Open Access
CC BY-NC-ND 4.0 · World J Nucl Med 2019; 18(04): 373-377
DOI: 10.4103/wjnm.WJNM_116_18
Original Article

The correlation between myocardial perfusion scintigraphy and three-dimensional echocardiography in ejection fraction and cardiac volumes for determination of the nearest filtering parameters

Ali Reza Mardanshahi
Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
,
Abas Alavi
Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
,
Jamshid Yazdani
1   Department of Biostatics, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
,
Seyed Jalal Hosseinimehr
2   Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
,
Mohammad Khoshakhlagh
Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
,
Mozhdeh Dabirian
3   Department of Cardiology, Cardiovascular Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
,
Seyed Mahammad Abedi
Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
› Institutsangaben
Preview

Abstract

End-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) are cardiac volumes that have crucial roles in diagnosis of cardiovascular diseases (CVD) in patients. There are differences between these mentioned parameters in echocardiography (Echo) and myocardial perfusion scintigraphy (MPS) in clinical practice. In this study, we determined the nearest filtering parameters in the analysis of MPS data in comparison with three-dimensional echocardiography (3DE). All of patients were in this study, and 3DE and MPS were performed for all patients at rest phase in the same day. MPS images were analyzed through quantitative gated single photon emission computer tomography (SPECT) software with Butterworth filter which was a fixed order (order = 5) and variable cutoffs (COs) of 0.3, 0.35, 0.4, 0.45, and 0.5. The EDV, ESV, and EF values were measured by 3DE and MPS and compared. Based on the above different COs, the ESVs of MPS were 15.5 ± 18 mL, 18 ± 20 mL, 21 ± 22.5 mL, 22 ± 23 mL, and 22.5 ± 23.5 mL, respectively, while ESV of 3DE was 44.4 ± 23.5 mL. It was observed as a significant difference between MPS and 3DE for ESV. The EDVs of MPS were 61.3 ± 24.5 ml, 64 ± 26.5 ml, 68 ± 29.5 ml, 72 ± 31 ml, and 76 ± 32.2 ml, respectively, while EDV of 3DE was 105 ± 30 ml, which was significantly different between two methods. The EFs of MPS were 79% ± 14%, 76% ± 13%, 73.5% ± 12%, 73.5% ± 11%, and 74% ± 11%, respectively. The EF of 3DE was 58.4% ± 10% ml. It was statistically significant difference in values of EF between SPECT analysis parameters and 3DE. It was interesting when the COs increased from 0.3 to 0.5; the cardiac volumes increased while the EF decreased. The measured ESV and EDV values were lower in females than males while the EFs of females were higher than males. Finally, we demonstrate that the nearest Cos for measuring of EF and cardiac volumes for analysis of MPS data in comparison with 3DE are 0.45 and 0.5, respectively.

Financial support and sponsorship

Nil.




Publikationsverlauf

Eingereicht: 19. Dezember 2018

Angenommen: 18. Mai 2019

Artikel online veröffentlicht:
22. April 2022

© 2019. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Hutyra M, Skala T, Kaminek M, Zapletalova J. Comparison of left ventricular volumes and ejection fraction assessment by two-dimensional echocardiography compared with gated myocardial spect in patients with ischemic cardiomyopathy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154:47-54.
  • 2 White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44-51.
  • 3 Yamaguchi A, Ino T, Adachi H, Murata S, Kamio H, Okada M, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg 1998;65:434-8.
  • 4 Wong M, Johnson G, Shabetai R, Hughes V, Bhat G, Lopez B, et al. Echocardiographic variables as prognostic indicators and therapeutic monitors in chronic congestive heart failure. Veterans affairs cooperative studies V-heFT I and II. V-heFT VA cooperative studies group. Circulation 1993;87:VI65-70.
  • 5 Senior R, Andersson O, Caidahl K, Carlens P, Herregods MC, Jenni R, et al. Enhanced left ventricular endocardial border delineation with an intravenous injection of sonoVue, a new echocardiographic contrast agent: A European multicenter study. Echocardiography 2000;17:705-11.
  • 6 Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687-92.
  • 7 Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.
  • 8 Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R, et al. Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 1998;5:574-8.
  • 9 Ficaro E, Quaife R, Kritzman J, Corbett J. Accuracy and reproducibility of 3D-MSPECT for estimating left ventricular ejection fraction in patients with severe perfusion abnormalities. Circulation 1999;100 Suppl 1:I26.
  • 10 Ioannidis JP, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: A meta-analysis. J Am Coll Cardiol 2002;39:2059-68.
  • 11 Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. J Nucl Med 1999;40:650-9.
  • 12 Sciagrà R, Bolognese L, Rovai D, Sestini S, Santoro GM, Cerisano G, et al. Detecting myocardial salvage after primary PTCA: Early myocardial contrast echocardiography versus delayed sestamibi perfusion imaging. J Nucl Med 1999;40:363-70.
  • 13 Go V, Bhatt MR, Hendel RC. The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J Nucl Med 2004;45:912-21.
  • 14 Cosyns B, Haberman D, Droogmans S, Warzée S, Mahieu P, Laurent E, et al. Comparison of contrast enhanced three dimensional echocardiography with MIBI gated SPECT for the evaluation of left ventricular function. Cardiovasc Ultrasound 2009;7:27.
  • 15 Lipiec P, Wejner-Mik P, Krzemińska-Pakuła M, Kuśmierek J, Płachcińska A, Szumiński R, et al. Gated 99mTc-MIBI single-photon emission computed tomography for the evaluation of left ventricular ejection fraction: Comparison with three-dimensional echocardiography. Ann Nucl Med 2008;22:723-6.
  • 16 Danesh-Sani SH, Zakavi SR, Oskoueian L, Kakhki VR. Comparison between 99mTc-sestamibi gated myocardial perfusion SPECT and echocardiography in assessment of left ventricular volumes and ejection fraction – Effect of perfusion defect and small heart. Nucl Med Rev Cent East Eur 2014;17:70-4.
  • 17 Berk F, Isgoren S, Demir H, Kozdag G, Sahin T, Ural D, et al. Assessment of left ventricular function and volumes for patients with dilated cardiomyopathy using gated myocardial perfusion SPECT and comparison with echocardiography. Nucl Med Commun 2005;26:701-10.
  • 18 Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007;48:1104-11.