CC BY-NC-ND 4.0 · Journal of Diabetes and Endocrine Practice 2021; 04(02): 75-82
DOI: 10.4103/jdep.jdep_14_21
Original Article

Patterns of clinical management of hypothyroidism in adults: An electronic survey of physicians from the Middle East and Africa

Salem Beshyah
1   Department of Medicine, Dubai Medical College, Dubai
,
Ibrahim Sherif
2   Al Sindan Clinic, Tripoli
,
Huda Mustafa
3   Health Plus Center for Diabetes and Endocrinology, Abu Dhabi
,
Hussein Saadi
4   Cleveland Clinic Abu Dhabi, Abu Dhabi
› Author Affiliations

Background: Hypothyroidism is a common endocrine disorder that is managed by a wide range of physicians. There are no data on the pattern of clinical management of hypothyroidism in the Middle East and Africa (MEA) region. Objectives: We sought to document current practices in the management of primary hypothyroidism in the MEA region and compare these with international recommendations and practices elsewhere. Materials and Methods: A convenience sample of physicians practicing in the MEA in relevant disciplines were invited to take a web-based survey consisting of previously validated multiple-choice questions dealing with investigation and treatment of an index case of overt primary hypothyroidism in general and in three special situations. Results: Out of complete 397 responses, 368 were eligible for inclusion in the analysis. The majority were endocrinologists and internal medicine specialists; 82.2% of them have been in clinical practice for 10 years or more. Overt hypothyroidism would be treated using L-T4 alone by 97.2% of respondents; 1.7% would use a combination of L-T4 and liothyronine (L-T3) therapy. The rate of replacement would be gradual (66.5%), an empiric dose, adjusted to achieve target levels (14.7%); or a calculated full replacement dose (18.5%). A target thyroid-stimulating hormone (TSH) of 2.0–2.9 mU/L was favored in the index case of overt hypothyroidism (by 34.4%) followed by a target of 3.0–3.9 mU/L (by 26.0%) of respondents. However, a target of 4.0–4.9 mU/L was the most commonly selected TSH target for an octogenarian (by 33.5% of respondents). Persistent hypothyroid symptoms despite achieving a target TSH would prompt testing for other causes by 86.9% of respondents, a change to L-T4 plus L-T3 therapy by 5.8%, and an increase in the thyroid hormone dose by 4.6%. Evaluation of persistent symptoms would include measurements of complete blood count (82.4%), complete metabolic panel (68.7%), morning cortisol (65.3%), Vitamin B12 levels (54.5%), and serum T3 levels (27.9%). Subclinical disease with a TSH 7.8 mU/L would be treated without further justification by 9.0% of respondents, or in the presence of positive thyroid peroxidase antibodies (65.3%), hypothyroid symptoms (65.0%), high low-density lipoprotein (51.7%), or a goiter (36.7%). The TSH target for a newly pregnant patient was 2.0–2.4 mU/L for 28.5% of respondents, with 15.8% preferring a TSH target of 1.5–1.9 mU/L. Thyroid hormone levels would be checked every 4 weeks during pregnancy by 62.9% and every 8 weeks by an additional 17.6%. A hypothyroid patient with a TSH of 0.5 mU/L who becomes pregnant would receive an immediate L-T4 dose increase by only 28.5% of respondents. Conclusions: The survey revealed that (1) nearly exclusive preference for L-T4 alone for therapy, (2) use of age-specific TSH targets for replacement therapy, (3) a low threshold for treating mild thyroid failure, (4) complacent and variable attention to TSH targets in the pregnant and prepregnant woman, and (5) a highly variable approach to both the rate and means of restoring euthyroid status for overt disease. Both alignments with and divergence from guidelines were detected. The results should help in directing focused educational activities in the region, providing a baseline for future monitoring of practices.

Financial support and sponsorship

Nil.




Publication History

Received: 10 April 2021

Accepted: 19 May 2021

Article published online:
06 July 2022

© 2021. Gulf Association of Endocrinology and Diabetes (GAED). All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med 2000;160:526-34.
  • 2 Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489-99.
  • 3 Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: The Whickham survey. Clin Endocrinol (Oxf) 1977;7:481-93.
  • 4 Leese GP, Flynn RV, Jung RT, Macdonald TM, Murphy MJ, Morris AD. Increasing prevalence and incidence of thyroid disease in Tayside, Scotland: The Thyroid Epidemiology Audit and Research Study (TEARS). Clin Endocrinol (Oxf) 2008;68:311-6.
  • 5 Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frölich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA 2004;292:2591-9.
  • 6 Eligar V, Taylor PN, Okosieme OE, Leese GP, Dayan CM. Thyroxine replacement: A clinical endocrinologist's viewpoint. Ann Clin Biochem 2016;53:421-33.
  • 7 Cooper DS, Biondi B. Subclinical thyroid disease. Lancet 2012;379:1142-54.
  • 8 Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: The Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab 2013;98:1147-53.
  • 9 Grozinsky-Glasberg S, Fraser A, Nahshoni E, Weizman A, Leibovici L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: Meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2006;91:2592-9.
  • 10 Abalovich M, Alcaraz G, Kleiman-Rubinsztein J, Pavlove MM, Cornelio C, Levalle O, et al. The relationship of preconception thyrotropin levels to requirements for increasing the levothyroxine dose during pregnancy in women with primary hypothyroidism. Thyroid 2010;20:1175-8.
  • 11 Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Stagnaro-Green A. Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. J Clin Endocrinol Metab 2010;95:1699-707.
  • 12 Garber JR, Cobin RH, Gharib H; American Association of Clinical Endocrinologists. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 2012;22:1200-35.
  • 13 Brenta G, Vaisman M, Sgarbi JA, Bergoglio LM, Carvalho de Andrada N, Bravo PP, et al. on behalf of The Task Force on Hypothyroidism of the Latin American Thyroid Society (LATS). Clinical practice guidelines for the management of hypothyroidism. Arq Bras Endocrinol Metab 2013;57:265-99.
  • 14 Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: Prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 2014;24:1670-751.
  • 15 Okosieme O, Gilbert J, Abraham P, Boelaert K, Dayan C, Gurnell M, et al. Management of primary hypothyroidism: Statement by the British Thyroid Association Executive Committee. Clin Endocrinol (Oxf) 2016;84:799-808.
  • 16 Guglielmi R, Frasoldati A, Zini M, Grimaldi F, Gharib H, Garber JR, et al. Italian Association of Clinical Endocrinologists statement endorsed by the AACE Italian Chapter. Replacement therapy for primary hypothyroidism: A brief guide for clinical practice. Endocr Pract 2016;22:1319-26.
  • 17 Burch HB, Burman KD, Cooper DS, Hennessey JV. A 2013 survey of clinical practice patterns in the management of primary hypothyroidism. J Clin Endocrinol Metab 2014;99:2077-85.
  • 18 McDermott MT, Haugen BR, Lezotte DC, Seggelke S, Ridgway EC. Management practices among primary care physicians and thyroid specialists in the care of hypothyroid patients. Thyroid 2001;11:757-64.
  • 19 Surana V, Aggarwal S, Khandelwal D, Singla R, Bhattacharya S, Chittawar S, et al. A 2016 clinical practice pattern in the management of primary hypothyroidism among doctors from different clinical specialties in New Delhi. Indian J Endocrinol Metab 2017;21:165-77.
  • 20 Beshyah SA, Sherif IH, Chentli F, Hamrahian A, Khalil AB, Raef H, et al. Management of prolactinomas: A survey of physicians from the Middle East and North Africa. Pituitary 2017;20:231-40.
  • 21 Beshyah SA, Khalil AB, Sherif IH, Benbarka MM, Raza SA, Hussein W, et al. A survey of clinical practice patterns in management of Graves disease in the Middle East and North Africa. Endocr Pract 2017;23:299-308.
  • 22 Ahmad MM, Buhairy B, Al Mousawi F, Al-Shahrani F, Brema I, Al-Dahmani KM, et al. Physicians' perceptions and practices in management of acromegaly in the MENA region. Hormones (Athens) 2018;17: 373–81 [doi: 10.1007/s42000-018-0045-1].
  • 23 Beshyah SA, Al-Saleh Y, El-Hajj Fuleihan G. Management of osteoporosis in the Middle East and North Africa: A survey of physicians' perceptions and practices. Arch Osteoporos 2019;14:60.
  • 24 Mofokeng TR, Beshyah SA, Mahomed F, Ndlovu KC, Ross IL. Significant barriers to diagnosis and management of adrenal insufficiency in Africa. Endocr Connect 2020;9:445-56.
  • 25 Beshyah SA, Ali KF, Saadi HF. Management of adrenal insufficiency during Ramadan fasting: A survey of physicians. Endocr Connect 2020;9:804-11.
  • 26 Ekhzaimy A, Beshyah SA, Al Dahmani KM, AlMalki MH. Physician' attitudes to growth hormone replacement therapy in adults following pituitary surgery: Results of an online survey. Avicenna J Med 2020;10:215-22.
  • 27 Roos A, Linn-Rasker SP, van Domburg RT, Tijssen JP, Berghout A. The starting dose of levothyroxine in primary hypothyroidism treatment: A prospective, randomized, double-blind trial. Arch Intern Med 2005;165:1714-20.
  • 28 McDermott MT. Does combination T4 and T3 therapy make sense? Endocr Pract 2012;18:750-7.
  • 29 Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 1994;331:1249-52.
  • 30 De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012;97:2543-65.
  • 31 Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:1081-125.
  • 32 Soldin OP. When thyroidologists agree to disagree: Comments on the 2012 Endocrine Society pregnancy and thyroid disease clinical practice guideline. J Clin Endocrinol Metab 2012;97:2632-5.
  • 33 Alexander EK, Marqusee E, Lawrence J, Jarolim P, Fischer GA, Larsen PR. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med 2004;351:241-9.
  • 34 Mandel SJ, Larsen PR, Seely EW, Brent GA. Increased need for thyroxine during pregnancy in women with primary hypothyroidism. N Engl J Med 1990;323:91-6.
  • 35 Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999;341:549-55.
  • 36 Finken MJ, van Eijsden M, Loomans EM, Vrijkotte TG, Rotteveel J. Maternal hypothyroxinemia in early pregnancy predicts reduced performance in reaction time tests in 5- to 6-year-old offspring. J Clin Endocrinol Metab 2013;98:1417-26.
  • 37 Khandelwal D, Tandon N. Overt and subclinical hypothyroidism: Who to treat and how. Drugs 2012;72:17-33.
  • 38 Dutta D, Dharmshaktu P, Aggarwal A, Gaurav K, Bansal R, Devru N, et al. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss. J Postgrad Med 2016;62:162-9.