CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2017; 04(02): 091-098
DOI: 10.4103/jnacc-jnacc-3.17
Original Article
Thieme Medical and Scientific Publishers Private Ltd.

A comparative study between intraoperativelow-dose ketamine and dexmedetomidine, as an anaesthetic adjuvant in lumbar spine instrumentation surgery for the post-operative analgesic requirement

Ranadhir Mitra
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Hemanshu Prabhakar
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Girija P. Rath
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Parmod K. Bithal
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Ankur Khandelwal
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations
Further Information

Publication History

Publication Date:
08 May 2018 (online)

Abstract

Background: Spinal instrumentation and fusion surgery presents the anaesthesiologist with multiple issues like intraoperative blood loss, hemodynamic changes, prolonged surgery etc, but the most probing aspect is analgesia. While both ketamine and dexmedetomidine as adjuvants have shown to decrease intraoperative anaesthetics and post operative analgesic consumption but there are no comparative studies. The primary aim of this study was comparison of post-operative analgesic requirements for 1st 24 hours after surgery when either of the drugs was used as adjuvants. Methods: Adult patients aged 18-60 years, of either sex, and ASA status I or II scheduled for elective lumbar spine instrumentation (of 2 or more spinal levels) surgery were enrolled for the study. Patients were randomised into one of the 3 treatment regimens ketamine/group K (0.5mg/kg bolus followed by 250 mcg/kg/h infusion), dexmedetomidine/ group D (0.5mcg/kg bolus followed by 0.5 mcg/kg/h infusion) or the placebo/ group S (saline/placebo). The study drugs were started after turning the patient prone. Data were recorded for intraoperative hemodynamics, anesthetic consumption (inhalational agent and opioids), emergence through RAS scale (Riker sedation agitation scale), PCA (patient controlled analgesia)-fentanyl use and VAS (visual analog scale) score in the 1st 24 hours after surgery. Appropriate statistical analysis was done. Results: A total of 42 patients (14 in each group) were enrolled. The total PCA fentanyl consumed in first 24 hours of surgery was maximum with the group-S (1366.6±382.6 mcg) in compared with group- D (1035.4±391.8 mcg) and group- K (1164.9±503.6 mcg) (P=0.13). The post extubation RAS score was lower in group-K (3.7±0.6) when compared with group-D (4±0.4) and group-S (4.5±0.9) (P=.009). Total intraoperative sevoflurane and fentanyl consumption showed no difference (P=0.19 and P=0.28). VAS score at rest was higher at baseline with group-S (P=0.009). The ICU stay was comparable (group-D: 1.4±0.5 d, group-K: 1.5±0.5 d, group-S: 1.9±0.5 d) among the groups. Hospital stay was also comparable (P=0.09). Conclusion: In patients undergoing lumbar instrumentation surgery, opioid consumption, VAS scores, PCA pump bad demands, inhalational agent consumption, hospital stay were comparable when either ketamine or dexmedetomidine was used as intraoperative anesthetic adjuvants.

 
  • REFERENCES

  • 1 Hoh DJ, Wang MY, Ritland SL. Anatomic features of the paramedian muscle-splitting approaches to the lumbar spine. Neurosurgery 2010; 66: 13-24
  • 2 Arts M, Brand R, van der Kallen B, Lycklama à Nijeholt G, Peul W. Does minimally invasive lumbar disc surgery result in less muscle injury than conventional surgery? A randomized controlled trial. Eur Spine J 2011; 20: 51-7
  • 3 Schulte LM, O'Brien JR, Bean MC, Pierce TP, Yu WD, Meals C. Deep vein thrombosis and pulmonary embolism after spine surgery: Incidence and patient risk factors. Am J Orthop (Belle Mead NJ) 2013; 42: 267-70
  • 4 Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 1997; 78: 606-17
  • 5 Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST. Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anaesth 1999; 46: 872-7
  • 6 Chang G, Chen L, Mao J. Opioid tolerance and hyperalgesia. Med Clin North Am 2007; 91: 199-211
  • 7 Kim SH, Kim SI, Ok SY, Park SY, Kim MG, Lee SJ. et al. Opioid sparing effect of low dose ketamine in patients with intravenous patient-controlled analgesia using fentanyl after lumbar spinal fusion surgery. Korean J Anesthesiol 2013; 64: 524-8
  • 8 Bell RF, Dahl JB, Moore RA, Kalso E. Peri-operative ketamine for acute post-operative pain: A quantitative and qualitative systematic review (Cochrane review). Acta Anaesthesiol Scand 2005; 49: 1405-28
  • 9 Gupta N, Rath GP, Prabhakar H, Dash HH. Effect of intraoperative dexmedetomidine on postoperative recovery profile of children undergoing surgery for spinal dysraphism. J Neurosurg Anesthesiol 2013; 25: 271-8
  • 10 El-Gohary MM, Arafa AS. Dexmedetomidine as a hypotensive agent: Efficacy and hemodynamic response during spinal surgery for idiopathic scoliosis in adolescents. Egypt J Anaesth 2010; 26: 305-11
  • 11 Kontinen VK, Paananen S, Kalso E. The effects of the alpha2-adrenergic agonist, dexmedetomidine, in the spinal nerve ligation model of neuropathic pain in rats. Anesth Analg 1998; 86: 355-60
  • 12 Gurbet A, Basagan-Mogol E, Turker G, Ugun F, Kaya FN, Ozcan B. Intraoperative infusion of dexmedetomidine reduces perioperative analgesic requirements. Can J Anaesth 2006; 53: 646-52
  • 13 Riker RR, Fraser GL, Simmons LE, Wilkins ML. Validating the Sedation-Agitation Scale with the Bispectral Index and Visual Analog Scale in adult ICU patients after cardiac surgery. Intensive Care Med 2001; 27: 853-8
  • 14 Guirimand F, Dupont X, Brasseur L, Chauvin M, Bouhassira D. The effects of ketamine on the temporal summation (wind-up) of the R(III) nociceptive flexion reflex and pain in humans. Anesth Analg 2000; 90: 408-14
  • 15 Garg N, Panda NB, Gandhi KA, Bhagat H, Batra YK, Grover VK. et al. Comparison of small dose ketamine and dexmedetomidine infusion for postoperative analgesia in spine surgery – A prospective randomized double-blind placebo controlled study. J Neurosurg Anesthesiol 2016; 28: 27-31
  • 16 Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK. et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 2010; 113: 639-46
  • 17 Yamauchi M, Asano M, Watanabe M, Iwasaki S, Furuse S, Namiki A. Continuous low-dose ketamine improves the analgesic effects of fentanyl patient-controlled analgesia after cervical spine surgery. Anesth Analg 2008; 107: 1041-4
  • 18 Elia N, Tramèr MR. Ketamine and postoperative pain – A quantitative systematic review of randomised trials. Pain 2005; 113: 61-70