Hamostaseologie 2015; 35(03): 252-262
DOI: 10.5482/HAMO-14-11-0061
Review
Schattauer GmbH

MRI, the technology for imaging of thrombi and inflammation

Die MRT als Bildgebungstechnik zur Darstellung von Thrombosen und Inflammation
C. von zur Mühlen
1   Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany
,
C. Bode
1   Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany
› Author Affiliations
Further Information

Publication History

received: 10 November 2014

accepted in revised form: 13 January 2015

Publication Date:
28 December 2017 (online)

Summary

Atherosclerosis and its sequelae have a major impact on morbidity and mortality. The rupture of an inflamed atherosclerotic plaque is a crucial event, since it can result in acute thrombotic closure of an arterial vessel, resulting e. g. in myocardial infarction or stroke. Not only detection of early plaque rupture with imminent closure is therefore of clinical interest, but also timely detection of vascular inflammation and atherosclerotic plaque progression. However, plaque inflammation or even plaque rupture without vessel occlusion is not reliably detectable by current imaging techniques. Coronary angiography is the gold standard for evaluation of the coronary vessels, but only allows visualization of the vessel lumen without characterizing the important pathophysiology of the vessel wall. Therefore, highly inflamed and rupture prone plaques can be missed, or appear as a minor vessel narrowing. Although currently available techniques such as intravascular ultrasound or optical coherence tomography allow a further characterization of atherosclerotic plaques, it would be desirable to detect plaque inflammation, early plaque rupture or vascular thrombosis by non-invasive techniques such as magnetic resonance imaging (MRI), since they could allow early identification of patients at risk or triage of symptomatic patients.

In this manuscript, different strategies for detection of vascular inflammation, plaque-rupture and thrombosis by MRI will be discussed, with a special focus on molecular imaging contrast agents.

Zusammenfassung

Atherosklerose und ihre Folgeerkrankungen haben einen großen Einfluss auf Morbidität und Mortalität. Die Ruptur eines entzündeten atherosklerotischen Plaques ist ein Schlüsselereignis, da dies in den Verschluss eines arteriellen Gefäßes münden kann mit Folgen wie Schlaganfall oder Myokardinfarkt. Daher ist nicht nur die frühzeitige Detektion eines rupturierten Plaques von Interesse, sondern auch die Detektion der zugrunde liegenden vaskulären Inflammation und Plaqueprogression; jedoch sind diese Pathologien mit den momentanen Bildgebungstechniken immer noch nicht sicher zu entdecken. Die invasive Koronarangiographie ist zwar der Goldstandard zur Beurteilung der Koronargefäße, erlaubt jedoch nicht die Beurteilung der pathophysiologischen Vorgänge innerhalb der Gefäßwand. Deshalb können entzündete oder rupturgefährdete Plaques übersehen warden bzw. erscheinen nur als minimale Gefäßeinengung. Obwohl intravaskuläre Bildgebungstechniken wie optische Kohärenztomographie (OCT) oder intravaskulärer Ultraschall (IVUS) eine nähere Charakterisierung von atherosklerotischen Plaques ermöglichen, wäre es wünschenswert mit nicht-invasiven Techniken wie der Magnetresonanztomographie (MRT) die Plaqueruptur oder eine vaskuläre Thrombose frühzeitig darzustellen. Dieses Vorgehen könnte Risikopatienten identifizieren und eine frühzeitige Triagierung ermöglichen.

In dieser Übersicht werden unterschiedliche Strategien zur Darstellung der vaskulären Inflammation, Plaqueruptur und Thrombose mittels MRT diskutiert, mit einem besonderen Fokus auf die molekulare Bildgebung mit entsprechenden Kontrastmitteln.

 
  • References

  • 1 Corti R, Farkouh ME, Badimon JJ. The vulnerable plaque and acute coronary syndromes. Am J Med 2002; 113: 668-680.
  • 2 Stone PH. A multifaceted search for the presence of high-risk, vulnerable plaque. Curr Opin Cardiol 2002; 17: 613-615.
  • 3 Stone GW, Maehara A, Lansky AJ. et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226-235.
  • 4 Rogers IS, Nasir K, Figueroa AL. et al. Feasibility of fdg imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010; 03: 388-397.
  • 5 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 6 Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995; 15: 551-561.
  • 7 Stoll G, Bendszus M. Inflammation and atherosclerosis: Novel insights into plaque formation and destabilization. Stroke 2006; 37: 1923-1932.
  • 8 Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 2004; 03: 913-925.
  • 9 Yuan XM, Anders WL, Olsson AG, Brunk UT. Iron in human atheroma and ldl oxidation by macrophages following erythrophagocytosis. Atherosclerosis 1996; 124: 61-73.
  • 10 Chapman MJ. The potential role of hdl-and ldlcholesterol modulation in atheromatous plaque development. Curr Med Res Opin 2005; 21 (Suppl. 06) S17-S22.
  • 11 Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84: 1381-1478.
  • 12 Choudhary S, Higgins CL, Chen IY. et al. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 2006; 26: 2351-2358.
  • 13 Sigala F, Georgopoulos S, Papalambros E. et al. Heregulin, cysteine rich-61 and matrix metalloproteinase 9 expression in human carotid atherosclerotic plaques: Relationship with clinical data. Eur J Vasc Endovasc Surg 2006; 32: 238-245.
  • 14 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378-3384.
  • 15 Massberg S, Brand K, Gruner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 16 Fayad ZA. The assessment of the vulnerable atherosclerotic plaque using mr imaging: A brief review. Int J Cardiovasc Imaging 2001; 17: 165-177.
  • 17 Winter PM, Morawski AM, Caruthers SD. et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with {alpha}v{beta}3-integrin-targeted nanoparticles. Circulation 2003; 108: 2270-2274.
  • 18 Kelly KA, Allport JR, Tsourkas A. et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005; 96: 327-336.
  • 19 Botnar RM, Buecker A, Wiethoff AJ. et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 2004; 110: 1463-1466.
  • 20 Shapiro EM, Skrtic S, Sharer K. et al. Mri detection of single particles for cellular imaging. Proc Natl Acad Sci USA 2004; 101: 10901-10906.
  • 21 Kaufmann BA, Carr CL, Belcik JT. et al. Molecular imaging of the initial inflammatory response in atherosclerosis: Implications for early detection of disease. Arterioscler Thromb Vasc Biol 2010; 30: 54-59.
  • 22 Nahrendorf M, Keliher E, Panizzi P. et al. 18F-4v for PET-CT imaging of vcam-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2009; 02: 1213-1222.
  • 23 McAteer MA, Schneider JE, Ali ZA. et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008; 28: 77-83.
  • 24 Nahrendorf M, Jaffer FA, Kelly KA. et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 1504-1511.
  • 25 McAteer MA, Schneider JE, Ali ZA. et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008; 28: 77-83.
  • 26 McAteer MA, Sibson NR, von Zur CMuhlen. et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007; 13: 1253-1258.
  • 27 Li X, Bauer W, Israel I. et al. Targeting p-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: Correlation with in vivo 17.6T MRI. Arterioscler Thromb Vasc Biol 2014; 34: 1661-1667.
  • 28 Kooi ME, Cappendijk VC, Cleutjens KB. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107: 2453-2458.
  • 29 Wilhelm C, Billotey C, Roger J. et al. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001-1011.
  • 30 Amirbekian V, Lipinski MJ, Briley-Saebo KC. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 2007; 104: 961-966.
  • 31 Ruehm SG, Corot C, Vogt P. et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415-422.
  • 32 Jaffer FA, Nahrendorf M, Sosnovik D. et al. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006; 05: 85-92.
  • 33 Tang TY, Howarth SP, Miller SR. et al. The atheroma (atorvastatin therapy: Effects on reduction of macrophage activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-en- hanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 2009; 53: 2039-2050.
  • 34 Litovsky S, Madjid M, Zarrabi A. et al. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: Enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 2003; 107: 1545-1549.
  • 35 Raynal I, Prigent P, Peyramaure S. et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004; 39: 56-63.
  • 36 Von zur CMuhlen, von Elverfeldt D, Bassler N. et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor mac-1 (cd11b/cd18): Implications on imaging of atherosclerotic plaques. Atherosclerosis 2007; 193: 102-111.
  • 37 Von zur CMuhlen, Fink-Petri A, Salaklang J. et al. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin mac-1 (cd11b/cd18) does not result in improved atherosclerotic plaque detection by in vivo MRI. Contrast Media Mol Imaging 2010; 05: 268-275.
  • 38 Spuentrup E, Buecker A, Katoh M. et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrintargeted contrast agent. Circulation 2005; 111: 1377-1382.
  • 39 Botnar RM, Perez AS, Witte S. et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 2004; 109: 2023-2029.
  • 40 Sirol M, Aguinaldo JG, Graham PB. et al. Fibrintargeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 2005; 182: 79-85.
  • 41 Spuentrup E, Katoh M, Wiethoff AJ. et al. Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med 2005; 172: 494-500.
  • 42 Vymazal J, Spuentrup E, Cardenas-Molina G. et al. Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent ep-2104r: Results of a phase ii clinical study of feasibility. Invest Radiol 2009; 44: 697-704.
  • 43 Flacke S, Fischer S, Scott MJ. et al. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 2001; 104: 1280-1285.
  • 44 Winter PM, Caruthers SD, Yu X. et al. Improved molecular imaging contrast agent for detection of human thrombus. Magn Reson Med 2003; 50: 411-416.
  • 45 Pan X, Rapp JH, Harris HW. et al. Identification of aortic thrombus by magnetic resonance imaging. J Vasc Surg 1989; 09: 801-805.
  • 46 Duerschmied D CM, Lievens D. et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost 2009; 07: 1163-1171.
  • 47 Klink A, Lancelot E, Ballet S. et al. Magnetic resonance molecular imaging of thrombosis in an arachidonic acid mouse model using an activated platelet targeted probe. Arterioscler Thromb Vasc Biol 2010; 30: 403-410.
  • 48 Von zur CMuhlen, von Elverfeldt D, Choudhury RP. et al. Functionalized magnetic resonance contrast agent selectively binds to glycoprotein iib/ iiia on activated human platelets under flow conditions and is detectable at clinically relevant field strengths. Mol Imaging 2008; 07: 59-67.
  • 49 Von zur CMühlen, Peter K, Ali Z. et al. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein iib/iiia. J Vasc Res 2009; 46: 6-14.
  • 50 Von zur CMuhlen, von Elverfeldt D, Moeller JA. et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 2008; 118: 258-267.
  • 51 Duerschmied D, Meiner M, Peter K. et al. Molecular magnetic resonance imaging allows the detection of activated platelets in a new mouse model of coronary artery thrombosis. Invest Radiol 2011; 46: 618-623.
  • 52 Von zur CMuhlen, Sibson NR, Peter K. et al. A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional mri. J Clin Invest 2008; 118: 1198-1207.
  • 53 Von Elverfeldt D, Maier A, Duerschmied D. et al. Dual-contrast molecular imaging allows noninvasive characterization of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging. Circulation 2014; 130: 676-687.
  • 54 Schneider JE, McAteer MA, Tyler DJ. et al. High-resolution, multicontrast three-dimensional-mri characterizes atherosclerotic plaque composition in apoe−/− mice ex vivo. J Magn Reson Imaging 2004; 20: 981-989.
  • 55 McAteer MA, Schneider JE, Clarke K. et al. Quantification and 3d reconstruction of atherosclerotic plaque components in apolipoprotein e knockout mice using ex vivo high-resolution MRI. Arterioscler Thromb Vasc Biol 2004; 24: 2384-2390.
  • 56 Yuan C, Kerwin WS. MRI of atherosclerosis. J Magn Reson Imaging 2004; 19: 710-719.
  • 57 Von zur CMuhlen, von Elverfeldt D, Moeller JA. et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 2008; 118: 258-267.
  • 58 Duerschmied D, Meissner M, Peter K. et al. Molecular magnetic resonance imaging allows the detection of activated platelets in a new mouse model of coronary artery thrombosis. Invest Radiol 2011; 46: 618-623.