Hamostaseologie 2018; 38(03): 158-165
DOI: 10.5482/HAMO-17-01-0008
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Diagnostic Single Gene Analyses Beyond Sanger

Economic high-throughput sequencing of small genes involved in congenital coagulation and platelet disorders
Juliane Najm*
1   Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
,
Matthias Rath*
1   Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
,
Winnie Schröder
1   Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
,
Ute Felbor
1   Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
› Author Affiliations
Further Information

Publication History

31 January 2017

06 June 2017

Publication Date:
27 September 2018 (online)

Summary

Molecular testing of congenital coagulation and platelet disorders offers confirmation of clinical diagnoses, supports genetic counselling, and enables predictive and prenatal diagnosis. In some cases, genotype-phenotype correlations are important for predicting the clinical course of the disease and adaptation of individualized therapy. Until recently, genotyping has been mainly performed by Sanger sequencing. While next generation sequencing (NGS) enables the parallel analysis of multiple genes, the cost-value ratio of custom-made panels can be unfavorable for analyses of specific small genes. The aim of this study was to transfer genotyping of small genes involved in congenital coagulation and platelet disorders from Sanger sequencing to an NGS-based method. A LR-PCR approach for target enrichment of the entire genomic regions of the genes F7, F10, F11, F12, GATA1, MYH9, TUBB1 and WAS was combined with high-throughput sequencing on a MiSeq platform. NGS detected all variants that had previously been identified by Sanger sequencing. Our results demonstrate that this approach is an accurate and flexible tool for molecular genetic diagnostics of single small genes.

Zusammenfassung

Die molekulare Diagnostik hereditärer Gerinnungs- und Thrombozytenstörungen ermöglicht die Bestätigung einer klinischen Verdachtsdiagnose, ist aber auch für die genetische Beratung und die prädiktive und pränatale Diagnostik notwendig. In einigen Fällen ist eine Genotyp-Phänotyp-Korrelation für die Prognose des klinischen Krankheitsverlaufs wichtig und erlaubt eine individuelle Therapieplanung. Im Gegensatz zur Sanger-Sequenzierung ermöglicht Next Generation Sequencing (NGS) die parallele Analyse mehrerer Gene. Allerdings kann das Kosten-Nutzen-Verhältnis von großen Genpanels für die Analyse spezifischer kleiner Gene ungünstig sein. Ziel dieser Studie war es, die Genotypisierung kleiner Gene für hereditäre Gerinnungs- und Thrombozytenstörungen von der Sanger-Sequenzierung auf eine NGS-basierte Methode umzustellen. Zu diesem Zweck wurde ein LR-PCR-Ansatz zur Anreicherung der gesamten genomischen Regionen der Gene F7, F10, F11, F12, GATA1, MYH9, TUBB1 und WAS mit einer Hochdurchsatzsequenzierung auf einer MiSeq-Plattform kombiniert. Mit dieser Methode konnten alle durch Sanger-Sequenzierung identifizierten Veränderungen sicher nachgewiesen werden. Unsere Ergebnisse zeigen, dass dieser Ansatz ein präzises und flexibles Werkzeug in der molekulargenetischen Diagnostik einzelner kleiner Gene sein könnte.

* Both authors contributed equally.


Supplementary Material

 
  • References

  • 1 Peyvandi F, Palla R, Menegatti M. , et al. Introduction. Rare bleeding disorders: general aspects of clinical features, diagnosis, and management. Semin Thromb Hemost 2009; 35 (04) 349-355
  • 2 Mertes F, Elsharawy A, Sauer S. , et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 2011; 10 (06) 374-386
  • 3 Altmüller J, Budde BS, Nürnberg P. Enrichment of target sequences for next-generation sequencing applications in research and diagnostics. Biol Chem 2014; 395 (02) 231-237
  • 4 Jia H, Guo Y, Zhao W. , et al. Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Sci Rep 2014; 4: 5737
  • 5 Hernan I, Borras E, de Sousa Dias M. , et al. Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing. J Mol Diagn 2012; 14 (03) 286-293
  • 6 Ozcelik H, Shi X, Chang MC. , et al. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn 2012; 14 (05) 467-475
  • 7 Ehrenberg PK, Geretz A, Baldwin KM. , et al. High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging. BMC Genomics 2014; 15: 864
  • 8 Pezeshkpoor B, Zimmer N, Marquardt N. , et al. Deep intronic, mutations' cause hemophilia A: application of next generation sequencing in patients without detectable mutation in F8 cDNA. J Thromb Haemost 2013; 11 (09) 1679-1687
  • 9 Bach JE, Wolf B, Oldenburg J. , et al. Identification of deep intronic variants in 15 haemophilia A patients by next generation sequencing of the whole factor VIII gene. Thromb Haemost 2015; 114 (04) 757-767
  • 10 Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet 2010; 11 (01) 31-46
  • 11 Blais J, Lavoie SB, Giroux S. , et al. Risk of Misdiagnosis Due to Allele Dropout and False-Positive PCR Artifacts in Molecular Diagnostics: Analysis of 30,769 Genotypes. J Mol Diagn 2015; 17 (05) 505-514
  • 12 Landsverk ML, Douglas GV, Tang S. , et al. Diagnostic approaches to apparent homozygosity. Genet Med 2012; 14 (10) 877-882
  • 13 Schlegel N, Binard S, Saposnik B. Apparent homozygosity for p.E1841K mutation in a patient with MYH9-related disorder: a misdiagnosis for an autosomal dominant disorder?. Eur J Haematol 2012; 88 (04) 365-366
  • 14 Stuppia L, Antonucci I, Palka G. , et al. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 2012; 13 (03) 3245-3276
  • 15 Lentaigne C, Freson K, Laffan MA. , et al. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 16 Simeoni I, Stephens JC, Hu F. , et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 17 Stritt S, Nurden P, Turro E. , et al. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127 (23) 2903-2914
  • 18 Tamary H, Fromovich Y, Shalmon L. , et al. Ala244Val is a common, probably ancient mutation causing factor VII deficiency in Moroccan and Iranian Jews. Thromb Haemost 1996; 76 (03) 283-291
  • 19 Bernardi F, Castaman G, Redaelli R. , et al. Topologically equivalent mutations causing dysfunctional coagulation factors VII (294Ala-- > Val) and X (334Ser-- > Pro). Hum Mol Genet 1994; 3 (07) 1175-1177
  • 20 Arbini AA, Bodkin D, Lopaciuk S. , et al. Molecular analysis of Polish patients with factor VII deficiency. Blood 1994; 84 (07) 2214-2220
  • 21 Rath M, Najm J, Sirb H. , et al. Large deletions play a minor but essential role in congenital coagulation factor VII and X deficiencies. Hamostaseologie 2015; 35 (Suppl. 01) S36-S42
  • 22 Millar DS, Elliston L, Deex P. , et al. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum Genet 2000; 106 (02) 249-257
  • 23 Herrmann FH, Auerswald G, Ruiz-Saez A. , et al. Factor X deficiency: clinical manifestation of 102 subjects from Europe and Latin America with mutations in the factor 10 gene. Haemophilia 2006; 12 (05) 479-489
  • 24 Hainmann I, Oldenburg J, Pavlova A. , et al. Identification of a novel factor X deletion in combination with a missense mutation in the F10 gene – Genotype-phenotype correlation in a girl with severe factor X deficiency. Hamostaseologie 2009; 29 (02) 184-186
  • 25 Zadra G, Asselta R, Malcovati M. , et al. Molecular genetic analysis of severe coagulation factor XI deficiency in six Italian patients. Haematologica 2004; 89 (11) 1332-1340
  • 26 Duncan EM, Casey GJ, Fenech MP. , et al. Partial and severe factor XI deficiency in South Australia and the usefulness of factor XI mutation analysis for diagnosis. Pathology 2008; 40 (04) 401-406
  • 27 Hofferbert S, Muller J, Kostering H. , et al. A novel 5‘-upstream mutation in the factor XII gene is associated with a TaqI restriction site in an Alu repeat in factor XII-deficient patients. Hum Genet 1996; 97 (06) 838-841
  • 28 Lombardi AM, Bortoletto E, Scarparo P. , et al. Genetic study in patients with factor XII deficiency: a report of three new mutations exon 13 (Q501STOP), exon 14 (P547L) and –13C > T promoter region in three compound heterozygotes. Blood Coagul Fibrinolysis 2008; 19 (07) 639-643
  • 29 Schloesser M, Zeerleder S, Lutze G. , et al. Mutations in the human factor XII gene. Blood 1997; 90 (10) 3967-3977
  • 30 Schloesser M, Hofferbert S, Bartz U. , et al. The novel acceptor splice site mutation 11396(G– > A) in the factor XII gene causes a truncated transcript in cross-reacting material negative patients. Hum Mol Genet 1995; 4 (07) 1235-1237
  • 31 Del Vecchio GC, Giordani L, De Santis A. , et al. Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1. Acta Haematol 2005; 114 (02) 113-116
  • 32 Kolluri R, Shehabeldin A, Peacocke M. , et al. Identification of WASP mutations in patients with Wiskott-Aldrich syndrome and isolated thrombocytopenia reveals allelic heterogeneity at the WAS locus. Hum Mol Genet 1995; 4 (07) 1119-1126