CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2017; 38(02): 128-132
DOI: 10.4103/ijmpo.ijmpo_22_16
Original Article

Investigation of Vitamin D Receptor Gene Polymorphism in Pediatric Patients with Brain Cancer

Baris Yilmaz
Division of Paediatric Hematology and Oncology, Marmara University Education and Research Hospital, Istanbul, Turkey
,
Gulnur Ayse Tokuc
Division of Paediatric Hematology and Oncology, Marmara University Education and Research Hospital, Istanbul, Turkey
,
Ahmet Koc
Division of Paediatric Hematology and Oncology, Marmara University Education and Research Hospital, Istanbul, Turkey
,
Edanur Yesil
Division of General Paediatrics, Marmara University Education and Research Hospital, Istanbul, Turkey
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Aim: In recent years, it is believed that Vitamin D may play a protective role in some cancer types. Certain regions of the Vitamin D receptor (VDR) gene may show a genetic difference in structure. The most frequent polymorphisms in this gene are in Taq-1, Fok-1, and Bsm-1 regions. Some adult cancer types are associated with VDR gene polymorphism such as; colorectal carcinoma, breast carcinoma, and prostate carcinoma. Reviewing the medical literature, no such study had been done on children so far. Materials and Methods: We investigated the association of the three most common gene polymorphisms (Taq-1, Fok-1, and Bsm-1 regions) in VDR gene in 32 children with brain tumors and forty control healthy volunteers. Results: We could not find any relationship between childhood brain tumors and VDR gene polymorphism in these three regions. Conclusion: The present results suggest that the Taq-1, Fok-1, and Bsm-1 polymorphism in the VDR gene and pediatric brain cancers have no association.



Publication History

Article published online:
06 July 2021

© 2017. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of Vitamin D action. Calcif Tissue Int 2013;92:77-98.
  • 2 Clevers H. At the crossroads of inflammation and cancer. Cell 2004;118:671-4.
  • 3 Giovannucci E. The epidemiology of Vitamin D and cancer incidence and mortality: A review (United States). Cancer Causes Control 2005;16:83-95.
  • 4 Freedman DM, Looker AC, Chang SC, Graubard BI. Prospective study of serum Vitamin D and cancer mortality in the United States. J Natl Cancer Inst 2007;99:1594-602.
  • 5 Moore CE, Murphy MM, Holick MF. Vitamin D intakes by children and adults in the United States differ among ethnic groups. J Nutr 2005;135:2478-85.
  • 6 Garland CF, Gorham ED, Mohr SB, Garland FC. Vitamin D for cancer prevention: Global perspective. Ann Epidemiol 2009;19:468-83.
  • 7 Colston K, Colston MJ, Feldman D. 1,25-dihydroxyvitamin D3 and malignant melanoma: The presence of receptors and inhibition of cell growth in culture. Endocrinology 1981;108:1083-6.
  • 8 Miyaura C, Abe E, Kuribayashi T, Tanaka H, Konno K, Nishii Y, et al. 1 alpha, 25-dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 1981;102:937-43.
  • 9 Honma Y, Hozumi M, Abe E, Konno K, Fukushima M, Hata S, et al. 1 alpha, 25-dihydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc Natl Acad Sci U S A 1983;80:201-4.
  • 10 Mazilli SA, Reid ME, Foster BA. Vitamin D and cancer chemoprevention. In: Trump DL, Johnson CS, editors. Vitamin D and Cancer. 1st ed. New York: Springer Science + Business Mediae; 2011. p. 175-89.
  • 11 Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, et al. Optimal Vitamin D status for colorectal cancer prevention: A quantitative meta analysis. Am J Prev Med 2007;32:210-6.
  • 12 Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M,et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol 2005;97:179-94.
  • 13 Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Wetterslev J, Gluud C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database of Systematic Reviews 2008:CD007469.
  • 14 Mittal RD, Manchanda PK, Bhat S, Bid HK. Association of Vitamin-D receptor (Fok-I) gene polymorphism with bladder cancer in an Indian population. BJU Int 2007;99:933-7.
  • 15 Raimondi S, Johansson H, Maisonneuve P, Gandini S. Review and meta-analysis on Vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009;30:1170-80.
  • 16 Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience 2003;118:641-53.
  • 17 Sutton AL, Zhang X, Ellison TI, Macdonald PN. The 1,25(OH) 2D3-regulated transcription factor MN1 stimulates Vitamin D receptor-mediated transcription and inhibits osteoblastic cell proliferation. Mol Endocrinol 2005;19:2234-44.
  • 18 Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, et al. AVitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 1997;12:915-21.
  • 19 Swapna N, Vamsi UM, Usha G, Padma T. Risk conferred by FokI polymorphism of Vitamin D receptor (VDR) gene for essential hypertension. Indian J Hum Genet 2011;17:201-6.
  • 20 Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, et al. The polymorphic N terminus in human Vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 2000;14:401-20.
  • 21 Colin EM, Weel AE, Uitterlinden AG, Buurman CJ, Birkenhäger JC, Pols HA, et al. Consequences of Vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol (Oxf) 2000;52:211-6.
  • 22 Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML. Haplotype analysis of common Vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol Biomarkers Prev 2006;15:744-9.
  • 23 Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about Vitamin D functions in the nervous system. Trends Endocrinol Metab 2002;13:100-5.
  • 24 McGrath JJ, Féron FP, Burne TH, Mackay-Sim A, Eyles DW. Vitamin D3-implications for brain development. J Steroid Biochem Mol Biol 2004;89-90:557-60.
  • 25 Tseng M, Breslow RA, Graubard BI, Ziegler RG. Dairy, calcium, and Vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am J Clin Nutr 2005;81:1147-54.
  • 26 Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, Hollis BW, et al. Plasma Vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 2004;13:1502-8.
  • 27 Qi X, Pramanik R, Wang J, Schultz RM, Maitra RK, Han J, et al. The p38 and JNK pathways cooperate to trans-activate Vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to Vitamin D(3)-induced growth inhibition. J Biol Chem 2002;277:25884-92.
  • 28 Kure S, Nosho K, Baba Y, Irahara N, Shima K, Ng K, et al. Vitamin D receptor expression is associated with PIK3CA and KRAS mutations in colorectal cancer. Cancer Epidemiol Biomarkers Prev 2009;18:2765-72.
  • 29 Naveilhan P, Berger F, Haddad K, Barbot N, Benabid AL, Brachet P, et al. Induction of glioma cell death by 1,25(OH) 2 Vitamin D3: Towards an endocrine therapy of brain tumors? J Neurosci Res 1994;37:271-7.
  • 30 Baudet C, Chevalier G, Naveilhan P, Binderup L, Brachet P, Wion D. Cytotoxic effects of 1 alpha, 25-dihydroxyvitamin D3 and synthetic Vitamin D3 analogues on a glioma cell line. Cancer Lett 1996;100:3-10.
  • 31 Baudet C, Chevalier G, Chassevent A, Canova C, Filmon R, Larra F, et al. 1,25-Dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line. J Neurosci Res 1996;46:540-50.
  • 32 Davoust N, Wion D, Chevalier G, Garabedian M, Brachet P, Couez D. Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone. J Neurosci Res 1998;52:210-9.
  • 33 Trouillas P, Honnorat J, Bret P, Jouvet A, Gerard JP. Redifferentiation therapy in brain tumors: Long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neurooncol 2001;51:57-66.
  • 34 Neveu I, Naveilhan P, Menaa C, Wion D, Brachet P, Garabédian M. Synthesis of 1,25-dihydroxyvitamin D3 by rat brain macrophages in vitro. J Neurosci Res 1994;38:214-20.
  • 35 Toptas B, Kafadar AM, Cacina C, Turan S, Yurdum LM, Yigitbasi N, et al. The Vitamin D receptor (VDR) gene polymorphisms in Turkish brain cancer patients. Biomed Res Int 2013;2013:295791.