Hamostaseologie 2017; 37(01): 53-57
DOI: 10.5482/HAMO-16-10-0040
State of the art
Schattauer GmbH

Plasma-derived versus recombinant factor concentrates in PUPs: a never ending debate?

Plasmatische versus rekombinante Faktoren- konzentrate bei nicht vorbehandelten Patienten: eine niemals endende Debatte?
Erik Berntorp
1   Centre for Thrombosis and Hemostasis, Lund University, Skane University Hospital, Malmö, Sweden
› Author Affiliations
Further Information

Publication History

received: 07 October 2016

accepted in revised form: 14 November 2016

Publication Date:
28 December 2017 (online)

Summary

Inhibitor development in haemophilia is a serious complication to treatment with factor concentrates. Since the advent of more pure products, especially developed using recombinant DNA technology, some studies have shown an increased incidence of inhibitors in previously untreated patients (PUPs) receiving recombinant products whereas plasma-derived concentrates sometimes have been claimed to have a protective role, probably due to the content of von Willebrand factor (VWF). In fact, experiments indicate that the VWF may block uptake of factor VIII into macrophages for further processing to the immune system. Also, a competition between VWF and inhibitor binding to the C2 domain of factor VIII has been suggested. Recently, large cohort and surveillance studies have created a vigorous debate about the role of product class for inhibitor development as results have been conflicting. The only randomised prospective study, the SIPPET study, was published in 2016, and substantiated previous reports claiming that plasma derived concentrates give less inhibitors in patients with severe haemophilia A, previously not exposed to factor VIII. The debate will continue.

Zusammenfassung

Die Entwicklung von Inhibitoren bei Hämophilie ist eine ernsthafte Komplikation bei der Behandlung mit Faktorkonzentraten. Seit der Einführung von Produkten mit einem höheren Reinheitsgrad, wurde in einigen Studien unter Anwendung von rekombinanten Präparaten bei nicht vorbehandelten Patienten ein gehäuftes Auftreten von Inhibitoren beobachtet. Dahingegen wurde gelegentlich von plasmatischen Konzentraten behauptet, sie hätten – vermutlich aufgrund ihres Gehalts an von-Willebrand-Faktor (VWF) – eine protektive Funktion. Tatsächlich gibt es experimentelle Hinweise, dass der VWF die Aufnahme von Faktor VIII in Makrophagen blockiert, wo er für das Immunsystem weiter verarbeitet wird. Auch wurde angenommen, dass VWF und Inhibitoren um die Bindung an der C2-Domäne des Faktors VIII konkurrieren. Jüngst haben große Kohorten- und Observationsstudien infolge ihrer widersprüchlichen Ergebnisse eine lebhafte Debatte über die Rolle der Produktklassen bei der Entstehung von Inhibitoren entfacht. Die einzige randomisierte prospektive Studie (SIPPET) wurde 2016 publiziert und hat frühere Berichte bestätigt, in denen die These aufgestellt wurde, dass mit den plasmatischen Konzentraten bei Patienten mit schwerer Hämophilie A ohne vorherige Exposition gegenüber Faktor VIII weniger Inhibitoren entstehen. Die Diskussion wird weitergehen. mit Faktorkonzentraten. Seit der Einführung von Produkten mit einem höheren Reinheitsgrad, wurde in einigen Studien unter Anwendung von rekombinanten Präparaten bei nicht vorbehandelten Patienten ein gehäuftes Auftreten von Inhibitoren beobachtet. Dahingegen wurde gelegentlich von plasmatischen Konzentraten behauptet, sie hätten – vermutlich aufgrund ihres Gehalts an von-Willebrand-Faktor (VWF) – eine protektive Funktion. Tatsächlich gibt es experimentelle Hinweise, dass der VWF die Aufnahme von Faktor VIII in Makrophagen blockiert, wo er für das Immunsystem weiter verarbeitet wird. Auch wurde angenommen, dass VWF und Inhibitoren um die Bindung an der C2-Domäne des Faktors VIII konkurrieren. Jüngst haben große Kohorten- und Observationsstudien infolge ihrer widersprüchlichen Ergebnisse eine lebhafte Debatte über die Rolle der Produktklassen bei der Entstehung von Inhibitoren entfacht. Die einzige randomisierte prospektive Studie (SIPPET) wurde 2016 publiziert und hat frühere Berichte bestätigt, in denen die These aufgestellt wurde, dass mit den plasmatischen Konzentraten bei Patienten mit schwerer Hämophilie A ohne vorherige Exposition gegenüber Faktor VIII weniger Inhibitoren entstehen. Die Diskussion wird weitergehen.

 
  • References

  • 1 Nilsson IM, Blomback M, Blomback B, Ramgran O. The use of human AHF (Fraction I-0) in haemophilia A. Blut 1962; 08: 92-101.
  • 2 Pool JG. Cryoprecipitate in the treatment of hemophilia. Calif Med 1970; 113 (02) 66-67.
  • 3 Berntorp E, Shapiro AD. Modern haemophilia care. Lancet 2012; 379 (9824): 1447-1456.
  • 4 Darby SC, Kan SW, Spooner RJ. et al. The impact of HIV on mortality rates in the complete UK haemophilia population. AIDS 2004; 18 (03) 525-533.
  • 5 Ragni MV, Tegtmeier GE, Levy JA. et al. AIDS retrovirus antibodies in hemophiliacs treated with factor VIII or factor IX concentrates, cryoprecipitate, or fresh frozen plasma: prevalence, seroconversion rate, and clinical correlations. Blood 1986; 67 (03) 592-595.
  • 6 Berntorp E. No evidence of HIV transmission after long-term follow-up of haemophiliacs treated with heat-treated factor VIII concentrate of American origin. Lancet 1987; 02 (8553): 283.
  • 7 Berntorp E, Hansson BG, Böttiger B. et al. HIV seroconversion in Swedish haemophiliacs: relation to type and dosage of factor concentrate. Eur J Haematol 1987; 38 (03) 256-260.
  • 8 Lusher JM, Arkin S, Abildgaard CF, Schwartz RS. Recombinant factor VIII for the treatment of previously untreated patients with hemophilia A. Safety, efficacy, and development of inhibitors. Kogenate Previously Untreated Patient Study Group. N Engl J Med 1993; 328 (07) 453-459.
  • 9 Bray GL, Gomperts ED, Courter S. et al. A multicenter study of recombinant factor VIII (recombinate): safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. The Recombinate Study Group. Blood 1994; 83 (09) 2428-2435.
  • 10 Choo QL, Kuo G, Weiner AJ. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989; 244 (4902): 359-362.
  • 11 Kuo G, Choo QL, Alter HJ. et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 1989; 244 (4902): 362-364.
  • 12 Alizon M, Sonigo P, Barré-Sinoussi F. et al. Molecular cloning of lymphadenopathy-associated virus. Nature 1984; 312 (5996): 757-760.
  • 13 Brettler DB, Forsberg AD, Levine PH. et al. Factor VIII:C concentrate purified from plasma using monoclonal antibodies: human studies. Blood 1989; 73 (07) 1859-1863.
  • 14 Berntorp E. et al. Variation in factor VIII inhibitor reactivity with different commercial factor VIII preparations. Haemophilia 1996; 02 (02) 95-99.
  • 15 Berntorp E, Ekman M, Gunnarsson M, Nilsson IM. VWF/FVIII complex and the management of patient with inhibitors: from laboratory to clinical practice. Haemophilia 2007; 13 Suppl 5: 69-72.
  • 16 Dasgupta S, Repessé Y, Bayry J. et al. VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 2007; 109 (02) 610-612.
  • 17 Salvagno GL, Astermark J, Ekman M. et al. Impact of different inhibitor reactivities with commercial factor VIII concentrates on thrombin generation. Haemophilia 2007; 13 (01) 51-56.
  • 18 Suzuki T, Arai M, Amano K. et al. Factor VIII inhibitor antibodies with C2 domain specificity are less inhibitory to factor VIII complexed with von Willebrand factor. Thromb Haemost 1996; 76 (05) 749-754.
  • 19 Wight J, Paisley S. The epidemiology of inhibitors in haemophilia A: a systematic review. Haemophilia 2003; 09 (04) 418-435.
  • 20 Astermark J. FVIII inhibitors: pathogenesis and avoidance. Blood 2015; 125 (13) 2045-2051.
  • 21 Matzinger P. The danger model: a renewed sense of self. Science 2002; 296 (5566): 301-305.
  • 22 Gouw SC, van der Bom JG, van den Berg HM. Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study. Blood 2007; 109 (11) 4648-4654.
  • 23 Auerswald G, Bidlingmaier C, Kurnik K. Early prophylaxis/FVIII tolerization regimen that avoids immunological danger signals is still effective in minimizing FVIII inhibitor developments in previously untreated patients – long-term follow-up and continuing experience. Haemophilia 2012; 18 (01) e18-e20.
  • 24 Auerswald G, Kurnik K, Aledort LM. et al. The EPIC study: a lesson to learn. Haemophilia 2015; 21 (05) 622-628.
  • 25 Moise L. et al. Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clin Immunol 2012; 142 (03) 320-31.
  • 26 Pavlova A, Delev D, Lacroix-Desmanzes S. et al. Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-alpha and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A. J Thromb Haemost 2009; 07 (12) 2006-2015.
  • 27 Astermark J, Oldenburg J, Carlsson J. et al. Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. Blood 2006; 108 (12) 3739-3745.
  • 28 Astermark J, Oldenburg J, Pavlova A. et al. Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. Blood 2006; 107 (08) 3167-3172.
  • 29 Astermark J, Wang X, Oldenburg J. et al. Polymorphisms in the CTLA-4 gene and inhibitor development in patients with severe hemophilia A. J Thromb Haemost 2007; 05 (02) 263-265.
  • 30 Iorio A, Halimeh S, Holzhauser S. et al. Rate of inhibitor development in previously untreated hemophilia A patients treated with plasma-derived or recombinant factor VIII concentrates: a systematic review. J Thromb Haemost 2010; 08 (06) 1256-1265.
  • 31 Xi M, Makris M, Marcucci M. et al. Inhibitor development in previously treated hemophilia A patients: a systematic review, meta-analysis, and meta-regression. J Thromb Haemost 2013; 11 (09) 1655-1662.
  • 32 Franchini M, Coppola A, Rocino A. et al. Systematic review of the role of FVIII concentrates in inhibitor development in previously untreated patients with severe hemophilia a: a 2013 update. Semin Thromb Hemost 2013; 39 (07) 752-766.
  • 33 Gouw SC, van der Bom JG, Auerswald G. et al. Recombinant versus plasma-derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood 2007; 109 (11) 4693-4697.
  • 34 Gouw SC, van der Bom JG, Ljung R. et al. Factor VIII products and inhibitor development in severe hemophilia A. N Engl J Med 2013; 368 (03) 231-239.
  • 35 Goudemand J, Rothschild C, Demiquel V. et al. Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood 2006; 107 (01) 46-51.
  • 36 Calvez T, Chambost H, Claeyssens-Donadel S. et al. Recombinant factor VIII products and inhibitor development in previously untreated boys with severe hemophilia A. Blood 2014; 124 (23) 3398-408.
  • 37 Collins PW, Palmer BP, Chalmers EA. et al. Factor VIII brand and the incidence of factor VIII inhibitors in previously untreated UK children with severe hemophilia A 2000–2011. Blood 2014; 124 (23) 3389-3397.
  • 38 Vezina C, Carcao M, Infante-Rivard C. et al. Incidence and risk factors for inhibitor development in previously untreated severe haemophilia A patients born between 2005 and 2010. Haemophilia 2014; 20 (06) 771-776.
  • 39 Fischer K, Lassila R, Peyvandi F. et al. Inhibitor development in haemophilia according to concentrate. Four-year results from the European HAemophilia Safety Surveillance (EUHASS) project. Thromb Haemost 2015; 113 (05) 968-975.
  • 40 Fischer K, Iorio A, Hollingsworth R. et al. FVIII inhibitor development according to concentrate: data from the EUHASS registry excluding overlap with other studies. Haemophilia 2016; 22 (01) e36-e38.
  • 41 Peyvandi F, Mannucci PM, Garagiola I. et al. A Randomized Trial of Factor VIII and Neutralizing Antibodies in Hemophilia A. N Engl J Med 2016; 374 (21) 2054-2064.
  • 42 Astermark J, Donfield SM, Gomperts ED. et al. The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort. Blood 2013; 121 (08) 1446-1454.
  • 43 Dabelea D, Mayer-Davis EJ, Saydah S. et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014; 311 (17) 1778-1786.
  • 44 Powell JS. Longer-acting clotting factor concentrates for hemophilia. J Thromb Haemost 2015; 13 (Suppl. 01) S167-S175.
  • 45 Shima M, Hanabusa H, Taki M. et al. Factor VIII-Mimetic Function of Humanized Bispecific Antibody in Hemophilia A. N Engl J Med 2016; 374 (21) 2044-2053.
  • 46 Chowdary P, Lethagen S, Driedrich U. et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial. J Thromb Haemost 2015; 13 (05) 743-754.
  • 47 Sehgal A, Barros S, Ivanciu L. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat Med 2015; 21 (05) 492-497.
  • 48 Nathwani AC, Reiss UM, Tuddenham EG. et al. Longterm safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371 (21) 1994-2004.
  • 49 Berntorp E. Haemophilia treatment in 2030. Haemophilia 2016; 22 (Suppl. 05) 15-19.