CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2020; 30(03): 354-361
DOI: 10.4103/ijri.IJRI_39_20
Miscellaneous

Holography applications toward medical field: An overview

Abid Haleem
Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
,
Mohd Javaid
Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
,
Ibrahim Haleem Khan
Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Purpose: 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. Methods: The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Results: Holography uses digital imaging inputs and provides an extensive visualisation of the data for training doctors, surgeons and students. Holography converts information about the body into a digital format and has the potential to inform, promote and entertain the medical students and doctors. However, it needs a large amount of space for data storage and extensive software support for analysis and skills for customising. This technology seems good to solve a variety of medical issues by storing and using patient data in developing 3D holograms, which are useful to assist successful treatment and surgery. It seems useful in providing flexible solutions in the area of medical research. Finally, the paper identifies 13 significant applications of this technology in the medical field and discusses them appropriately. Conclusion: The paper explores holographic applications in medical research due to its extensive capability of image processing. Holographic images are non-contact 3D images having a large field of depth. A physician can now zoom the holographic image for a better view of the medical part. This innovative technology can create advancements in the diagnosis and treatment process, which can improve medical practice. It helps in quick detection of problems in various organs like brain, heart, liver, kidney etc. By using this technology, medical practitioners can see colourful organs at multiple angles with better accuracy. It opens up an innovative way of planning, testing of procedures and diagnosis. With technological developments, compact hardware and software are now available to help medical research and related applications.



Publication History

Received: 29 January 2020

Accepted: 13 May 2020

Article published online:
19 July 2021

© 2020. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Mishra S. Hologram the future of medicine - From Star Wars to clinical imaging. Indian Heart J 2017; 69: 566-7
  • 2 Haleem A, Javaid M, Vaishya R. Holography applications for orthopaedics. Indian J Radiol Imaging 2019; 29: 477-9
  • 3 Kreider W, Yuldashev PV, Sapozhnikov OA, Farr N, Partanen A, Bailey MR. et al. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling. IEEE Trans Ultrason Ferroelectr Freq Control 2013; 60: 1683-98
  • 4 Khaleghi M, Guignard J, Furlong C, Rosowski JJ. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography. J Biomed Opt 2015; 20: 111202 DOI: 10.1117/1.JBO.20.11.111202.
  • 5 Aarnisalo AA, Cheng JT, Ravicz ME, Hulli N, Harrington EJ, Hernandez-Montes MS. et al. Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry. Otol Neurotol 2009; 30: 1209-14
  • 6 Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 2010; 10: 1417-28
  • 7 Haleem A, Javaid M, Vaishya R. Industry 4.0 and its applications in orthopaedics. J Clin Orthop Trauma 2019; 10: 615-6
  • 8 Wei Q, McLeod E, Qi H, Wan Z, Sun R, Ozcan A. On-chip cytometry using plasmonic nanoparticle enhanced lens-free holography. Sci Rep 2013; 3: 1699 DOI: 10.1038/srep01699.
  • 9 Khaleghi M, Furlong C, Ravicz M, Cheng JT, Rosowski JJ. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography. J Biomed Opt 2015; 20: 051028 DOI: 10.1117/1.JBO.20.5.051028.
  • 10 Wang Y, Yang Y, Wang D, Ouyang L, Zhang Y, Zhao J. et al. Morphological measurement of living cells in methanol with digital holographic microscopy. Comput Math Methods Med 2013; 2013: 715843 DOI: 10.1155/2013/715843.
  • 11 Liu CH, Schill A, Raghunathan R, Wu C, Singh M, Han Z. et al. Ultra-fast line-field low coherence holographic elastography using spatial phase shifting. Biomed Opt Express 2017; 8: 993-1004
  • 12 Pathania D, Im H, Kilcoyne A, Sohani AR, Fexon L, Pivovarov M. et al. Holographic assessment of lymphoma tissue (HALT) for global oncology field applications. Theranostics 2016; 6: 1603-10
  • 13 Bernhardt M, Nicolas JD, Osterhoff M, Mittelstädt H, Reuss M, Harke B. et al. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat Commun 2018; 9: 3641 DOI: 10.1038/s41467-018-05885-z.
  • 14 Salvetti F, Bertagni B. Interactive holograms and tutorials in healthcare education: Case studies from the e-REAL experience. Int J Adv Corporate Learn 2016; 9 DOI: 10.3991/ijac.v9i2.5988.
  • 15 Burgner J, Simpson AL, Fitzpatrick JM, Lathrop RA, Herrell SD, Miga MI. et al. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: Toward image registration in minimally invasive surgery. Int J Med Robot 2013; 9: 190-203
  • 16 Prozorov T, Almeida TP, Kovács A, Dunin-Borkowski RE. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid. J R Soc Interface 2017; 14 (PMID: 20170464)DOI: 10.1098/rsif.2017.0464.
  • 17 Isikman SO, Bishara W, Mudanyali O, Sencan I, Su TW, Tseng D. et al. Lensfree on-chip microscopy and tomography for bio-medical applications. IEEE J Sel Top Quantum Electron 2011; 18: 1059-72
  • 18 Lin WT, Lin CY, Singh VR, Luo Y. Speckle illumination holographic non-scanning fluorescence endoscopy. J Biophotonics 2018; 11: e201800010 DOI: 10.1002/jbio.201800010.
  • 19 Sapozhnikov OA, Tsysar SA, Khokhlova VA, Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields. J Acoust Soc Am 2015; 138: 1515-32
  • 20 Guillon M, Forget BC, Foust AJ, De Sars V, Ritsch-Marte M, Emiliani V. Vortex-free phase profiles for uniform patterning with computer-generated holography. Opt Express 2017; 25: 12640-52
  • 21 Stockmar M, Cloetens P, Zanette I, Enders B, Dierolf M, Pfeiffer F. et al. Near-field ptychography: Phase retrieval for inline holography using a structured illumination. Sci Rep 2013; 3: 1927 DOI: 10.1038/srep01927.
  • 22 Zhang J, Sun J, Chen Q, Li J, Zuo C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci Rep 2017; 7: 11777 DOI: 10.1038/s41598-017-11715-x.
  • 23 Yamada S, Kakue T, Shimobaba T, Ito T. Interactive holographic display based on finger gestures. Sci Rep 2018; 8: 2010 DOI: 10.1038/s41598-018-20454-6.
  • 24 Wu Y, Luo Y, Chaudhari G, Rivenson Y, Calis A, de Haan K. et al. Bright-field holography: Cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light Sci Appl 2019; 8: 25 DOI: 10.1038/s41377-019-0139-9.
  • 25 Simpson AL, Sun K, Pheiffer TS, Rucker DC, Sills AK, Thompson RC. et al. Evaluation of conoscopic holography for estimating tumor resection cavities in model-based image-guided neurosurgery. IEEE Trans Biomed Eng 2014; 61: 1833-43
  • 26 Plascencia-Villa G, Ponce A, Collingwood JF, Arellano-Jiménez MJ, Zhu X, Rogers JT. et al. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease. Sci Rep 2016; 6: 24873 DOI: 10.1038/srep24873.
  • 27 Rivenson Y, Wu Y, Wang H, Zhang Y, Feizi A, Ozcan A. Sparsity-based multi-height phase recovery in holographic microscopy. Sci Rep 2016; 6: 37862 DOI: 10.1038/srep37862.
  • 28 Moon I, Javidi B. Three-dimensional identification of stem cells by computational holographic imaging. J R Soc Interface 2007; 4: 305-13
  • 29 Kjeldsen HD, Kaiser M, Whittington MA. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue. J Neurosci Methods 2015; 253: 1-9
  • 30 Ronzitti E, Conti R, Zampini V, Tanese D, Foust AJ, Klapoetke N. et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of chronos. J Neurosci 2017; 37: 10679-89
  • 31 Nesterets Y, Gureyev T, Stevenson A, Pogany A, Wilkins S, Kincaid R. et al. Soft tissue small avascular tumor imaging with x-ray phase-contrast micro-CT in-line holography. Proc SPIE Int Soc Opt Eng 2008; 6913: 69133z DOI: 10.1117/12.772761.
  • 32 Dobrev I, Furlong C, Cheng JT, Rosowski JJ. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography. J Biomed Opt 2014; 19: 96001
  • 33 Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X. et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci Rep 2015; 5: 8445 DOI: 10.1038/srep08445.
  • 34 Buzalewicz I, Kujawińska M, Krauze W, Podbielska H. Novel perspectives on the characterization of species-dependent optical signatures of bacterial colonies by digital holography. PLoS One 2016; 11: e0150449 DOI: 10.1371/journal.pone.0150449.
  • 35 Tahara T, Quan X, Otani R, Takaki Y, Matoba O. Digital holography and its multidimensional imaging applications: A review. Microscopy (Oxf) 2018; 67: 55-67
  • 36 Nobukawa T, Katano Y, Muroi T, Kinoshita N, Ishii N. Bimodal incoherent digital holography for both three-dimensional imaging and quasi-infinite-depth-of-field imaging. Sci Rep 2019; 9: 3363 DOI: 10.1038/s41598-019-39728-8.
  • 37 Siegel N, Storrie B, Bruce M, Brooker G. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography). Proc SPIE Int Soc Opt Eng 2015; 9336: 93360S DOI: 10.1117/12.2081319.
  • 38 Brudfors M, García-Vázquez V, Sesé-Lucio B, Marinetto E, Desco M, Pascau J. ConoSurf: Open-source 3D scanning system based on a conoscopic holography device for acquiring surgical surfaces. Int J Med Robot 2017; 13: e1788 DOI: 10.1002/rcs.1788.
  • 39 Bedrossian M, Barr C, Lindensmith CA, Nealson K, Nadeau JL. Quantifying microorganisms at low concentrations using digital holographic microscopy (DHM). J Vis Exp 2017; e56343 DOI: 10.3791/56343.
  • 40 Rodríguez GL, Weber J, Sandhu JS, Anastasio MA. Feasibility study of complex wavefield retrieval in off-axis acoustic holography employing an acousto-optic sensor. Ultrasonics 2011; 51: 847-52
  • 41 Jo Y, Park S, Jung J, Yoon J, Joo H, Kim MH. et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv 2017; 3: e1700606 DOI: 10.1126/sciadv.1700606.
  • 42 Krenkel M, Toepperwien M, Alves F, Salditt T. Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime. Acta Crystallogr A Found Adv 2017; 73: 282-92
  • 43 Song J, Leon Swisher C, Im H, Jeong S, Pathania D, Iwamoto Y. et al. Sparsity-based pixel super resolution for lens-free digital in-line holography. Sci Rep 2016; 6: 24681 DOI: 10.1038/srep24681.
  • 44 Bocanegra Evans H, Gorumlu S, Aksak B, Castillo L, Sheng J. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars. Sci Rep 2016; 6: 28753 DOI: 10.1038/srep28753.
  • 45 Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M, Fontana A. et al. Tomographic flow cytometry by digital holography. Light Sci Appl 2017; 6: e16241 DOI: 10.1038/lsa.2016.241.
  • 46 Furlong C, Dobrev I, Rosowski J, Cheng J. Assessing eardrum deformation by digital holography. SPIE Newsroom 2013; DOI: 10.1117/2.1201212.004612.
  • 47 Merrill D, An R, Turek J, Nolte DD. Digital holography of intracellular dynamics to probe tissue physiology. Appl Opt 2015; 54: 89-97
  • 48 Haleem A, Javaid M. Additive manufacturing applications in Industry 4.0: A review. J Indus Integration Manag 2019; DOI: 10.1142/S2424862219300011.
  • 49 Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res 2010; 263: 78-84
  • 50 Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S. et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fibre-optic array. Lab Chip 2011; 11: 1276-9
  • 51 De Angelis A, Ferrara MA, Coppola G, Di Matteo L, Siani L, Dale B. et al. Combined Raman and polarization sensitive holographic imaging for a multimodal label-free assessment of human sperm function. Sci Rep 2019; 9: 4823 DOI: 10.1038/s41598-019-41400-0.
  • 52 Galeotti JM, Siegel M, Stetten G. Real-time tomographic holography for augmented reality. Opt Lett 2010; 35: 2352-4
  • 53 Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P, Ilday S. et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics 2019; 13: 251-6
  • 54 Javaid M, Haleem A. Industry 4.0 applications in medical field: A brief review. Curr Med Res Pract 2019; 9: 102-9
  • 55 Rosen J, Indebetouw G, Brooker G. Homodyne scanning holography. Opt Express 2006; 14: 4280-5
  • 56 Flores-Moreno JM, Furlong C, Rosowski JJ, Harrington E, Cheng JT, Scarpino C. et al. Holographic otoscope for nano displacement measurements of surfaces under dynamic excitation. Scanning 2011; 33: 342-52
  • 57 Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes Model S, Furlong C, Merchant SN. et al. Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 2010; 263: 66-77
  • 58 Khaleghi M, Lu W, Dobrev I, Cheng JT, Furlong C, Rosowski JJ. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane. Opt Eng 2013; 52: 101916 DOI: 10.1117/1.OE.52.10.101916.
  • 59 Sobieranski AC, Inci F, Tekin HC, Yuksekkaya M, Comunello E, Cobra D. et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci Appl 2015; 4: e346 DOI: 10.1038/lsa.2015.119.
  • 60 Shevkunov I, Katkovnik V, Claus D, Pedrini G, Petrov NV, Egiazarian K. Spectral object recognition in hyperspectral holography with complex-domain denoising. Sensors (Basel) 2019; 19: 5188 DOI: 10.3390/s19235188.
  • 61 Haleem A, Javaid M, Khan IH. Current status and applications of Artificial Intelligence (AI) in medical field: An overview. Curr Med Res Pract 2020; 9: 231-7
  • 62 Cantu-Valle J, Ruiz-Zepeda F, Mendoza-Santoyo F, Jose-Yacaman M, Ponce A. Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope. Ultramicroscopy 2014; 147: 44-50 DOI: 10.1016/j.ultramic.2014.06.003. Epub 2014 Jun 30. PMID: 25016585; PMCID: PMC4307790
  • 63 Haleem A, Javaid M, Khan MI. Artificial intelligence (AI) applications in dentistry. Curr Med Res Pract 2019; DOI: 10.1016/j.cmrp.2019.12.002.
  • 64 Ozsoy-Keskinbora C, Boothroyd CB, Dunin-Borkowski RE, van Aken PA, Koch CT. Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity. Sci Rep 2014; 4: 7020 DOI: 10.1038/srep07020. (PMID: 25387480)PMCID: PMC4228327
  • 65 Ryu D, Wang Z, He K, Zheng G, Horstmeyer R, Cossairt O. Subsampled phase retrieval for temporal resolution enhancement in lensless on-chip holographic video. Biomed Opt Express 2017; 8: 1981-95