Subscribe to RSS

DOI: 10.4103/wjnm.wjnm_137_20
Metabolic positron-emission tomography/magnetic resonance imaging in primary progressive aphasia and frontotemporal lobar degeneration subtypes: Reassessment of expected [18F]-fluorodeoxyglucose uptake patterns

Abstract
Clinical assessment of frontotemporal lobar degeneration (FTLD)/primary progressive aphasia (PPA) patients is challenging, given that common cognitive assessments rely extensively on language. Since asymmetry in neuroimaging biomarkers is often described as a central finding in these patients, our study evaluated [18F]-fluorodeoxyglucose (FDG) uptake patterns in patients meeting clinical and imaging criteria for FTLD, with emphasis on PPA. Fifty-one subjects underwent brain [18F]-FDG positron-emission tomography/magnetic resonance imaging (PET/MRI) as part of their routine clinical workup for dementia and neurodegenerative disease. Images were obtained using a Siemens Biograph mMR integrated 3T PET/MRI scanner. PET surface maps and fusion fluid-attenuated inversion recovery-PET images were generated utilizing MIMneuro software. Two board-certified neuroradiologists and one nuclear medicine physician blinded to patient history classified each FTLD/PPA subtype and assessed for left- versus right-side dominant hypometabolism. Qualitative and semiquantitative assessment demonstrated 18 cases of PPA, 16 behavioral variant frontotemporal dementia (bvFTD), 12 corticobasal degeneration, and 5 progressive supranuclear palsy. Among the 18 PPA subjects (11 svPPA, 5 lvPPA, and 2 agPPA), 12 (67%) demonstrated left-dominant hypometabolism and 6 (33%) right-dominant hypometabolism. While existing literature stresses left-dominant hypometabolism as a key imaging feature in the PPA subtypes, a third of our cases demonstrated right-dominant hypometabolism, suggesting that emphasis should be placed on the functionality of specific brain regions affected, rather than left versus right sidedness of hypometabolism patterns.
Keywords
[18F]-fluorodeoxyglucose - frontotemporal lobar degeneration - hybrid neuroimaging - positron emission tomography/magnetic resonance imaging - primary progressive aphasiaFinancial support and sponsorship
Nil.
Publication History
Received: 13 October 2020
Accepted: 19 November 2020
Article published online:
24 March 2022
© 2021. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: Review. JAMA 2019;322:1589-99.
- 2 Olney NT, Spina S, Miller BL. Frontotemporal dementia. Neurol Clin 2017;35:339-74.
- 3 Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep 2010;10:484-90.
- 4 Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335-46.
- 5 Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006-14.
- 6 Baralle M, Buratti E, Baralle FE. The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem Soc Trans 2013;41:1536-40.
- 7 Tsai RM, Bejanin A, Lesman-Segev O, LaJoie R, Visani A, Bourakova V, et al. 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes. Alzheimers Res Ther 2019;11:13.
- 8 Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol 2016;80:247-58.
- 9 James OG, Doraiswamy PM, Borges-Neto S. PET imaging of tau pathology in Alzheimer's disease and tauopathies. Front Neurol 2015;6:38.
- 10 Josephs KA, Martin PR, Botha H, Schwarz CG, Duffy JR, Clark HM, et al. 18F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol 2018;83:599-611.
- 11 Brown RK, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: Patterns of altered FDG metabolism. Radiographics 2014;34:684-701.
- 12 Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002;58:198-208.
- 13 Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008;64:388-401.
- 14 Matias-Guiu JA, Díaz-Álvarez J, Ayala JL, Risco-Martín JL, Moreno-Ramos T, Pytel V, et al. Clustering analysis of FDG-PET imaging in primary progressive aphasia. Front Aging Neurosci 2018;10:230.
- 15 Josephs KA, Duffy JR, Fossett TR, Strand EA, Claassen DO, Whitwell JL, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol 2010;67:596-605.
- 16 Madhavan A, Whitwell JL, Weigand SD, Duffy JR, Strand EA, Machulda MM, et al. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer's type. PLoS One 2013;8:e62471.
- 17 Iaccarino L, Crespi C, Della Rosa PA, Catricalà E, Guidi L, Marcone A, et al. The semantic variant of primary progressive aphasia: Clinical and neuroimaging evidence in single subjects. PLoS One 2015;10:e0120197.
- 18 Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-77.
- 19 Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80:496-503.
- 20 Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002;61:935-46.
- 21 Whitwell JL, Jack CR Jr., Boeve BF, Parisi JE, Ahlskog JE, Drubach DA, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75:1879-87.
- 22 Bigio EH, Brown DF, White CL 3rd. Progressive supranuclear palsy with dementia: Cortical pathology. J Neuropathol Exp Neurol 1999;58:359-64.
- 23 Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov Disord 2017;32:853-64.
- 24 Chen YJ, Dubroff, JG, Nasrallah IM. Recognizing common PET patterns in neurodegenerative dementia. Appl Radiol 2017;46:6-12.
- 25 Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011;77:2034-42.
- 26 Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: Consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol (Berl) 2007;114:5-22.
- 27 Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: Past, present, and future. J Neurochem 2016;138:211-221.