Hamostaseologie 2017; 37(02): 138-151
DOI: 10.5482/HAMO-17-01-0001
Übersichtsarbeit
Schattauer GmbH

Neue Entwicklungen in der molekularbiologischen Diagnostik

New developments in molecularbiological diagnostic
Christine Mannhalter
1   Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received: 12 January 2017

accepted in revised form: 27 February 2017

Publication Date:
28 December 2017 (online)

Zusammenfassung

Die uns heute zur Verfügung stehenden molekularbiologischen Analysemethoden sind technisch weitgehend ausgereift und warden bereits breit eingesetzt. Daraus ergibt sich die Notwendigkeit der Einführung von Regeln zur Überprüfung der Qualität der Tests sowie der Testlabors, was im Artikel im Detail besprochen wird. Nachdem Nukleinsäuren isoliert und amp lifiziert wurden, werden sie zur Genotypisierung herangezogen, wobei zahlreiche Fragen adressiert werden können wie z.B. die Diagnose erblich bedingter Krankheiten oder erblicher Prädispositionen, forensische Aspekte, die Identifizierung und Typisierung von Krankheitserregern, aber auch die Aufklärung evolutionärer Zusammenhänge. Die Wahl des Verfahrens zur Mutationssuche ist eng mit der Art und Heterogenität der für einen Phänotyp verantwortlichen Mutationen verbunden. Derzeit werden in vielen Labors für die Diagnostik PCR-Analysen neben der klassischen Sequenzierung nach Frederick Sanger eingesetzt. Zunehmend kommt jedoch die relativ neue „next generation sequencing” (NGS) Analyse zur Anwendung. Obwohl der Einsatz der NGS-Technologie in der klinischen Diagnostik mit zahlreichen Herausforderungen verbunden ist, wird die Umstellung auf diese Methode aufgrund der Vorteile in naher Zukunft vollzogen werden. Die deutliche Preisreduktion des NGS auf ca. 1000,- USD brachte die Genomsequenzierung schon sehr nahe an klinische Anwendungen heran. Bis zum routinemäßigen Einsatz müssen jedoch noch die Daten-Prozessierung, die Speicherung der riesigen Datenmengen und die Interpretation der Ergebnisse vereinfacht werden. Es gibt dafür unterschiedliche Datenbanken, von denen einige angeführt werden. Das Verständnis verschiedener Polymorphismen in Genen von Gerinnungsfaktoren und die Bedeutung der personalisierten Medizin, die ein wichtiges Werkzeug zur Risikostratifizierung der Patienten darstellt, wurden sehr vertieft. Beide Aspekte haben heute große Bedeutung und warden im vorliegenden Beitrag diskutiert.

Summary

Today, we have access to excellent and advanced molecular methods that are already widely used. This requires rules to control the quality of the methods as well as the laboratory. Both aspects will be discussed in the article. Following the isolation of nucleic acids they are used for genotyping which allows to address several questions: diagnosis of inherited diseases, inherited predispositions, forensic analyses, identification and typing of bacteria or viruses, elucidation of evolutionary aspects. Importantly, it has to be realized that the type and heterogeneity of phenotypically relevant mutations determines the method used for testing. Today, most laboratories use either PCR analyses or Sanger sequencing for diagnostic applications. However, increasingly next generation sequencing (NGS) is applied. The clinical use of NGS is still very challenging, but we can expect that the switch to regular application of this method will be coming in the very near future. The price for NGS has gone down to approx. USD 1000,- which makes the routine diagnostic use feasible. Nevertheless, several challenges have yet to be solved, such as the processing of the large data volume as well as storage of the data. Supporting data bases exist already and some will be discussed in the article. The understanding of the clinical relevance of many polymorphisms is another issue that has yet to be solved, particularly as in the context of personalized medicine polymorphisms have become increasingly important.

 
  • Literatur

  • 1 Ledbetter DH, Faucett WA. Issues in genetic testing for ultra-rare diseases: background and introduction. Genet Med 2008; 10: 309-313.
  • 2 Myers MF, Chang MH, Jorgensen C. et al. Genetic testing for susceptibility to breast and ovarian cancer: evaluating the impact of a direct-to-consumer marketing campaign on physicians’ knowledge and practices. Genet Med 2006; 08: 361-370.
  • 3 Schunkert H, Konig IR, Erdmann J. Molecular signatures of cardiovascular disease risk: potential for test development and clinical application. Mol Diagn Ther 2008; 12: 281-287.
  • 4 Spector EB, Grody WW, Matteson CJ. et al. Technical standards and guidelines: venous thromboembolism (factor V Leiden and prothrombin 20210G >A testing): a disease-specific supplement to the standards and guidelines for clinical genetics laboratories. Genet Med 2005; 07: 444-453.
  • 5 Plöthner M, Ribbentrop D, Hartman JP, Frank M. Cost-Effectiveness of Pharmacogenomic and Pharmacogenetic Test-Guided Personalized Therapies: A Systematic Review of the Approved Active Substances for Personalized Medicine in Germany. Adv Ther 2016; 33 (09) 1461-1480.
  • 6 Hertz DL, Rae JM. Pharmacogenetic Predictors of Response. Adv Exp Med Biol 2016; 882: 191-215.
  • 7 Berm EJ, Looff Md, Wilffert B. et al. Economic Evaluations of Pharmacogenetic and Pharmacogenomic Screening Tests: A Systematic Review. Second Update of the Literature. PLoS One 2016; 11 (01) e0146262.
  • 8 Chen B, Gagnon MB, Shahangian S. et al. Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions. Morbid Mortal Weekly Rep 2009; 58: 1-37.
  • 9 Dequeker E, Stuhrmann M, Morris MA. et al. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders – updated European recommendations. Eur J Hum Genet 2009; 17: 51-65.
  • 10 Aarabi M, Memariani T, Arefi S. et al. Polymorphisms of plasminogen activator inhibitor-1, angiotensin converting enzyme and coagulation factor XIII genes in patients with recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2011; 24: 545-548.
  • 11 Deutsche Gesellschaft für Humangenetik e.V. (GfH), Berufsverband Deutscher Humangenetiker e.V. (BVDH). S2-Leitlinie Humangenetische Diagnostik und genetische Beratung. Medgen 2011; 23: 281-323.
  • 12 Beutler E. The designation of mutations. Am J Hum Genet 1993; 53: 783-785.
  • 13 Antonarakis SE. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat 1998; 11: 1-3.
  • 14 den Dunnen JT. Sequence Variant Descriptions: HGVS Nomenclature and Mutalyzer. Curr Protoc Hum Genet. 2016 90. 7.13.1-7.13.19.
  • 15 den Dunnen JT, Dalgelish R, Maglott DR. et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 2016; 37: 564-569.
  • 16 Monk D, Morales J, den Dunnen JT. et al. Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains. Epigenetics. 2016 02. 0. [Epub ahead of print]
  • 17 Hudson KL, Murphy JA, Kaufman DJ. et al. Oversight of US genetic testing laboratories. Nature Biotechnol 2006; 24: 1083-1090.
  • 18 Clinical and Laboratory Standards Institute (CLSI). Application of a quality management system model for laboratory services; approved guideline – Third edition. CLSI document GP26-A3. Wayne PA: Clinical and Laboratory Standards Institute; 2004
  • 19 Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem 2007; 53: 1338-1342.
  • 20 Plebani M. Errors in clinical laboratories or errors in laboratory medicine?. Clin Chem Lab Med 2006; 44: 750-759.
  • 21 Giardiello FM, Brensinger JD, Petersen GM. et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis. N Engl J Med 1997; 336: 823-827.
  • 22 CLSI. Collection, Transport, Preparation, and Storage of Specimens for Molecular Methods. MM13-P. 2005 25. (9).
  • 23 Pintao MC, Garcia AA, Borgel D. et al. Gross deletions/duplications in PROS1 are relatively common in point mutation-negative hereditary protein S deficiency. Hum Genet 2009; 126: 449-456.
  • 24 Hofgartner WT, Tait JF. Frequency of problems during clinical molecular-genetic testing. Am J Clin Pathol 1999; 112: 14-21.
  • 25 Mullis K, Faloona F, Scharf S. et al. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp 1986; 51: 263-273.
  • 26 Arnheim N, Erlich H. Polymerase chain reaction strategy. Annu Rev Biochem 1992; 61: 131-115.
  • 27 Sanger F. The Croonian Lecture, 1975. Nucleotide sequences in DNA. Proc R Soc Lond B Biol Sci 1975; 191 1104 317-333.
  • 28 Wilkins RJ. Site-specific analysis of drug interactions and damage in DNA using sequencing techniques. Anal Biochem 1985; 147 (02) 267-279.
  • 29 Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet 2010; 11 (01) 31-46.
  • 30 Bentley DR. The Human Genome Project – an overview. Med Res Rev 2000; 20 (03) 189-196.
  • 31 Endler G, Funk M, Haering D. et al. Is the factor XIII 34Val/Leu polymorphism a protective factor for cerebrovascular disease?. Br J Haematol 2003; 120 (02) 310-314.
  • 32 Endler G, Lalouschek W, Exner M. et al. The 4G/4G genotype at nucleotide position -675 in the promotor region of the plasminogen activator inhibitor 1 (PAI-1) gene is less frequent in young patients with minor stroke than in controls. Br J Haematol 2000; 110 (02) 469-471.
  • 33 Binder A, Endler G, Müller M. et al. European Meningococcal Study Group. 4G4G genotype of the plasminogen activator inhibitor-1 promoter polymorphism associates with disseminated intravascular coagulation in children with systemic meningococcemia. J Thromb Haemost 2007; 05 (10) 2049-2054.
  • 34 Carlsson LE, Santoso S, Spitzer C. et al. The alpha2 gene coding sequence T807/A873 of the platelet collagen receptor integrin alpha2beta1 might be a genetic risk factor for the development of stroke in younger patients. Blood 1999; 93 (11) 3583-3586.
  • 35 Kakko S, Elo T, Tapanainen JM. et al. Polymorphisms of genes affecting thrombosis and risk of myocardial infarction. Eur J Clin Invest 2002; 32 (09) 643-648.
  • 36 Zhang Q, Jin Y, Shi D. et al. Glycoprotein Ia C807T: Polymorphisms and Their Association with Platelet Function in Patients with the Acute Coronary Syndrome. Cardiology 2015; 132 (04) 213-220.
  • 37 Kanaji T, Okamura T, Osaki K. et al. A common genetic polymorphism (46 C to T substitution) in the 5’-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 1998; 91 (06) 2010-2014.
  • 38 Bach J, Endler G, Winkelmann BR. et al. Coagulation factor XII (FXII) activity, activated FXII, distribution of FXII C46T gene polymorphism and coronary risk. J Thromb Haemos 2008; 06 (02) 291-296.
  • 39 Asano E, Ebara T, Yamada-Namikawa C. et al. Genotyping analysis for the 46 C/T polymorphism of coagulation factor XII and the involvement of factor XII activity in patients with recurrent pregnancy loss. PLoS One 2014; 09 (12) e114452.
  • 40 Ferrari J, Rieger S, Endler G. et al. The Thr715Pro polymorphism of the P-selectin gene is not associated with ischemic stroke risk. Stroke 2007; 38 (02) 395-397.
  • 41 Ay C, Jungbauer LV, Kaider A. et al. P-selectin gene haplotypes modulate soluble P-selectin concentrations and contribute to the risk of venous thromboembolism. Thromb Haemost 2008; 99 (05) 899-904.
  • 42 Oldenburg J, Seidel H, Pötzsch B, Watzka M. New insight in therapeutic anticoagulation by Coumarin derivatives. Hamostaseologie 2008; 28 1-2 44-50.
  • 43 Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 2009; 08 (03) 174-183.
  • 44 Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009; 55 (04) 641-658.
  • 45 Xuan J, Yu Y, Qing T. et al. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett 2013; 340 (02) 284-295.
  • 46 Morange PE, Suchon P, Trégouët DA. Genetics of Venous Thrombosis: update in 2015. Thromb Haemost 2015; 114 (05) 910-919.
  • 47 Bruzelius M, Bottai M, Sabater-Lleal M. et al. Predicting venous thrombosis in women using a combination of genetic markers and clinical risk factors. J Thromb Haemost 2015; 13 (02) 219-227.
  • 48 Corrales I, Catarino S, Ayats J. et al. High-throughput molecular diagnosis of von Willebrand disease by next generation sequencing methods. Haematologica 2012; 97: 1003-1007.
  • 49 Josephson NC, Martin B, Nakaya S. et al. A next generation sequencing approach for genotyping patients with hemophilia. J Thromb Haemost 2013; 11: 85-89.
  • 50 Goodeve A. Hematology. Am Soc Hematol Educ Program 2016; 2016 (01) 678-682.
  • 51 Lannoy N, Hermans C. Principles of genetic variations and molecular diseases: applications in hemophilia A Crit Rev Oncol Hematol. 2016; 104: 1-8.
  • 52 Guella I, Duga S, Ardissino D. et al. Common variants in the haemostatic gene pathway contribute to risk of early-onset myocardial infarction in the Italian population. Thromb Haemost 2011; 106 (04) 655-664.
  • 53 Gouw SC, van den Berg HM, Oldenburg J. et al. F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis. Blood 2012; 22: 2922-2934.
  • 54 Schwaab R, Brackmann HH, Meyer C. et al. Haemophilia A: mutation type determines risk of inhibitor formation. Thromb Haemost 1995; 74: 1402-1406.
  • 55 Reitter-Pfoertner S, von Haeseler A, Horvath B. et al. Identification of an ancient haemophilia A splice site mutation. Thromb Res 2012; 130: 445-450.
  • 56 Hoskinson DC, Dubuc AM, Mason-Suares H. The current state of clinical interpretation of sequence variants. Curr Opin Genet Dev 2017; 42: 33-39.
  • 57 Guan Y, Ma Y, Li Q. et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 2016; 08: 477-488.