Hamostaseologie 2014; 34(02): 133-141
DOI: 10.5482/HAMO-13-09-0049
Review
Schattauer GmbH

Genetics of inherited platelet disorders

Genetik angeborener Thrombozytopathien
M. Gothwal
1   Department of Paediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
,
K. Sandrock-Lang
1   Department of Paediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
,
B. Zieger
1   Department of Paediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
› Author Affiliations
Further Information

Publication History

received: 06 September 2013

accepted in revised form: 11 December 2013

Publication Date:
28 December 2017 (online)

Summary

The current review describes inherited platelet disorders, illustrates their clinical phenotype and molecular genetic defects. Platelets are the key molecules mediating haemostasis via adhesion, activation and clot formation at the site of injury. The inherited platelet disorders can be classified according to their platelet defects: receptor/cytoskeleton defects, secretion disorder, and signal transduction defect.

Patients with inherited thrombocytopathia present with mucous membrane bleedings (epistaxis, gingival bleeding) and may present with serious life threatening bleedings following surgery or trauma. Therefore, biochemical and molecular genetic characterization of inherited platelet disorders is important to understand these disorders and to support an efficient therapy.

Zusammenfassung

Dieser Review beschreibt angeborene Thrombozytopathien, deren klinischen Phänotyp sowie die verursachenden molekulargenetischen Defekte. Thrombozyten sind die Schlüsselproteine, die mittels Adhäsion, Aktivierung und Thrombusbildung an der Verletzungsstelle zur Hämostase beitragen. Die angeborenen Thrombozytopathien werden entsprechend des Thrombozytendefekts eingeteilt: Rezeptor-/Zytoskelett-, Sekretionsoder Signaltransduktionsdefekt.

Patienten mit angeborener Thrombozytopathie leiden unter Schleimhautblutungen (Nasenund Zahnfleischblutungen) und können sogar lebensbedrohliche Blutungen im Rahmen von Operationen und Unfällen entwickeln. Daher ist die biochemische und molekulargenetische Charakterisierung der angeborenen Thrombozytopathien wichtig zum Verständnis dieser Erkrankungen und zur Unterstützung einer effizienten Therapie.

 
  • References

  • 1 Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev 1982; 62: 185-261.
  • 2 Santoro SA, Zutter MM. The alpha 2 beta 1 integrin: a collagen receptor on platelets and other cells. Thromb Haemost 1995; 74: 813-821.
  • 3 Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 2005; 115: 3363-3369.
  • 4 Bernard J, Soulier J. Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Sem Hop 1948; 24: 3217-3223.
  • 5 López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998; 91: 4397-4418.
  • 6 Savoia A, Pastore A, De Rocco D. et al. Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 2011; 96: 417-423.
  • 7 Salles II, Feys HB, Iserbyt BF. et al. Inherited traits affecting platelet function. Blood Rev 2008; 22: 155-172.
  • 8 Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 09 (Suppl. 01) 76-91.
  • 9 Bartsch I, Sandrock K, Lanza F. et al. Deletion of human GP1BB and SEPT5 is associated with Bernard-Soulier syndrome, platelet secretion defect, polymicrogyria, and developmental delay. Thromb Haemost 2011; 106: 475-483.
  • 10 Balduini CL, Savoia A. Genetics of familial forms of thrombocytopenia. Hum Genet 2012; 131: 1821-1832.
  • 11 Savoia A, Balduini CL, Savino M. et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001; 97: 1330-1335.
  • 12 Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ib alpha leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. Blood 1992; 79: 439-446.
  • 13 Kunishima S, Imai T, Hamaguchi M, Saito H. Novel heterozygous missense mutation in the second leucine rich repeat of GPIbalpha affects GPIb/ IX/V expression and results in macrothrombocytopenia in a patient initially misdiagnosed with idiopathic thrombocytopenic purpura. Eur J Haematol 2006; 76: 348-355.
  • 14 Vettore S, Scandellari R, Moro S. et al. Novel point mutation in a leucine-rich repeat of the GPIbalpha chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: the N41H variant. Haematologica 2008; 93: 1743-1747.
  • 15 Weiss HJ, Meyer D, Rabinowitz R. et al. Pseudo-von Willebrand’s disease. An intrinsic platelet defect with aggregation by unmodified human factor VIII/von Willebrand factor and enhanced adsorption of its high-molecular-weight multimers. N Engl J Med 1982; 306: 326-333.
  • 16 Miller JL, Castella A. Platelet-type von Willebrand’s disease: characterization of a new bleeding disorder. Blood 1982; 60: 790-794.
  • 17 Othman M. Platelet-type Von Willebrand disease: three decades in the life of a rare bleeding disorder. Blood Rev 2011; 25: 147-153.
  • 18 Glanzmann W. Hereditary haemorrhagic thrombasthenia. A contribution to the pathology of platelets. Jahrbuch für Kinderheilkunde 1918; 88 1-42, 113-141.
  • 19 Wiegering V, Sauer K, Winkler B. et al. Indication for allogeneic stem cell transplantation in Glanzmann’s thrombasthenia. Hamostaseologie 2013; 33: 305-312.
  • 20 French DL, Seligsohn U. Platelet glycoprotein IIb/ IIIa receptors and Glanzmann’s thrombasthenia. Arterioscler Thromb Vasc Biol 2000; 20: 607-610.
  • 21 Kannan M, Saxena R. Glanzmann’s thrombasthenia: an overview. Clin Appl Thromb Hemost 2009; 15: 152-165.
  • 22 Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis 2006; 01: 10.
  • 23 Lanza F. Bernard-Soulier syndrome (hemorrhagiparous thrombocytic dystrophy). Orphanet J Rare Dis 2006; 01: 46.
  • 24 Savoia A, De Rocco D, Panza E. et al. Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb Haemost 2010; 103: 826-832.
  • 25 Pecci A, Panza E, Pujol-Moix N. et al. Position of nonmuscle myosin heavy chain IIA (NMMHCIIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 2008; 29: 409-417.
  • 26 Pecci A, Malara A, Badalucco S. et al. Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thromb Haemost 2009; 102: 90-96.
  • 27 Balduini A, Pallotta I, Malara A. et al. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 06: 1900-1907.
  • 28 Aldrich RA, Steinberg AG, Campbell DC. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 1954; 13: 133-139.
  • 29 Bosticardo M, Marangoni F, Aiuti A. et al. Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood 2009; 113: 6288-6295.
  • 30 Sabri S, Foudi A, Boukour S. et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006; 108: 134-140.
  • 31 Kawasaki Y, Toyoda H, Otsuki S. et al. A novel Wiskott-Aldrich syndrome protein mutation in an infant with thrombotic thrombocytopenic purpura. Eur J Haematol 2013; 90: 164-168.
  • 32 Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood 2008; 112: 11-18.
  • 33 Simon D, Kunicki T, Nugent D. Platelet function defects. Haemophilia 2008; 14: 1240-1249.
  • 34 Raccuglia G. Gray platelet syndrome. A variety of qualitative platelet disorder. Am J Med 1971; 51: 818-828.
  • 35 Maynard DM, Heijnen HF, Gahl WA, GunayAygun M. The á-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010; 08: 1786-1796.
  • 36 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F. et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116: 4990-5001.
  • 37 Albers CA, Cvejic A, Favier R. et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011; 43: 735-737.
  • 38 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T. et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet á-granules. Nat Genet 2011; 43: 732-734.
  • 39 Kahr WH, Hinckley J, Li L, Schwertz H. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43: 738-740.
  • 40 McKay H, Derome F, Haq MA. et al. Bleeding risks associated with inheritance of the Quebec platelet disorder. Blood 2004; 104: 159-165.
  • 41 Sandrock K, Zieger B. Current Strategies in diagnosis of inherited storage pool defects. Transfus Med Hemother 2010; 37: 248-258.
  • 42 Veljkovic DK, Rivard GE, Diamandis M. et al. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation. Blood 2009; 113: 1535-1542.
  • 43 Paterson AD, Rommens JM, Bharaj B. et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010; 115: 1264-1266.
  • 44 Hermansky F, Pudlak P. Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood 1959; 14: 162-169.
  • 45 Huizing M, Helip-Wooley A, Westbroek W. et al. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008; 09: 359-386.
  • 46 Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 2006; 19: 19-42.
  • 47 Cullinane AR, Curry JA, Carmona-Rivera C. et al. A BLOC-1 mutation screen reveals that PLDN is mutated in Hermansky-Pudlak Syndrome type 9. Am J Hum 2011; Genet 88: 778-787.
  • 48 O’Brien K, Troendle J, Gochuico BR. et al. Pirfenidone for the treatment of Hermansky-Pudlak syndrome pulmonary fibrosis. Mol Genet Metab 2011; 103: 128-134.
  • 49 Enders A, Zieger B, Schwarz K. et al. Lethal hemophagocytic lymphohistiocytosis in HermanskyPudlak syndrome type II. Blood 2006; 108: 81-87.
  • 50 Jessen B, Bode SF, Ammann S. et al. The risk of hemophagocytic lymphohistiocytosis in HermanskyPudlak syndrome type 2. Blood 2013; 121: 2943-2951.
  • 51 Sandrock K, Bartsch I, Rombach N. et al. Compound heterozygous mutations in 2 siblings with Hermansky-Pudlak syndrome type 1 (HPS1). Klin Padiatr 2010; 222: 168-174.
  • 52 Kurnik K, Bartsch I, Maul-Pavicic A. et al. Novel mutation in Hermansky-Pudlak syndrome type 2 with mild immunological phenotype. Platelets 2013; 24: 538-543.
  • 53 Huizing M, Parkes JM, Helip-Wooley A. et al. Platelet alpha granules in BLOC-2 and BLOC-3 subtypes of Hermansky-Pudlak syndrome. Platelets 2007; 18: 150-157.
  • 54 Cutler DF. Introduction: lysosome-related organelles. Semin Cell Dev Biol 2002; 13: 261-262.
  • 55 Sato A. Chédiak and Higashi’s disease: probable identity of a new leucocytal anomaly (Chédiak) and congenital gigantism of peroxidase granules (Higashi). Tohoku J Exp Med 1955; 61: 201-210.
  • 56 Kaya Z, Ehl S, Albayrak M. et al. A novel single point mutation of the LYST gene in two siblings with different phenotypic features of Chediak Higashi syndrome. Pediatr Blood Cancer 2011; 56: 1136-1139.
  • 57 Ménasché G, Ho CH, Sanal O. et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 2003; 112: 450-456.
  • 58 Jennane S, El Kababri M, Hessissen L. et al. A hemophagocytic syndrome revealing a Griscelli syndrome type 2. Ann Biol Clin (Paris) 2013; 71: 461-464.
  • 59 Westbroek W, Klar A, Cullinane AR. et al. Cellular and clinical report of new Griscelli syndrome type III cases. Pigment Cell Melanoma Res 2012; 25: 47-56.
  • 60 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrindependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost 2010; 103: 1053-1064.
  • 61 Malinin NL, Zhang L, Choi J. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15: 313-318.
  • 62 Dumont B, Lasne D, Rothschild C. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114: 1900-1903.
  • 63 D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transfus 2009; 07: 278-292.
  • 64 Novak EK, Gautam R, Reddington M. et al. The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood 2002; 100: 128-135.