Hamostaseologie 2015; 35(01): 34-36
DOI: 10.5482/HAMO-14-09-0045
Review
Schattauer GmbH

Inflammation and repair in the ischaemic myocardium

Entzündung und Reparatur im ischämischen Myokard
F. K. Swirski
1   Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
› Author Affiliations
Further Information

Publication History

received: 18 September 2014

accepted in revised form: 21 October 2014

Publication Date:
28 December 2017 (online)

Summary

Shortly after myocardial infarction, various circulating leukocyte subsets accumulate in the heart. Leukocyte recruitment is highly coordinated and relies on cell production in the bone marrow, mobilization to the blood, and chemokine-mediated infiltration to the destination tissue. Neutrophils, which are phagocytic and inflammatory, are among the first leukocytes to accumulate in large numbers. Within a day, neutrophils disappear and are replaced by a subset of monocytes that further contribute to inflammation and phagocytosis. After a few days, monocyte-derived reparative macrophages accrue, quell inflammation, and foster angiogenesis and tissue remodelling. Studies suggest a wellbalanced response comprising these three waves is essential to optimal infarct healing.

Zusammenfassung

Kurz nach einem Myokardinfarkt sammeln sich zirkulierende Leukozytenpopulationen im Herzen an. Die Rekrutierung der Leukozyten erfolgt sehr gezielt und beruht auf der Zellbildung im Knochenmark, Auswanderung in den Blutstrom und der durch Chemokine vermittelten Infiltration des Zielgewebes. Neutrophile gehören als phagozytierende und inflammatorische Zellen zu den ersten Leukozyten, die in großer Zahl akkumulieren. Innerhalb eines Tages werden die Neutrophilen durch Monozyten ersetzt, die ebenfalls zur Entzündung und Phagozytose beitragen. Nach einigen Tagen kommen von Monozyten stammende regenerative Makrophagen hinzu, die entzündungshemmend wirken und die Angiogenese und den Gewebeumbau fördern. Studien ergaben, dass eine ausgewogene Reaktion mit allen drei Stufen für eine optimale Infarktheilung maßgeblich ist.

 
  • References

  • 1 Lozano R, Naghavi M, Foreman K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095-2128.
  • 2 Bloom DE, Cafiero ET. Jane-Llopis E et al. The Global Economic Burden of Noncommunicable Diseases. Geneva: World Economic Forum; 2011
  • 3 Anversa P, Olivetti G, Leri A. et al. Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens 1997; 06: 169-176.
  • 4 Dobaczewski M, Frangogiannis NG. Chemokines and cardiac fibrosis. Front Biosci (Schol Ed) 2009; 01: 391-405.
  • 5 Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest 2005; 115: 565-571.
  • 6 Frangogiannis NG. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 2004; 53: 585-595.
  • 7 French BA, Kramer CM. Mechanisms of post-infarct left ventricular remodeling. Drug Discov Today Dis Mech 2007; 04: 185-196.
  • 8 Grazette LP, Rosenzweig A. Role of apoptosis in heart failure. Heart Fail Clin 2005; 01: 251-261.
  • 9 Jameel MN, Zhang J. Heart failure management: the present and the future. Antioxid Redox Signal 2009; 11: 1989-2010.
  • 10 Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res 2010; 106: 47-57.
  • 11 Kerkela R, Force T. Recent insights into cardiac hypertrophy and left ventricular remodeling. Curr Heart Fail Rep 2006; 03: 14-18.
  • 12 Konstam MA, Kramer DG, Patel AR. et al. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011; 04: 98-108.
  • 13 Leri A, Quaini F, Kajstura J, Anversa P. Myocyte death and myocyte regeneration in the failing human heart. Ital Heart J 2001; (Suppl. 02) 03: 12S-14S.
  • 14 Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94: 1543-1553.
  • 15 Olivetti G, Abbi R, Quaini F, Kajstura J. et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131-1141.
  • 16 Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81: 1161-1172.
  • 17 Regula KM, Kirshenbaum LA. Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 2005; 38: 3-13.
  • 18 Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 2011; 378: 704-712.
  • 19 Snider P, Standley KN, Wang J. et al. Origin of cardiac fibroblasts and the role of periostin. Circ Res 2009; 105: 934-947.
  • 20 Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res 2009; 105: 1164-1176.
  • 21 Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 2007; 87: 1285-1342.
  • 22 Sun M, Chen M, Dawood F. et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007; 115: 1398-1407.
  • 23 Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999; 79: 215-262.
  • 24 Van Empel VP, Bertrand AT, Hofstra L. et al. Myocyte apoptosis in heart failure. Cardiovasc Res 2005; 67: 21-29.
  • 25 Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72: 19-44.
  • 26 Yang F, Liu YH, Yang XP. et al. Myocardial infarction and cardiac remodelling in mice. Exp Physiol 2002; 87: 547-555.
  • 27 Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 2010; 48: 558-563.
  • 28 Hofmann U, Beyersdorf N, Weirather J. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 2012; 125: 1652-1663.
  • 29 Weirather J, Hofmann UD, Beyersdorf N. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 2014; 115: 55-67.
  • 30 Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74: 2527-2534.
  • 31 Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71-82.
  • 32 Nahrendorf M, Swirski FK, Aikawa E. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007; 204: 3037-3047.
  • 33 Leuschner F, Rauch PJ, Ueno T. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012; 209: 123-137.
  • 34 Wan E, Yeap XY, Dehn S. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 2013; 113: 1004-1012.
  • 35 Gautier EL, Shay T, Miller J. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012; 13: 1118-1128.
  • 36 Hilgendorf I, Gerhardt LM, Tan TC. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res 2014; 114: 1611-1622.
  • 37 Hanna RN, Carlin LM, Hubbeling HG. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6Cmonocytes. Nat Immunol 2011; 12: 778-785.
  • 38 Dutta P, Courties G, Wei Y. et al. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487: 325-329.
  • 39 Majmudar MD, Keliher EJ, Heidt T. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013; 127: 2038-2046.
  • 40 Panizzi P, Swirski FK, Figueiredo JL. et al. Impaired infarct healing in atherosclerotic mice with Ly6C(hi) monocytosis. J Am Coll Cardiol 2010; 55: 1629-1638.
  • 41 Swirski FK, Nahrendorf M, Etzrodt M. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612-616.
  • 42 Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013; 339: 161-166.
  • 43 Carlin LM, Stamatiades EG, Auffray C. et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013; 153: 362-375.
  • 44 Aurora AB, Porrello ER, Tan W. et al. Macrophages are required for neonatal heart regeneration. J Clin Invest 2014; 124: 1382-1392.
  • 45 Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 2013; 110: 9415-9420.
  • 46 Jiang B, Liao R. The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res 2010; 03: 410-416.
  • 47 Anzai T. Post-infarction inflammation and left ventricular remodeling: a double-edged sword. Circ J 2013; 77: 580-587.
  • 48 Chen W, Frangogiannis NG. Fibroblasts in postinfarction inflammation and cardiac repair. Biochim Biophys Acta 2013; 1833: 945-953.
  • 49 Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010; 121: 2437-2445.
  • 50 Timmers L, Pasterkamp G, de Hoog VC. et al. The innate immune response in reperfused myocardium. Cardiovasc Res 2012; 94: 276-283.