CC BY-NC-ND 4.0 · South Asian J Cancer 2019; 08(04): 233-236
DOI: 10.4103/sajc.sajc_336_18
ORIGINAL ARTICLE: Head and Neck Cancers

A Meta-analysis on efficacy of auto fluorescence in detecting the early dysplastic changes of oral cavity

Nallan C.S.K Chaitanya
Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana
,
Sunanda Chavva
Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana
,
Elizabeth Surekha
Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana
,
Vedula Priyanka
Department of Oral Pathology and Microbiology, Panineeya Institute of Dental Sciences, Hyderabad, Telangana
,
Mule Akhila
Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana
,
Hari Kiran Ponnuru
Department of Conservative Dentistry and Endodontics, Mamata Dental College, Khammam, Telangana
,
Charan Kumar Reddy
Department of Oral Medicine and Radiology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Background: Light-based detection agents using autofluorescence may be helpful in the detection of early dysplasia, which would otherwise be misdiagnosed as nondysplastic by conventional oral examination (COE) with white light. Visually-enhanced lesion scope (VELscope) is one of such an aid used for the purpose. A meta-analysis was carried out on the sensitivity and specificity of VELscope that would enable in providing evidence of its usage in oral dysplasia. Materials and Methods: MeSH terms such as auto florescence in oral dysplasia, VELscope, Oral ID, Identifi, in a different medical database such as PubMed, Cochrane, EBSCO, and Google scholar was carried out by four research associates. The total articles available were 242, of which, 230 were excluded based on strict criteria of randomized control trials and proper design. Finally, only 12 studies were chosen for the present analysis. Of 1643 patients from 12 studies, 1264 patients had undergone the autofluorescence examination after the COE. Only 774 patients have shown the loss of fluorescence with VELScope examination and 487 had retained the fluorescence. Biopsy was performed on 1176 patients after the autofluorescence examination in the areas where there was the loss of fluorescence. The available data were subjected to software Review Manager for analysis. Results and Discussion: Of the 11 studies analyzed, majority of them showed that the autofluorescence device were sensitive enough > 0.70; however, the values of sensitivity and specificities varied significantly. With the VELscope the diagnostic performance of the inexpert examiner was not improved, obtaining a sensitivity of 0.40 (95% of confidence interval [CI]: 0.406–0.773) and a specificity of 0.80 (95% CI: 0.614–0.923). Conclusion: The new technique may help as an adjunct to histopathology in detecting the dysplasia initially and stop further progression to the carcinoma.



Publication History

Article published online:
14 December 2020

© 2019. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Shield KD, Ferlay J, Jemal A, Sankaranarayanan R, Chaturvedi AK, Bray F, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA Cancer J Clin 2017;67:51-64.
  • 2 Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncol 2011;47:274-7.
  • 3 Singla S, Verman A, Goyal S, Singla I, Shetty A. A conventional and advanced diagnostic tools in oral cancer with emphasis on role of dentist and early detection. J Postgrad Med Educ Res 2017;51:128-33.
  • 4 Nagi R, Reddy-Kantharaj YB, Rakesh N, Janardhan-Reddy S, Sahu S. Efficacy of light based detection systems for early detection of oral cancer and oral potentially malignant disorders: Systematic review. Med Oral Patol Oral Cir Bucal 2016;21:e447-55.
  • 5 Farah CS, McIntosh L, Georgiou A, McCullough MJ. Efficacy of tissue autofluorescence imaging (VEL scope) in the visualization of oral mucosal lesions. Head Neck 2012;34:856-62.
  • 6 Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol 2010;6:1143-54.
  • 7 Bhatia N, Lalla Y, Vu AN, Farah CS. Advances in optical adjunctive AIDS for visualisation and detection of oral malignant and potentially malignant lesions. Int J Dent 2013;2013:194029.
  • 8 Jané-Salas E, Blanco-Carrión A, Jover-Armengol L, López-López J. Autofluorescence and diagnostic accuracy of lesions of oral mucosa: A pilot study. Braz Dent J 2015;26:580-6.
  • 9 Rana M, Zapf A, Kuehle M, Gellrich NC, Eckardt AM. Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: A prospective randomized diagnostic study. Eur J Cancer Prev 2012;21:460-6.
  • 10 Scheer M, Neugebauer J, Derman A, Fuss J, Drebber U, Zoeller JE, et al. Autofluorescence imaging of potentially malignant mucosa lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:568-77.
  • 11 Lane PM, Gilhuly T, Whitehead P, Zeng H, Poh CF, Ng S, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt 2006;11:024006.
  • 12 Hanken H, Kraatz J, Smeets R, Heiland M, Assaf AT, Blessmann M, et al. The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscope™) – A single blinded clinical evaluation. Head Face Med 2013;9:23.
  • 13 Koch FP, Kaemmerer PW, Biesterfeld S, Kunkel M, Wagner W. Effectiveness of autofluorescence to identify suspicious oral lesions – A prospective, blinded clinical trial. Clin Oral Investig 2011;15:975-82.
  • 14 Ganga RS, Gundre D, Bansal S, Shirsat PM, Prasad P, Desai RS, et al. Evaluation of the diagnostic efficacy and spectrum of autofluorescence of benign, dysplastic and malignant lesions of the oral cavity using VELscope. Oral Oncol 2017;75:67-74.
  • 15 Bhatia N, Matias MA, Farah CS. Assessment of a decision making protocol to improve the efficacy of VELscope™ in general dental practice: A prospective evaluation. Oral Oncol 2014;50:1012-9.
  • 16 Paderni C, Compilato D, Carinci F, Nardi G, Rodolico V, Lo Muzio L, et al. Direct visualization of oral-cavity tissue fluorescence as novel aid for early oral cancer diagnosis and potentially malignant disorders monitoring. Int J Immunopathol Pharmacol 2011;24:121-8.
  • 17 McNamara KK, Martin BD, Evans EW, Kalmar JR. The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:636-43.
  • 18 Awan KH, Patil S. Efficacy of autofluorescence imaging as an adjunctive technique for examination and detection of oral potentially malignant disorders: A systematic review. J Contemp Dent Pract 2015;16:744-9.