Subscribe to RSS

DOI: 10.4103/wjnm.wjnm_150_20
Fixed 30 mCi (1110 MBq) 131I-iodine therapy in autonomously functioning nodules: Single toxic nodule as a predictive factor of success

Abstract
Aims: The aim of this study is to evaluate the efficacy of a fixed 30 mCi (1110 MBq) 131I-iodine dose for the treatment of hyperthyroidism due to uninodular or multinodular toxic goiter and identify predictors of success. Materials and Methods: Fifty-nine patients diagnosed with nonautoimmune toxic goiter were treated with a fixed 30 mCi dose of 131I-iodine and were followed at a tertiary service between 2000 and 2016. The therapy was considered successful if the patient reached euthyroidism or hypothyroidism without needing an extra 131I-iodine dose or antithyroid drugs for at least 1 year after the radioiodine therapy (RIT). Results: Patients with a single toxic nodule were younger at diagnosis (52 vs. 63 years; P = 0.007), presented a shorter disease duration until RIT (2 vs. 3.5 years; P = 0.007), smaller total thyroid volume (20 vs. 82 cm3; P = 0.044), and lower pre-RIT thyroid uptake (P = 0.043) than patients with multinodular goiter. No significant difference was seen with antithyroid drug use, thyroid-stimulating hormone and free thyroxine level, and follow-up after RIT. After RIT, 47 patients (79.66%) met the success criteria, and 12 (20.33%) remained hyperthyroid. Among the success group, 32 (68.08%) reached euthyroidism, while 31.92% developed hypothyroidism after 1 year. Patients with single toxic nodules who achieved success after RIT presented smaller nodules (2.8 vs. 5.75 cm; P = 0.043), while the pre-RIT thyroid uptake was higher among patients with multinodular toxic goiter who achieved success after RIT (5.5% vs. 1.5%; P = 0.007). A higher success rate was observed among patients with a single toxic nodule than those with a toxic multinodular goiter (92.3% vs. 55%; P = 0.001), and a single toxic nodule presentation was found to be an independent predictor of success (P = 0.009). Conclusions: The fixed 30 mCi 131I-iodine dose was particularly effective in the group of patients with single autonomously functioning nodule rather than the group with multiple nodules. A single toxic nodule was an independent predictor of treatment success.
Financial support and sponsorship
CDR has a research grant from CNPq (National Council of Research) proc 311841/2018-0. DEZW has a research grant from CNPq (National Council of Research) proc 302827/2018-8.
Publication History
Received: 19 May 2021
Accepted: 06 July 2021
Article published online:
24 March 2022
© 2021. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Siegel RD, Lee SL. Toxic nodular goiter. Toxic adenoma and toxic multinodular goiter. Endocrinol Metab Clin North Am 1998;27:151-68.
- 2 Nygaard B, Hegedüs L, Nielsen KG, Ulriksen P, Hansen JM. Long-term effect of radioactive iodine on thyroid function and size in patients with solitary autonomously functioning toxic thyroid nodules. Clin Endocrinol (Oxf) 1999;50:197-202.
- 3 Azizi F, Takyar M, Madreseh E, Amouzegar A. Treatment of toxic multinodular goiter: Comparison of radioiodine and long-term methimazole treatment. Thyroid 2019;29:625-30.
- 4 Huysmans DA, Hermus AR, Corstens FH, Barentsz JO, Kloppenborg PW. Large, compressive goiters treated with radioiodine. Ann Intern Med 1994;121:757-62.
- 5 Aktaş GE, Turoğlu HT, Erdil TY, İnanır S, Dede F. Long-term results of fixed high-dose I-131 treatment for toxic nodular goiter: Higher euthyroidism rates in geriatric patients. Mol Imaging Radionucl Ther 2015;24:94-9.
- 6 Reiners C, Schneider P. Radioiodine therapy of thyroid autonomy. Eur J Nucl Med Mol Imaging 2002;29 Suppl 2:S471-8.
- 7 Stokkel MP, Junak DH, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010;37:2218-28.
- 8 Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: A population-based study. Arch Intern Med 2004;164:1675-8.
- 9 Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 1994;331:1249-52.
- 10 Brandt F, Green A, Hegedüs L, Brix TH. A critical review and meta-analysis of the association between overt hyperthyroidism and mortality. Eur J Endocrinol 2011;165:491-7.
- 11 Siu CW, Yeung CY, Lau CP, Kung AW, Tse HF. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart 2007;93:483-7.
- 12 Hegedüs L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: Current status and future perspectives. Endocr Rev 2003;24:102-32.
- 13 Szumowski P, Rogowski F, Abdelrazek S, Kociura-Sawicka A, Sokolik-Ostasz A. Iodine isotope 1≥1I therapy for toxic nodular goitre: Treatment efficacy parameters. Nucl Med Rev Cent East Eur 2012;15:7-13.
- 14 Schiavo M, Bagnara MC, Camerieri L, Pomposelli E, Giusti M, Pesce G, et al. Clinical efficacy of radioiodine therapy in multinodular toxic goiter, applying an implemented dose calculation algorithm. Endocrine 2015;48:902-8.
- 15 Ramos CD, Zantut Wittmann DE, Etchebehere EC, Tambascia MA, Silva CA, Camargo EE. Thyroid uptake and scintigraphy using 99mTc pertechnetate: Standardization in normal individuals. Sao Paulo Med J 2002;120:45-8.
- 16 Maisey MN, Natarajan TK, Hurley PJ, Wagner HN Jr. Validation of a rapid computerized method of measuring 99mTc pertechnetate uptake for routine assessment of thyroid structure and function. J Clin Endocrinol Metab 1973;36:317-22.
- 17 Schneider PB. Simple, rapid thyroid function testing with 99mTc-pertechnetate thyroid uptake ratio and neck/thigh ratio. AJR Am J Roentgenol 1979;132:249-53.
- 18 Pant GS, Kumar R, Gupta AK, Sharma SK, Pandey AK. Estimation of thyroid mass in Graves' disease by a scintigraphic method. Nucl Med Commun 2003;24:743-8.
- 19 Oszukowska L, Knapska-Kucharska M, Makarewicz J, Lewiński A. The influence of thiamazole, lithium carbonate, or prednisone administration on the efficacy of radioiodine treatment ((131) I) in hyperthyroid patients. Endokrynol Pol 2010;61:56-61.
- 20 Zingrillo M, Urbano N, Suriano V, Modoni S. Radioiodine treatment of Plummer and multinodular toxic and nontoxic goiter disease by the first approximation dosimetry method. Cancer Biother Radiopharm 2007;22:256-60.
- 21 Jarløv AE, Hegedüs L, Kristensen LO, Nygaard B, Hansen JM. Is calculation of the dose in radioiodine therapy of hyperthyroidism worth while? Clin Endocrinol (Oxf) 1995;43:325-9.
- 22 Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: Effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 2012;33:920-80.
- 23 Nygaard B. Changes in the thyroid technetium-99m scintigram after antithyroid and subsequent radioiodine treatment for solitary autonomous nodules. Thyroid 1998;8:223-7.
- 24 Moka D, Dietlein M, Schicha H. Radioiodine therapy and thyrostatic drugs and iodine. Eur J Nucl Med Mol Imaging 2002;29 Suppl 2:S486-91.
- 25 Walter MA, Christ-Crain M, Eckard B, Schindler C, Nitzsche EU, Müller-Brand J, et al. Radioiodine therapy in hyperthyroidism: Inverse correlation of pretherapeutic iodine uptake level and post-therapeutic outcome. Eur J Clin Invest 2004;34:365-70.