations of the linear dose response. Arch Toxicol 2013; 87: 2063-2081.
  • 6 Bohme H. Hugo Schulz (8/6/1853–7/13/1932). His life and work. 1986. Freien University of Berlin; Berlin, Germany: Ph.D. thesis.
  • 7 Crump T. Contemporary medicine as presented by its practitioners themselves. Leipzig 1923; 217-250 Hugo Schulz, NIH Library Translation (NIH-98-134). Nonlinear Biol Toxicol Med 2003; 1:295–318.
  • 8 Bloedau C.V. Gen Med Cent 1884; 93: 1362.
  • 9 Schulz H. About the treatment of cholera with veratrine. Ger Med Wkly Pap 1885; 11: 99.
  • 10 Wels P. The life time work of Hugo Schulz. Naun-Schmied Arch Exper Path Pharmakol 1933; 170: 744-757.
  • 11 Schulz H. Zur Lehre von der Arzneiwirdung. Virchows Arch Pathol Anatom Physiol Klin Med 1887; 108: 423-445.
  • 12 Schulz H. Uber Hefegifte. Pflugers Arch Gesamte Physiol Menschen Tiere 1888; 42: 517-541.
  • 13 Hueppe F. Principles of bacteriology. Translated from the German by Jordon, EO, Chicabo IL. 1896. The Open Court Publication.;
  • 14 Hueppe F. Autobiography. In: Grote LR (ed). Die Medizin der Gegenwart in Selbstdarstellungen 1923. Verlag von Felix Meiner; Leipzig: 77-138.
  • 15 Coulter H.L. Homoeopathic medicine. 1972. Formur; St. Louis, MO.:
  • 16 Coulter H.L. Divided legacy: the conflict between Homoeopathy and the American Medical Association. 1982. North Atlantic Books; Richmond, CA.:
  • 17 Jutte R., Riley D. A review of the use and tole of low potencies in homeopathy. Complem Ther Med 2005; 13: 291-296.
  • 18 Clark A.J. Applied pharmacology. 1927. P. Blakiston's Sons; Philadelphia PA.:
  • 19 Clark A.J. The mode of action of drugs on cells. 1933. Arnold; London UK.:
  • 20 Clark A.J. General pharmacology. In: Hefftner A.J. (ed). Handbuch der Experimentellen Pharmakologies, 4. J . 1937. Springer; Berlin, Germany.:
  • 21 Clark A.J. Patent medicines. FACT Series 14. London, UK 1938: 88.
  • 22 Verney E.B., Barcroft J.A.J. Clark (obituary). Obit Notices Fellows R Soc 1941; 3: 969.
  • 23 Goerig M., Agarwal K., Esch J.S.A. The versatile August Bier (1861–1949), father of spinal anesthesia. J Clin Anesth 2000; 12: 561-569.
  • 24 Martius-Rostock F. The Arndt-Schulz axiom. Munich Med Wkly News 1923; 70 August 2 1-4.
  • 25 Branham S.E. The effects of certain chemical compounds upon the course of gas production by baker's yeast. J Bacteriol 1929; 18: 247-264.
  • 26 Dannenberg H. Yeast fermentation: on the question of the validity of the Arndt-Schulz rule. Naun-Schmied Arch Exper Path Pharmakol 1930; 154: 211-221.
  • 27 Calabrese E.J., Baldwin L.A. Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol 2000; 19: 2-31.
  • 28 Calabrese E.J., Baldwin L.A. The marginalization of hormesis. Hum Exper Toxicol 2000; 19: 32-40.
  • 29 Calabrese E.J., Baldwin L.A. Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol 2000; 19: 41-75.
  • 30 Calabrese E.J., Baldwin L.A. Radiation hormesis: the demise of a legitimate hypothesis. Hum Exper Toxicol 2000; 19: 76-84.
  • 31 Calabrese E.J., Baldwin L.A. Tales of two similar hypothesis: the rise and fall of chemical and radiation hormesis. Hum Exper Toxicol 2000; 19: 85-97.
  • 32 Calabrese E.J. Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 2009; 83: 227-247.
  • 33 Calabrese E.J., Baldwin L.A. The dose determines the stimulation (and poison): development of a chemical hormesis database. Intern J Toxicol 1997; 16: 545-559.
  • 34 Duggar B.M. Plant physiology, with special reference to plant production. 1911. Macmillan; New York NY.:
  • 35 Duggar B.M. Aureomycin: a product of the continuing search for new antibiotics. Ann NY Acad Sci 1948; 51: 177-181.
  • 36 Lamanna C., Mallette M.F. Basic bacteriology its biological and chemical background. 3rd edn. 1965. The Williams & Wilkins Company; Baltimore, MD.:
  • 37 Marshall M.S., Hrenoff A.K. Bacteriostasis. J Infect Dis 1937; 61: 42-54.
  • 38 Salle A.J. Influence of environment upon bacteria. Fundamental principles of bacteriology with laboratory exercises 1939. McGraw-Hill Book Company Inc; New York, NY.:
  • 39 Alexander L.T. Radioactive materials as plant stimulants – field results. Agron J 1950; 42: 252-255.
  • 40 Warren S. The histopathology of radiation lesions. Physiol Rev 1945; 25: 225-238.
  • 41 Stebbing A.R.D. Hormesis – the stimulation of growth by low levels of inhibitors. Sci Total Environ 1982; 22: 213-234.
  • 42 Muller H.J. Artificial transmutation of the gene. Science 1927; 66: 84-87.
  • 43 Anonymous Genetic effects of atomic radiation. Summary Report of the Committee on Biological Effects of Atomic Radiation by the National Academy of Sciences. BEAR I Genetics Panel (W. Weaver, Chair). Science 1956; 123: 1157-1164 [Erratum, Science 124:170].
  • 44 Taylor L.S. Radiation protection standards. Radiology 1960; 71: 824-831.
  • 45 Taylor L.S. Radiation effects on man – Radiation protection standards. Nucleonics 1963; 21: 58.
  • 46 Taylor L.S. Philosophical influences on radiation protection standards. Hlth Phys 1965; 11: 859.
  • 47 National Academy of Sciences (NAS) Drinking Water and Health. Washington DC 1977: 939.
  • 48 Calabrese E.J., Baldwin L.A. Toxicology rethinks its central belief – Hormesis demands a reappraisal of the way risks are assessed. Nature 2003; 421: 691-692.
  • 49 Luckey T.D. Ionizing radiation and Hormesis Boca. 1980. CRC Press; Raton, FL.:
  • 50 Luckey T.D. Introduction to heavy metal toxicity, safety and hormology. In: Luckey T.D., Venugopal B., Hutcheson D. (eds). Heavy Metal Toxicity, Safety and Hormology. 1975. Academic Press; New York: 1-3.
  • 51 Szabadi E. Model of 2 functionally antagonistic receptor populations activated by same agonist. J Theor Biol 1977; 69: 101-112.
  • 52 Calabrese E.J., Baldwin L.A. The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 2001; 62: 330-338.
  • 53 Calabrese E.J., Baldwin L.A. Defining hormesis. Hum Exper Toxicol 2002; 21: 91-97.
  • 54 Calabrese E.J., Baldwin L.A. The hormetic dose response model is more common than the threshold model in toxicology. Toxic Sci 2003; 71: 246-250.
  • 55 Calabrese E.J., Blain R. The hormesis database: an overview. Toxicol Appl Pharmacol 2005; 202: 289-301.
  • 56 Calabrese E.J., Blain R.B. Hormesis and plant biology. Environ Poll 2009; 157: 42-46.
  • 57 Calabrese E.J., Blain R.B. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Reg Toxicol Pharmacol 2011; 61: 73-81.
  • 58 Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol 2013; 43: 580-606.
  • 59 Calabrese E.J., Staudenmayer J.W., Stanek E.J., Hoffmann G.R. Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 2006; 94: 368-378.
  • 60 Calabrese E.J., Stanek E.J., Nascarella M.A., Hoffmann G.R. Hormesis predicts low-dose responses better than threshold model. Inter J Toxicol 2008; 27: 369-378.
  • 61 Calabrese E.J., Hoffmann G.R., Stanek III E.J., Nascarella M.A. Hormesis in high-throughput screening of antibacterial compounds in E. coli . Hum Exper Toxicol 2010; 29: 667-677.